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Abstract  A number of protective immune functions decline with age along with 
physiological and anatomical changes, contributing to the increased susceptibility 
of older adults to infectious diseases and suboptimal protective immune responses 
to vaccination. Influenza vaccination is the most cost-effective strategy to prevent 
complications from influenza viral infections; however, the immunogenicity and 
effectiveness of currently licensed vaccines in the United States is about 30–50% 
in preventing complications arising from influenza and preventing death from all 
causes during winter months in older adults. Hence, it is crucial to understand the 
molecular mechanisms that lead to immune dysfunction as a function of age so 
that appropriate strategies can be developed to enhance the disease resistance and 
immunogenicity of preventive vaccines, including influenza vaccines, for the older 
adult population.
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1  Introduction

A dramatic increase in the older adult population is occurring globally due to 
improved sanitation, preventive vaccination, development of effective antimicrobial 
drugs, and advances in medical sciences. This growth of the older adult population 
is having a major impact on healthcare, social services, and public health. In the 
year 2004, older adults accounted for 12.4% of the total population and required 
$531.5 billion in primary healthcare costs (Hartman et al. 2008). This represented 
almost 34% of all healthcare spending, as the cost of providing healthcare for an 
older adult aged 65 or above is 3–5 times greater than the cost for a younger adult. 
The older adult population in the USA is projected to almost double by 2030 
2007(AoA). A decline in immune function leading to increased susceptibility to 
infectious diseases and poor adaptive immune response to vaccination is a key 
characteristic of aging (Miller 1996, 1997). For example, increased colonization of 
bacteria and yeast on the skin and mucosal surfaces, respiratory, and urogenital 
tracts, increased susceptibility to viral infections, and reactivation of latent viral and 
bacterial infections are all well documented (Gardner et al. 2006; Worley 2006; Ely 
et al. 2007; Htwe et al. 2007; Kovaiou et al. 2007; Simmons et al. 2007; van Duin 
and Shaw 2007). In general, infectious diseases such as severe acute respiratory 
syndrome (SARS), West Nile virus, respiratory syncytial virus (RSV), influenza, 
and pneumococcal infections tend to be more severe (with complications), often 
resulting in unfavorable outcomes among older adults when compared to those in 
healthy adults. In addition, the efficacy of preventive vaccines against bacterial and 
viral targets declines dramatically with the progression of age among older adults, 
clearly indicating that the dysregulated immune status referred to as “immunosen-
scence” is the consequence of altered physiological and anatomical functions 
(Ginaldi et al. 2001; Aw et al. 2007). Hence, in this review, we will address the 
status of innate and adaptive immune functions in aging, the current state of influenza 
vaccines and their efficacy in older adults, and strategies that need to be considered 
to protect them against influenza.

2  Immune Status in Aging

2.1  Innate Immunity

Innate immunity was considered “nonspecific” and received secondary importance 
when compared to antigen-specific adaptive immune functions until the late 1990s. 
However, with the discovery of Toll-like receptors (TLRs), innate immunity is now 
recognized to be crucial to the survival of species. Therefore, understanding innate 
immunity can offer newer insights into the development of novel immunomodulators 
and antimicrobials (Hoffmann et al. 1999; Medzhitov and Janeway 2000a,b; Imler 
and Hoffmann 2001). Since the discovery of TLRs, several other pathogen-sensing 
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receptor families have been identified over the last decade (Bingle and Craven 
2002; Kang et al. 2002; Lu et al. 2002; Holmskov et al. 2003; Yoneyama et al. 
2004; Martinon and Tschopp 2005; Ting and Davis 2005; Brown 2006; Takaoka et 
al. 2007). These families evolved to overcome microbial strategies and their meta-
bolic needs in order to eliminate them. TLRs are expressed either as soluble mol-
ecules on the cell membrane or in vesicular compartments, or in the cytosol, as 
shown in Fig. 1. These pathogen sensors recognize structural components of patho-
gens and activate signal transduction cascades, leading to gene transcription with 
several outcomes, such as activation of antibacterial and antiviral defenses, secre-
tion of proinflammatory cytokines and chemokines, tissue repair in the event of 
damage, and activation of adaptive immune responses. In most cases, the precise 
structure or sequence of the pathogen signature that stimulate the innate immune 
receptors is not well defined.

The dynamic barrier against infectious diseases, the epithelial lining of skin, 
gastrointestinal, respiratory, and urogenital systems, prevents the colonization and 
entry of potential pathogens into the body’s interior, which is sterile (Ganz 2002). 
These epithelial cells express several pattern recognition receptors and, upon 
recognition of the molecular signatures of pathogens, secrete antimicrobial substances 
that aid in the destruction of pathogenic microbes (Ganz et al. 1992; Schittek et al. 
2001; Zanetti 2004). In addition to epithelial cell turnover that reduces the microbial 
load, mucosal secretions of respiratory, urogenital, and gastrointestinal tracts have 
antibacterial substances that also facilitate the elimination of colonization. Similarly, 
the antibacterial components of sweat and skin secretions reduce colonization of 
microbial load (Schittek et al. 2001; Zanetti 2004). Limited information is available 
on the status and functionality of skin, lung, and other mucosal epithelial layers 
among older adults. The epithelial cell turnover rate in skin slows down among the 
older adults, with a reduced secretion of sweat and sebum resulting in dryness and 
increased microbial colonization, especially with Pseudomonas and Proteus species 

Fig. 1  Pathogen sensors of the innate immune system. Several families of pathogen-sensing 
receptors that recognize conserved molecular signatures of pathogens are localized in various 
compartments within the cell as well as in body fluids. Engagement of these receptors leads to the 
activation of the innate immune system and the elimination of the pathogens
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(Laube 2004). These altered physiological states may contribute to delayed skin 
wound healing (Thomas 2001; Reed et al. 2003; Sorensen et al. 2003; Gosain and 
DiPietro 2004; Laube 2004). Altered physiological and anatomical changes in the 
lungs also contribute to poor innate immunity, thereby increasing microbial coloni-
zation and the incidence of pneumonia (Meyer 2001). These changes include reduced 
elasticity and function of lung muscles, reduced mucociliary clearance rates, decreased 
oropharyngeal clearance of bacteria, decreased phagocytic activity of alveolar 
macrophages, and decreased mucosal secretions (Meyer et al. 1996; Meyer 2004, 
2005). Similarly, there is increased localization of Candida species on the oral and 
urogenital mucosal surfaces with age among older adults (Shay and Ship 1995; 
Sobel 1997). In the case of influenza infection, no data are available on the status 
of innate immune responses at the epithelial barriers in aging. Hence, detailed studies 
addressing the statuses of pathogen-sensing mechanisms with age are required and 
will enable us to come up with the strategies to reduce microbial load at epithelial 
surfaces and to enhance disease resistance.

2.2  Pathogen Sensing and Antigen-Presenting Cells

The primary role of innate immunity is to prevent the entry of pathogens into the 
tissues; however, a number of factors such as dose of infecting pathogen and the 
immune and nutritional status of the individual determine if innate immunity is able 
to prevent colonization and infection. Once pathogens overcome the epithelial 
defenses and gain access into tissues, myeloid lineages of hemopoietic stem cells 
from bone marrow, namely tissue-resident macrophages and dendritic cells, recognize 
the pathogens. Innate immune receptors, either directly or through scavenger receptors 
or pathogens bound to soluble innate immune receptors, initiate phagocytosis and 
an inflammatory response. These interactions lead to the secretion of proinflammatory 
cytokines such as IL-6, TNF-a, and IL-8, which attract neutrophils and natural 
killer cells to the site of infection, thus creating an optimal priming environment to 
initiate an adaptive immune response. Dendritic cells (DCs) capture antigens from 
pathogens, mature, differentiate, and migrate to regional draining lymph nodes to 
stimulate antigen-specific T and B cells, the lymphoid lineages that originate from 
hemopoietic stem cells. Following antigen-specific clonal expansion of B and T cells, 
the invading pathogen is or the pathogen-infected cells are removed by specific 
antibody and T cells. Tissue-resident macrophages play a major role in pathogen 
sensing, elimination, and tissue repair. We have demonstrated previously that the 
expression and function of TLRs on peritoneal as well as splenic macrophages 
decline with age using a murine model or peripheral blood mononuclear cells 
(PBMCs) from humans (Renshaw et al. 2002; van Duin et al. 2007b; van Duin and 
Shaw 2007). These findings are consistent with the previous observations that 
macrophage function declines with age, although the molecular mechanisms were 
not clear (Plowden et al. 2004a,b; Sebastian et al. 2005). Not only does macrophage 
function decline with age, but so does their ability to process and present antigens, 
secrete proinflammatory cytokines and chemokines, provide costimulatory signals, 
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and migrate to the site of infection, as documented in aged animal models (Plowden 
et al. 2004a,b). Although an age-related decline in the acute proinflammatory 
response of monocytes has been identified, other studies have demonstrated 
increased levels of proinflammatory cytokines in serum and in culture supernatants 
of in vitro stimulated monocyte cultures from healthy older adults compared to 
younger adults. These observations led Franceschi and colleagues to coin the term 
“inflammaging” indicating a low-grade chronic inflammatory state as a hallmark of 
aging (Franceschi et al. 2000; Franceschi 2007) and increased risk for adverse 
changes in health in older adults. This would predict high levels of proinflammatory 
cytokines in frail older adults, but just the opposite has been found; low levels of 
the cytokines have been associated with frailty. Differences in the observations may 
be accounted for based on the type (polyclonal vs. antigen- or ligand-specific) and 
duration (acute vs. chronic) of stimulus (van den Biggelaar et al. 2004). Although 
additional studies need to clarify the observed differences in the secretion of proin-
flammatory cytokines between aged animal models, healthy older adults and frail 
older adults, it is clear that there are alterations in pro- and anti-inflammatory 
cytokine secretion and their balance with aging (Alberti et al. 2006). These altera-
tions will affect both innate and adaptive immune functions (Fig. 2). In addition, 
the migration of antigen-bearing DCs is severely affected in aged animals, indicat-
ing that the priming environment for adaptive immune responses is suboptimal 
(Linton et al. 2005). Although careful studies are yet to be performed, Langerhans 
cells in skin appear to decline in numbers with age, and their function also declines 
with age (Meyerson 1966; Laube 2004). In contrast, bone marrow-derived DCs 
generated with a cocktail of cytokines from aged animals or humans are found to be 

Fig. 2  Immune dysfunction in older adults. The characteristics of the alterations observed in both 
the innate and adaptive immune compartments 
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as effective as those generated from their younger counterparts in recalling memory T 
cell responses. This would suggest that in vitro generation bypasses age-related 
defects that are seen with ex vivo DCs (Lung et al. 2000; Tesar et al. 2006). 
However, primary CD4 T-lymphocyte responses remain impaired in spite of normal 
DC function, suggesting increased antigen and costimulation thresholds of aged, 
naïve T-lymphocytes, consistent with our earlier published data (Haynes et al. 2000; 
Sambhara et al. 2001; van Duin et al. 2007a). Unpublished findings from our labora-
tory indicate a substantial delay in the mobilization of DCs and macrophages into 
lungs and regional draining lymph nodes following infection with influenza virus 
in aged compared to younger animals, suggesting an altered microenvironment. A 
decline in the expression of pathogen sensors (specifically TLRs) and the secretion 
of cytokines and chemokines was also observed that may influence the migration, 
activation, differentiation, and function of macrophages and dendritic cells. Indeed, 
a recently published study demonstrated poor induction of costimulatory molecules 
on monocytes of older adults following TLR stimulation, consistent with our obser-
vations in the murine model (Renshaw et al. 2002; van Duin and Shaw 2007). Using 
adjuvants that stimulate the innate immune system, providing costimulation, or sup-
plementing with a cocktail of cytokines along with antigen at the time of immuniza-
tion significantly improved adaptive immune responses by stimulating 
antigen-presenting cells (APCs) (Sambhara et al. 1998, 2001; Haynes et al. 2004). 
Hence, it is logical to formulate vaccines for older adults with adjuvants to induce 
an optimal priming environment for adaptive immune responses.

2.3  Adaptive Immunity 

Hematopoietic stem cells (HSC) in the bone marrow give rise to both myeloid- and 
lymphoid-committed stem cells. While the myeloid lineage gives rise to monocytes, 
macrophages, and dendritic cells, lymphoid-committed stem cells give rise to T 
lymphocytes and B lymphocytes which go through “education and selection” in the 
thymus (in the case of T cells) and bone marrow (in the case of B cells), a process 
that removes potentially autoreactive clones. These cells are further educated in the 
periphery to be tolerant to self-antigens. Although there is some indirect evidence 
that HSC numbers decline with age, detailed studies are yet to be done to determine 
if HSC numbers, function or migration alter with age (Wang et al. 1995; Lamberts 
et al. 1997; de Haan and Van Zant 1999). Changes in the cellularity of bone marrow 
with aging have been clearly documented, and may alter the local cytokine milieu, 
thus affecting the proliferation, differentiation, and seeding of secondary lymphoid 
organs by lineage-specific stem cells (Liang et al. 2005).

2.3.1  Humoral Immunity in Aging

Antigen-specific adaptive immune responses against influenza virus infection or 
vaccination are mediated by B lymphocytes and T lymphocytes; both contribute to 
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humoral and cellular immunity to influenza. T helper cells secrete cytokines for B 
lymphocyte differentiation and class switching. Following the recognition of 
antigens with their surface immunoglobulin receptors, B lymphocytes undergo 
differentiation to become plasma cells that secrete antibody. Antibodies against the 
major surface glycoprotein of influenza viruses, the hemagglutinin (HA), neutralize 
the virus by binding to conformational determinants on HA, and prevent infection. 
Antibodies directed against the second major surface glycoprotein, the neuramini-
dase (NA), can limit virus release from an infected cell and can therefore reduce 
virus replication. The functionality of anti-HA antibodies is usually determined by 
the hemagglutination-inhibition (HAI) test, and in some cases by virus-neutralization 
tests. A HAI titer of ³1:40 is correlated with a 50% protection rate in a population 
against influenza viral infections (Wood et al. 1997). Due to the high mutation rate 
of this RNA virus and the selection pressure of pre-existing antibody in humans that 
acts on circulating viruses, influenza viruses accumulate mutations in HA and NA 
genes, leading to antigenic drift, which requires that the strains of influenza 
contained in the vaccine must be updated every year to antigenically match the 
circulating strains. In general, it is known that humoral immune responses induced 
by influenza vaccination decline with age. However, humoral immune responses as 
measured by HAI titers in community-dwelling “healthy older adults” and cente-
narians are similar to those observed in younger adults, indicating that aging alone 
does not affect antibody responses against influenza vaccination. Other contributing 
factors to the decline in antibody responses include comorbid conditions such as 
chronic diseases and frailty, as well as poor nutrition, stress, and limited physical 
activity. Pre-existing humoral immunity due to annual vaccination of older adults 
does not appear to impact the antibody responses to subsequent vaccinations and 
does not explain the poor vaccine efficacy. One possibility is that the quality and 
duration, rather than the magnitude of the antibody response, may be affected; 
however, results from a recent study indicate that this may not be the case  
(de Bruijn et al. 1999; Gardner et al. 2001; Iorio et al. 2007). Hence, additional 
markers of the immune response may be needed to predict vaccine efficacy in the 
older adult population. Earlier studies from our laboratory have shown that serum 
antibody titers did not correlate with the susceptibility to influenza virus infection 
among older adults, suggesting that both antibodies and cellular immunity contribute 
to clinical protection against influenza illness. Although the antibody responses are 
strain-specific within a subtype, they do provide cross-protection against viruses of 
the same subtype via antibody-dependent cell-mediated cytotoxicity carried out by 
NK cells or macrophages.

2.3.2  Cellular Immunity in Aging

Unlike B lymphocytes, T lymphocytes recognize peptide fragments derived from 
the antigens that are presented with major histocompatibility complex molecules by 
professional antigen-presenting cells such as dendritic cells. T lymphocytes consist of 
CD4 T helper cells and CD8 cytotoxic T cells. While CD4 T lymphocytes recognize 
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peptides that are processed from exogenous antigens (e.g., killed virus) presented 
with class II MHC molecules, CD8 T lymphocytes recognize peptide fragments 
derived from endogenous antigens (e.g., peptides derived from virus replicating 
inside the cell) that are presented with class I MHC molecules. Depending on the 
pattern of cytokines they secrete, CD4 T lymphocytes are further classified as  
T helper 1 (Th1), T helper 2 (Th2), T helper 3 (Th3), and T helper 17 (Th17) cells. 
T lymphocytes recognize peptide fragments derived from both surface glycopro-
teins and internal proteins. While surface glycoproteins (HA and NA) vary due to 
antigenic drift or shift, the internal proteins, namely the nucleoprotein, matrix 
protein and others, are fairly conserved within the subtype of influenza viruses. It has 
been shown that although T lymphocytes will not prevent infection, cytotoxic T 
lymphocytes kill virus-infected cells and aid in viral clearance, thus contributing to 
clinical protection against influenza illness (Yap et al. 1978). Hence, the activation 
of both CD4 and CD8 T lymphocytes will provide cross-protection against variant 
viruses within a subtype. Virus infection induces robust T lymphocyte responses, 
which persist for a very long time and provide cross-protection in mice. The mag-
nitude and durability of T lymphocyte responses depend on the route of infection/
immunization, whether or not the vaccine is formulated to induce or recall espe-
cially CD8 T lymphocyte responses. The current inactivated split-virus influenza 
vaccines provide only exogenous antigens for stimulation of T lymphocytes and 
thus are poor inducers of CD8 T lymphocyte responses. Activating or recalling 
CD8 T lymphocyte responses by formulating vaccines with adjuvants which will 
stimulate antigen-presenting cells creates an optimal priming environment and 
activates T lymphocytes to provide broader protection against serologically distinct 
viruses. CD4 T helper cells provide growth factors for B and CD8 T lymphocytes, 
thereby occupying a central role in the induction of humoral and cellular immune 
responses. Th1 and Th2 cells were defined based on the secretion of IFN-g. While 
Th1 cells secrete IFN-g following stimulation by IL-12, Th2 cells stimulated by 
IL-4 secrete IL-4, IL-5, and IL-13. The decline of naïve T cells in the repertoire due 
to thymic involution and accumulation of dysfunctional memory T cells is well 
established, but the mechanism for these observations goes beyond that which can 
be explained by thymic involution alone. Interleukin 7 appears to play an important 
role in T cell survival in thymic recombination events, and in expanding positively 
selected thymocytes (Hare et al. 2000; Huang et al. 2001). An age-related reduction 
in production of IL-7 within the thymus may be responsible for the age-related 
decline in thymic output of naïve T cells (Andrew and Aspinall 2002; Ortman et al. 
2002). In humans, accumulation of an anergic CD28− T cell population with age, 
especially among the CD8 T cell subset, has been documented (Boucher et al. 
1998; Sansoni et al. 2008). The molecular mechanisms leading to the loss of 
CD28 are not known (Boucher et al. 1998; Sansoni et al. 2008). The CD28− T cells 
are anergic to stimulation with antigen or mitogen. In murine studies, it has been 
clearly shown that the clonal expansion and function of naïve CD4 or CD8 T cells 
is significantly reduced when compared to their younger counterparts (Plowden  
et al. 2004a,b; Jiang et al. 2007).
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In addition to T helper and cytotoxic T cells, Th3 or Treg cells that are CD4+CD25+ 
Fox3+ have been shown to play an important role in regulating immune responses 
(Dejaco et al. 2006; Hill et al. 2007). A recently published report and our unpublished 
findings show a significant increase in the Treg population and function with age, 
which may be contributing to poor adaptive immune responses (Zhao et al. 2007). 
However, a direct demonstration of the role of Tregs in the decline in immune 
responsiveness with aging is lacking, although our preliminary results indicate that 
depleting the Treg subset prior to immunization or infection with A/PR/8/34 virus 
enhanced both humoral and cellular immune responses in aged mice when compared 
to the control aged mice. An increased number of Tregs with age may aid in controlling 
the initiation of autoimmune disorders, but may come at the cost of reducing effective 
immune responses against infectious agents. The evolutionary significance of this 
finding is not clear. The functionality of CD4+ Th17 cells is beginning to be elucidated 
in mice, and very limited information is available on their role in humans and the 
impact of aging on the function of this subset (Bi et al. 2007; Nakae et al. 2007; 
Chen and O’Shea 2008).

CTL activity has been shown to be important for recovery from influenza 
virus infection in the absence of seroprotective antibodies to the infecting virus 
strain (McElhaney et al. 2006). CD8+ T lymphocytes recognize peptide fragments 
derived from viral proteins that are bound to class I MHC molecules and lyse the 
influenza virus-infected cells. The lysis of target cells can be mediated by perforin 
or by granule-mediated or Fas-mediated mechanisms (Apasov et al. 1993). CD8 T 
cell cytolytic activity is normally measured by labeling the MHC-compatible target 
cells (which are either pulsed with relevant peptides or infected with virus) with 
51Cr and determining the amount of 51Cr released into the medium 4–5 h after the 
addition of CD8 T cells (Martz et al. 1974). Another assay to assess CTL activity 
is the measurement of granzyme B activity in lysates of influenza virus-stimulated 
PBMC; low levels of granzyme B have been correlated with risk for influenza 
illness in older adults (McElhaney et al. 1996, 2006).

3  Influenza Vaccine Efficacy in the Older Adult Population

Annually, influenza epidemics cause three to five million cases of severe illness 
with about 250,000–500,000 deaths worldwide (World Health Organization 2008). 
In an average year in the United States, complications from influenza infections 
result in about 250,000 hospitalizations and 36,000 deaths, with the majority of the 
fatalities occurring among the elderly population (Thompson et al. 2004; Simonsen 
et al. 2005). Complications from influenza viral infections resulting in hospitaliza-
tions and death are greatest among older adults, people with chronic medical condi-
tions or immunological disorders, and infants and young children (i.e., £  2 years of 
age) whose immune systems are still maturing (Fiore et al. 2007). Vaccination is 
the primary strategy for reducing the morbidity and mortality associated with 
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human influenza. An inactivated detergent-split trivalent influenza vaccine (TIV) 
containing two influenza A viruses (H1N1 and H3N2) and a type B virus as well 
as a live-attenuated nasal influenza vaccine containing all three components are 
marketed in the USA. While injectable vaccine is recommended for people at 
risk, including persons aged 50  years and older, live influenza vaccine is only 
recommended for persons 2–49 years of age (FDA 2007). Because older adults are 
a high-risk group for influenza-related deaths, the goal is to vaccinate 90% of this 
population (DHHS 2000). However, recent vaccination rates are stagnant and 
coverage still hovers around 65% (National Center for Health Statistics 2003). 
In healthy, younger adults, the vaccine may be 70–90% effective in preventing 
influenza-like illness if the vaccine antigen is antigenically closely matched with 
the circulating epidemic strain (Gross 2002). However, vaccine efficacy is substan-
tially reduced to 30–50% in preventing complications from influenza infections 
among older adults (Nichol et al. 2007). The mortality benefits from influenza 
vaccination of older adults is a hotly debated topic (Simonsen et al. 2007). A meta-
analysis of 18 cohorts of older adults in one HMO comprising data for ten seasons 
from 1990–1991 through 1999–2000 indicates that vaccination resulted in a 27% 
reduction in the risk for hospitalization due to influenza and a 48% reduction in the 
risk for death (Vu et al. 2002). However, the outcomes used for these studies 
included hospitalizations for pneumonia or influenza and death from any cause, 
which are not influenza-specific. Despite increased vaccination coverage of older 
adults since 1980, there was no decrease in influenza-related excess mortality rates 
among older adults in the USA (Thompson et al. 2003; Simonsen et al. 2005). 
Similarly, the results from studies of Netherlands and Italian groups suggest that 
vaccination did not result in a reduction in excess mortality due to influenza-
like illnesses, although there was not enough statistical power to generalize those 
findings (Govaert et al. 1994; Rizzo et al. 2006). Ideally, a randomized placebo-
controlled clinical trial with clearly defined clinical outcomes such as culture-positive 
influenza illnesses rather than influenza-like illness and pneumonia and all-cause 
mortality is required to evaluate the benefit of vaccination of older adults. However, 
policy decisions regarding the vaccination of all older adults make a placebo-
controlled study ethically unacceptable to investigate the mortality benefits of 
influenza vaccination (Smith and Shay 2006). It has been shown previously that 
influenza vaccination is 49% and 32% effective in preventing hospitalizations from 
pneumonia or influenza and 55% and 64% effective in preventing death from any 
cause among older adults at low or intermediate risk, respectively. However, among 
older adults who are at high risk due to comorbid conditions, vaccination is 29% 
and 49% effective in preventing hospitalization and death, respectively. Furthermore, 
when efficacy and effectiveness of vaccination among older adults are stratified by 
age, a different picture emerges. The efficacy of vaccination in preventing illness 
and hospitalization decreases with advancing age and when associated with comorbid 
conditions, suggesting that old older adults do not mount optimal protective 
immune response to vaccination. Factors that impact vaccine efficacy are presented 
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in Fig. 3, and immunosenescence is discussed above along with other factors that 
influence the outcome.

4 � Active and Passive Immunization Strategies for Older  
Adults

A number of strategies to induce protective immune responses against influenza are 
presented in Fig. 4. Although passive antibody for influenza has not been considered 
a potential approach for both preventive and therapeutic needs, this approach has 
its own merits, especially when older adults who are at high risk or frail older adults 
who exhibit severe immune dysfunction are the target group. In addition, if the 
infection is caused by drug-resistant strains of influenza or a pandemic strain, passive 
therapy with human polyclonal antibodies offers a potential therapeutic benefit 
(Traggiai et al. 2004; Lanzavecchia et al. 2007; Simmons et al. 2007). Currently, 
transgenic animals that carry human immunoglobulin genes make human polyclonal 
immunoglobulins when immunized with antigens from infectious disease agents 
are available and these animals can serve as a potential tool to generate influenza 
strain-specific human antibodies for passive transfer (Fishwild et al. 1996; 
Tomizuka et al. 2000; Kuroiwa et al. 2002; Buelow and van Schooten 2006).

Fig. 3  Factors contributing to poor or suboptimal vaccine effectiveness in seasonal influenza 
vaccination of older adults
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It is clear that influenza vaccine needs to be formulated differently for older 
adults to overcome the age-related decline in immune function and enhance the 
immunogenicity and protective levels of both humoral and cellular immune 
responses. Although MF59-adjuvanted TIV vaccine is marketed in Europe for older 
adults and has been shown to be safe and immunogenic, it is not yet approved in 
the USA (Podda and Del Giudice 2003). Newer adjuvant systems such as ASO3 
have been shown to enhance the immunogenicity of H5N1 virus vaccines, and may 
provide a potential benefit to the older adult population if formulated with seasonal 
vaccines. (Treanor et al. 2006, 2007; Leroux-Roels et al. 2007; Sambhara and 
Poland 2007). Increasing the vaccine dose from 15 mg of HA of each vaccine com-
ponent of a TIV vaccine is a potential option for enhancing the levels of protective 
antibodies. In a recent multisite, phase II, randomized, double-blind clinical study, 
older adults who received 60 mg of HA of each component were shown to generate 
higher levels of HAI and neutralizing antibodies when compared to those who 
received the standard vaccine dose of 15 mg of HA of each of the components. 
However, the vaccinees who received the higher dose of HA experienced more 
local and systemic reactions than those who received the standard vaccine dose 
(Keitel et al. 2006; Couch et al. 2007). This result is consistent with earlier studies 
and the concern that increasing the vaccine dose produces unacceptable local reac-
tions, an effect that may be overcome with an adjuvanted vaccine to improve 
responses in older adults. Another possibility is to vaccinate older individuals more 
than once during the influenza season in order to boost antibody responses. In a 
small clinical study, revaccination of older adults twelve weeks later did not enhance 
HI titers, suggesting that such an approach may not be a viable alternative (Buxton 
et al. 2001). However, one of the caveats of this study was the lack of baseline titers 
of the vaccinees who received the second dose of the vaccine. Hence, additional 

Fig. 4  Passive and active immunization strategies for older adults against influenza
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studies are needed to evaluate if such an approach is a viable strategy to enhance 
the levels of protective antibodies in the older adult population.

5  Summary and Conclusions

Influenza is a vaccine-preventable disease, and the benefits of vaccination in 
preventing infection and complications arising from infection among adults are 
clearly documented. It is clear that the immune response declines with age due to 
alterations in innate and adaptive immune functions and that the vaccine does not 
provide adequate protection in this population. Hence, for older adults—a major 
target population for annual influenza vaccination, vaccine efficacy at preventing 
infection is low and the risk of serious complications from these infections is 
compounded by increasing age and comorbid conditions. Thus, efforts should 
be directed at formulating vaccines with adjuvants specifically for older adults to 
overcome immunosenescence, and passive immunization strategies with human 
polyclonal antibodies should be considered. In addition to conventional serological 
assays in the selection of vaccine candidates, other parameters namely, induction of 
cellular immune responses as well as activation of the innate immune system to 
facilitate an optimal microenvironment for the mobilization, activation, differentia-
tion, maturation, and migration of antigen-presenting cells should be considered.
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