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Abstract: Transcriptomic reconstructions without reference (i.e., de novo) are common for data
samples derived from non-model biological systems. These assemblies involve massive parallel
short read sequence reconstructions from experiments, but they usually employ ad-hoc bioinfor-
matic workflows that exhibit limited standardization and customization. The increasing number
of transcriptome assembly software continues to provide little room for standardization which is
exacerbated by the lack of studies on modularity that compare the effects of assembler synergy. We
developed a customizable management workflow for de novo transcriptomics that includes modular
units for short read cleaning, assembly, validation, annotation, and expression analysis by connecting
twenty-five individual bioinformatic tools. With our software tool, we were able to compare the
assessment scores based on 129 distinct single-, bi- and tri-assembler combinations with diverse k-mer
size selections. Our results demonstrate a drastic increase in the quality of transcriptome assemblies
with bi- and tri- assembler combinations. We aim for our software to improve de novo transcriptome
reconstructions for the ever-growing landscape of RNA-seq data derived from non-model systems.
We offer guidance to ensure the most complete transcriptomic reconstructions via the inclusion of
modular multi-assembly software controlled from a single master console.

Keywords: NGS; RNA-sequencing; transcriptome assembly; software management; automation

1. Introduction

Homemade de novo transcriptomic workflows tend to be idiosyncratic to specific
study goals, unoptimizable to other studies and, in many cases, left unpublished or buried
in supplementary materials. We could say Rnnotator [1] in 2010 was the first single-
assembler transcriptomic pipeline to be publicly available, while the Oyster River Protocol
(ORP; [2]) in 2018 was the first multi-assembler pipeline available. This presumed eight-
year period between single- and multi-assembler approaches is odd considering multi-
assembler methods have been shown to produce reconstructions with higher degrees
of completeness [2]. Nevertheless, the combinations of assemblers that produce the best
reconstructions in the multi-assembly approach are not well explored nor classified. Adding
to the complexity of the situation, assemblers are routinely updated, and new assemblers
are created in a timely fashion, making assembler comparisons both a necessity and routine
process. The closest comparison to our workflow would be the ORP; however, it employs a
rigid tri-assembly approach to produce high quality transcriptomes via rnaSPAdes (k55,
k75; [3]), Trinity (k25; [4]) and Shannon (k75; [2,5]). In comparison, we developed an open-
source workflow that broadens the k-mers used to up to five total k-mers per assembler.
Our software, Pincho [6], allows the user to design and customize their own k-mer list and
number of assemblers, among other parameters.

To characterize our management software, we present two major goals of this study
that we sought to complete. The first was to construct a publicly available and customiz-
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able modular management toolkit that could simplify de novo transcriptomic work for
data scientists. This simplification took place via the amalgamation of well-established
and reviewed genomic and transcriptomic software centralized in one quick download
and even faster user implementation options. We customize this workflow with the most
common software used in de novo transcriptomics along with the modularity to allow
simple incorporation of new software as future tools become available. Our second goal
is to provide a comprehensive analysis on de novo transcriptome assembler performance
individually and in combination. To our knowledge, this is the first publication on syner-
gistic effects of single-, bi-, and tri-assembly combinations between nine distinct de novo
and reference-guided assemblers aimed to elevate de novo transcriptome quality and
completeness.

2. Materials and Methods
2.1. Components of the Pincho Workflow

Our software supports various applications and automates their parameter, computer re-
sources and output management via Python3 and Bash (Supplementary Figure S1). Pincho con-
sists of twenty-five functions which fall under six modules: preprocessing (adaptor removal with
Trimmomatic [7,8] and error correction via Reorrector [9,10]); de novo assembly (ABySS [11,12],
Tadpole [13,14], BinPacker [15,16], IDBA-tran [17,18], MEGAHIT [19,20], Oases/ Velvet [21,22],
rnaSPAdes [3,23], Shannon Cpp [5,24], SPAdes [25,26], Trans-ABySS [27,28], TransLig [29,30],
and Trinity [4,31], Table 1; post-assembly (consensus assembly generation with TransRate [32,33],
isolation of short transcripts under bp length threshold and redundancy reduction via CD-
HIT [34,35]); assembly assessment (alignments to reference transcriptomes or to the original
raw reads via HISAT? [36,37], BUSCO [38,39] and TransRate); annotation using a user reference
(NCBI BLASTX, BLASTN, and BLASTP; [40—42]); and expression analysis (kallisto [43,44] and
RSEM [45,46], Figure 1 and Supplementary Figure S1). Several important notes: Pincho can
process Sequence Read Archive (SRA, [47]) data accession numbers via SRAtoolkit [48], Trinity
can be run in genome guided mode instead of De novo with help from Samtools [49,50], and
TransLig was modified to include assembly lengths via SeqKit [51,52].

Table 1. De novo Assemblers Utilized in Pincho.

Genome or K-mer . . Version Software . 2 Datasets
Assembler Transcriptome K-mer Used Default Algorithm Version Release Release Cited by Explored
. de Bruijn
ABySS Genome Adaptive 32 Graph v2.2.4 1/30/2020 11/26/2008 3481 Human
BinPacker ~ Transcriptome 25 25 Splice Graph v1.0 10/17/2019  3/19/2015 95 Human,
! Mouse, Dog
. . 20, 30, de Bruijn .
IDBA-tran Transcriptome Adaptive 40,50 Graph v1.1.3 6/11/2016 6/19/2013 155 Oryza sativa
. 21,41, de Bruijn .
MEGAHIT Genome Adaptive 61,81,99 Graph v1.2.9 10/14/2019 9/25/2014 1738 Soil
.. 05-20- 12-11-
. . 19,21, de Bruijn v0.2.08/ Human,
Oases/Velvet  Transcriptome Adaptive 27,31, 35 Graph v12.10 2013/10-17- 2011/11-16- 1437 Mouse
2013 2007
Humans,
. . Automated de Bruijn Mouse,
rnaSPAdes Transcriptome Adaptive kemers Graph v3.14.1 5/2/2020 11/16/2018 122 Corn,
Arabidopsis
Shannon Transcriptome 25 25 de Bruifn v0.4.0 12/19/2019 2/9/2016 27 Human
Cpp P Graph o
21.33 de Bruiin Escherichia
SPAdes Genome Adaptive g J v3.14.1 5/2/2020 5/7/2012 12635 coli, Deltapro-
55 Graph ;
teobacteria
Simple Kmer Fungus,
Tadpole Genome Adaptive 31 Code v38.86 6/13/2020 1/9/2012 437 Bacteria,

Plant, Soil
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Table 1. Cont.
Genome or K-mer . . Version Software . 2 Datasets
Assembler Transcriptome K-mer Used Default Algorithm Version Release Release Cited by Explored
. . de Bruijn
Trans-ABySS ~ Transcriptome Adaptive 32 Graph v2.0.1 2/19/2018 6/18/2010 467 Human
. . Line Graph Human,
TransLig Transcriptome 31 31 Tterations v13 10/26/2019 11/23/2018 7 Mouse
Trinity ! Transcriptome 25 25 de Bruijn v2.11.0 6/30/2020 12/3/2010 1175 Drosophila
P Graph o melanogaster

! genome guided mode available.

o Trimmomatic
Rcorrector

ABySS* )

2 cited by column updated on 15 June 2021.

MEGAHIT*
SPAdes*
Tadpole*
BinPacker
IDBA-tran
Oases/Velvet
rnaSPAdes
Shannon Cpp
Trans-ABySS
TransLig

Trinity Y.

TransRate
Trim-Tigs
CD-HIT

BUSCO
TransRate
HISAT2

Figure 1. Pincho Management Workflow. Software installed in the Pincho workflow v0.1, including (A) pre-processing,
(B) transcriptome and * genome assemblers, (C) post-processing, (D) assessment software, (E) annotation software,
and (F) expression analysis software. Modules may begin at any position (A-F) but must then process sequentially

(ie,B,C,D...

)- Possible avenues depicted in shorthand, where A:D represents steps A, B, C and D. Any number of items

may be called from each module (i.e., module B: IDBA-tran, Trans-ABySS, Trinity = 3 items called from module B).

2.2. Dataset Criteria and Selection

We analyzed eight distinct non-model datasets from the SRA ([53]; Table 2. We focused
on hyloid anurans (frogs) that have complex and usually large genomes (e.g., ~6.76 Gb for
Dendrobates pumilio, [54]). Data was chosen via the following criteria: (a) publicly sourced
RNA-seq data, (b) paired-end reads of various insert sizes (Table 2), (c) fastq format, (d)
[llumina sequencing, (e) non-model organisms, (f) data containing a base count lower
than 2Gb and (g) data that passed Pincho’s rapid assessment with a complete BUSCO
score greater than 50%. Rapid assessment is composed of fasterq-dump download of SRR
raw reads, removal of [llumina adaptors, if necessary, from raw data via Trimmomatic,
assembly of reads via succinct de Bruijn graphs with MEGAHIT and assessment via BUSCO
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scores. Chosen SRA files were analyzed with FastQC [55], revealing that all files were
adapter free.

Table 2. Test NGS Dataset from NCBI SRA database.

Species Accession BUSCOs (%) ! jol‘;ls Bases (G) Reacibl_l.;ngth Fl(l&il)ze Tissue
Allobates femoralis SRR8288062 62.4 3.5 0.8 120 504.4 Skin
Amazophrynella minuta SRR8288029 70.6 4.4 1.1 120 641.6 Skin
Dendrobates auratus ERR3155280 91.0 3.3 1.9 294 1000.0 Skin
Dendrobates imitator ERR3169394 66.3 16.3 1.6 50 782.5 Skin
Dendrobates sirensis SRR8288043 72.2 4.9 1.2 120 710.7 Skin
Lithobates catesbeianus SRR4048903 77.6 6.8 1.3 99 558.0 OB?
Pyxicephalus adspersus SRR6890710 87.8 10.0 1.5 75 538.8 Testis
Scinax ruber SRR8288044 73.7 5.8 1.4 120 840.1 Skin

1 Complete BUSCO using Pincho’s rapid assessment at default settings ? Olfactory Bulb.

Our datasets are purposely under the standard yield of RNA-seq experiments (2GB
—4GB), to highlight the potential of the selected assemblers on low yield, low coverage
datasets. As higher levels of sequencing coverage lead to higher quality NGS data [56],
we chose NGS data that are most likely to contain low sample coverage owing to low
read counts [57]. We selected smaller sized files on average 6.88M reads, which is well
beneath the recommended sequencing read number of 20M [56] to ensure an NGS scenario
of low coverage. As a balance we made sure that all files were at least above 50% in
complete BUSCO scores to avoid scenarios where read coverage was insufficient. Low
coverage datasets are prone to many types of assembly errors (i.e., fragmentation and
incompleteness [32]), which allows us to accurately test the various types of algorithms
employed by the tested transcriptome assemblers and their abilities to work with problem-
atic datasets. It is only under this scope that we can ideally view assembler performance
and synergy without the reliance on synthetic data. We expect that if assemblers succeed at
reconstructing more from smaller datasets, then they are sensitive enough to use on larger
datasets as well.

2.3. Pincho Workflow Implementation

Raw data was analyzed with the Pincho pipeline with the following configurations:
SRA accession numbers were used to download data from the SRA database via fasterq-
dump followed by whitespace removal and compression. Leading and lagging low quality
base removal was performed via Trimmomatic, followed by error correction by Rcorrector.
Transcriptomes were assembled via Trans-ABySS, BinPacker, IDBA-tran, Shannon Cpp,
rnaSPAdes, TransLig, Trinity, MEGAHIT (positive control) and Tadpole (negative control)
with adaptive k-mer control enabled. Adaptive k-mer control utilizes a minimum k-mer
of k21 and four k-mers generated based on their respective maximum insert length and
middle three quartiles between k21 and the maximum. Consensus assembly generation
was conducted via TransRate. Read mapping was performed via HISAT?2 aligner, presence
of ancestral genes was identified by BUSCO and n50/n90 were calculated via TransRate.
Assessment was conducted in combinations between the nine assemblers individually
and in groups of two and three. Oases was not utilized in this study due to the frequent
unresolved bugs associated with the software and its lack of maintenance (last major
update 20 May 2013). SPAdes and ABySS de novo genome assemblers were not utilized
in this study as we used their transcriptomic counterparts designed for transcriptome
assembly. Both rnaSPAdes and ABySS were demonstrated to outperform SPAdes and
ABySS, respectively [3,27].
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2.4. K-mer Size Determination

K-mer sizes were left to their default values (Table 1) if the assembler only allowed
one k-mer size as input and assembler runtime was extensive. Therefore, default k-mers
were used for BinPacker, TransLig, Trinity and Shannon Cpp. Assemblers that allowed the
selection of multiple k-mer sizes and/or were time efficient were assigned a broad range of
five k-mer sizes.

2.5. Assessment Validation

We utilized three metrics (TransRate, BUSCO, and HISAT?2) that best represent the
quality of a de novo transcriptome. TransRate provides the n50/n90 statistic, among others,
which is the largest contig size where 50%/90% of bases are contained in transcripts of this
length. These n50/n90 scores are often used to ascertain the quality of a reconstruction,
with longer n50/n90 lengths correlating to a more complete assembly. Other assessment
metrics include complete BUSCO scores representing percent ancestral transcripts present
and HISAT?2's overall alignment score which is the percentage of raw data utilized within
reconstructions. For our workflow, we used BUSCO’s Eukaryota dataset as a reference.

Respective assessment scores were judged per assembler as greater than MEGAHIT’s
assessment scores or less than MEGAHIT’s assessment scores. Assessment scores (AS)
greater than MEGAHIT were subjected to the following formula:

ASx
ASpax

x 0.5 1)

AS less than MEGAHIT were processed under a different formula to calculate under-
performance:
ASx

—= %05 2
—ASmIN @)

while scores equal to MEGAHIT were counted as 0. Average assessment scores (AAS)
were calculated as the average of HISAT2's overall alignment, complete BUSCO score,
and TransRate’s n50/n90 scores in a 1:1:1 ratio, so n50 and n90 scores were averaged
together before averaging with the other two assessment scores. Finally, the AAS were
normalized between the numbers of 0.5 as overperforming versus MEGAHIT and —0.5 as
underperforming.

3. Results
3.1. Workflow Installation, System Build, and Performance

Pincho is packaged with an installer script written in Python3 and Bash which will
install and configure required dependencies in Linux Ubuntu systems. Our workflow
requires a minimum of 24 threads and 128GB of memory to run efficiently and is largely
GPU independent. It is recommended to scale performance parameters evenly if higher per-
formance is desired (i.e., 24:128 ratio). Our study was conducted on two new workstations
including: AMD Ryzen 9 3900X 3.8GHz processor, G.Skill 128GB 4 x 32 D4 3200 memory
modules, and an ASUS TUF GAMING X570-PLUS motherboard. An alternative replica
build would be to purchase a PowerSpec G464 and upgrade the memory modules to a total
of 128GB (net price 2200 USD). Our test data ranged in both number of bases and file size
(Table 1) to provide an accurate depiction of the capacities of our workflow performance.
We encountered no errors conducting the study with the parameters stated above. Methods
can be easily replicated via Pincho’s completely modular user interface.

3.2. Average Assessment Score Generation

We utilize three distinct assessment software—-HISAT?2, TransRate, and BUSCO—-to
derive raw scores for each single-, bi-, and tri- assembly run (see assessment validation
in methods) and mark their over/underperformance in regard to a MEGAHIT single
assembly run. Individual metric scores are normalized to a scale between —0.5 and
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0.5, where 0 is equal to a MEGAHIT single assembly run assessment score. Negative
integers denote underperformance and positive integers denote overperformance when
compared to MEGAHIT genome assembler. Individual assessment scores are then averaged
together respectively to provide an AAS per assembler or assembler group. The following
assemblers were utilized in this study: Trans-ABySS, BinPacker, IDBA-tran, Shannon Cpp,
rnaSPAdes, TransLig, Trinity, MEGAHIT, and Tadpole.

3.3. Single-Assembly

According to our combination of assessment software criteria, rnaSPAdes outper-
formed all other assemblers with an AAS of 0.23, followed by Trans-ABySS (AAS: 0.18),
TransLig (AAS: 0.17), IDBA-tran (AAS: 0.02), BinPacker (AAS: 0.02; Figure 2), and the
MEGAHIT single-assembly baseline (AAS: 0). Shannon Cpp (AAS: —0.03), Trinity (AAS:
—0.24), and Tadpole (AAS: —0.50) underperformed relative to the baseline (Figure 2). Run-
time analysis highlights no correlation between total time consumption and performance,
as assemblers that required the most time did not produce the best assemblies nor vice
versa (Supplementary Figure 52). Assessment of raw data from our assessment software re-
veals rnaSPAdes and Trans-ABySS obtained the highest HISAT2 scores (>92%), rnaSPAdes
and IDBA-tran scored the highest complete BUSCO scores (>199 complete eukaryotic
ancestral transcripts), and TransLig and BinPacker contained the longest n50/n90 lengths
(>1766 bp/>499 bp; Figure 3). Alternatively, IDBA-tran and BinPacker obtained the lowest
HISAT?2 scores (<85%), Trinity and Tadpole scored the lowest complete BUSCO scores
(<169 complete transcripts) and also the shortest n50/n90 lengths (<1021 bp /<286 bp;
Figure 3).
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Figure 2. Single-, bi-, and tri-assembly assessment score averages. Average assessment scores from
single-, bi-, and tri-assembly runs compared to MEGAHIT single-assembly as a baseline score (0).
Scores lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas, scores
higher than 0 overperformed. Average assessment scores calculated by the average of HISAT2
overall alignment, BUSCO complete score, and TransRate n50 and n90 metrics averaged across all
files processed. Assemblers utilized are included in the x-axis to denote both their average scores
for single assembly and their average scores as part of a pair of two or three. Two tailed paired
T-tests were conducted between single-assembly and bi-assembly, and between bi-assembly and
tri-assembly. P-values are noted between single- and bi-assembly combinations and between bi- and
tri-assembly combinations. All comparisons conform to p < 0.05 except for no-significance noted
between bi- and tri-assembly associated with rnaSPAdes. *** is p < 0.00001, **is p < 0.001, * is p < 0.05,
and NS (No Significance) is p > 0.5. p-values are under FDR (False Discovery Rate) correction.
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Single Assembly Raw Assessment Scores

Assembly

n90
n50

Complete BUSCOs

Duplicated BUSCOs
Fragmented BUSCOs

Missing BUSCOs

Overall Alignment Rate |

rnaSPAdes trans-ABySS  TransLig IDBA-tran BinPacker Shannon Trinity MEGAHIT Tadpole

317.8 309.9 624.0 433.8 499.5 312.6 285.5 363.9 239.5

1200.8 1410.9 2043.8 1465.4 1766.4 1323.8 1020.1 1152.6 708.4

| 199.3 191.5 195.1 201.1 195.8 196.5 168.1 193.9 141.5]|
10.4 51.5 441 199.0 44.0 791 19.3 45 102.0

35.9 38.9 28.8 33.3 34.0 38.4 54.0 345 74.4

19.9 246 311 20.6 253 20.1 32.9 26.6 39.1

0.93 0.94 0.87 0.82 0.84 0.89 0.89 0.90 0.88]

Top 2 Metric Scores Bottom 2 Metric Scores [Metrics Utilized in Study |

Figure 3. Single-assembly raw average assessment scores. Assessment metrics used in study: n50/n90 (via TransRate),
complete BUSCOs (via BUSCO), and overall alignment rate (via HISAT2) are boxed in. Top two metric scores per assessment
criteria are highlighted in green. Bottom two metric scores are highlighted in pink. Metrics not boxed in were provided to

aid discussion but not for the generation of the average assessment scores.

3.4. Bi-Assembly

The pairing of assemblers often increased the AAS; however, our negative control
Tadpole caused a decrease in metric scores of our previous top three single-assemblers:
rnaSPAdes (Net AAAS: —0.06), Trans-ABySS (Net AAAS: —0.13), and TransLig (Net AAAS:
—0.18; Figure 4). The combination of TransLig and rnaSPAdes outperformed all other
single- and bi-assembly combinations achieving an AAS of 0.45 (Figures 2 and 4). Pairings
between Trans-ABySS and rnaSPAdes achieved the second highest AAS of 0.42 (Figure 4).
Bi-assemblies involving combinations between Tadpole and either Trinity, MEGAHIT,
Shannon Cpp, Binpacker, or TransLig all underperformed when compared to a MEGAHIT
single-assembly run (Figure 4).

trans-ABySS Trinity maSPAdes MEGAHIT IDBA-tran Shannon BinPacker Tadpole

TransLig

Tadpole

BinPacker

Shannon

IDBA-tran

MEGAHIT

maSPAdes

Trinity

Figure 4. Bi-assembly assessment scores. Heatmap of bi-assembly assessment scores from 36
combinations of 9 assemblers compared to MEGAHIT single-assembly as a baseline score (0). Scores
lower than 0 underperformed when compared to MEGAHIT single-assembly, whereas, scores higher
than 0 overperformed. Green denotes a higher assessment score and red denotes a lower assessment
score among the 36 bi-assembly groups. Shannon denotes Shannon Cpp version.
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3.5. Tri-Assembly

We observed the highest possible AAS of 0.50 in a tri-assembly approach containing
Trans-ABySS, rnaSPAdes and TransLig (Figure 5). The higher AAS values are primarily lo-
cated in the highest performing assembler groups: Trans-ABySS, rnaSPAdes, and TransLig
(Figure 5). The lower AAS values are found not only in the negative control Tadpole, but
in Trinity and Shannon Cpp as well. The rnaSPAdes bracket performed the best, yielding
the highest AAS, while the Tadpole bracket performed the lowest, yielding the lowest
AAS on average (Figure 5). The rnaSPAdes bracket also exhibited a smaller distribution
of AAS, spanning 0.22 to 0.50, with a higher frequency of high AAS than other assembler
groups (Figure 6). When tri-assembly runs are sorted from lowest AAS to highest, the
rnaSPAdes group continues to lead the other tri-assembly groups at every datapoint (Sup-
plementary Figure S3). Signs of over/underperformance amongst tri-assembly runs were
observed, with Tadpole, Trinity, and Shannon Cpp tri-assembly approach underperforming
by scoring equal to the MEGAHIT baseline previously set at 0 (Figure 5).

rnaSPAdes trans-ABySS TransLig
0.41 0.32
0.41 [0%50] 0.41
0.35 0.32 047 0.41 0.29 0447
0.39 0.43 0.330.45 0.38 0.38 0.27 [0.45 0.32
0.29 0.35 0.35 0.24 0.39 0.33 0.32 0.31 0.19 0.38 0.27 0.27
0.37 041 0.39 0.35 0.30 [0:46| 0.39 0.37 0.31 0.38 0.24 [0.45 0.32 0.24 0.22
0.22 0.26 0.32 0.22 0.26 0.10 0.32 0.21 0.25 0.14 0.19 0.20 [0.06| 0.30 0.16 0.19 0.09 0.10
0.41 0.47 0.45 0.38 0.45 0.30 0.32 0.41 0.38 0.31 0.38 0.20
T M ID Sc BP Tp T rS M DD Sc BP Tp tA T S M ID Sc BP
MEGAHIT IDBA-tran Shannon Cpp
0.32 0.33 0.24
047 0.35 0.45 0.39 0.39 0.29
0.38 0.28 [0:43 0.33 0.18 0.35
0.38 0.28[0.43 0.32 0.21 0.35 0.27
0.33 0.18 0.35 0.27 0.32 0.21 0.35 0.27
0.39 0.26 0.41 0.28 0.25 0.37 0.250.39 0.28 0.25 0.31 0.16 0.35 0.25 0.25
0.21[0:07| 0.26 0.20 0.10 0.14 0.25 0.18 0.32 0.20 0.13 0.20 0.14 [0.00] 0.22 0.10 0.13 0.09
0.41 0.29 047 0.32 0.27 0.32 0.16 0.38 0.27 [045 0.32 0.27 0.24 0.19 0.31 0.19 0.38 0.27 0.27 0.22 0.09
tA T S ID Sc BP Tp tA T S M Sc BP Tp tA T rS M ID BP Tp
BinPacker Trinity Tadpole
0.30 0.10 T Trinity
046 0.37 0.41 0.32 0.22 S - rnaSPAdes
0.39 0.26 [0.41 0.32 0.35 0.21/0.07/ 0.26 M MEGAHIT
0.37 0.25 0.39 0.28 0.33 0.39 0.28 0.25 0.18 0.32 0.20 [0 JE— IDBA-tran
0.31 0.16 0.35 0.25 0.25 0.24 0.29 0.18 0.21 0.14 [0.00| 0.22 0.10 0.13 I Shannon Cpp
0.30 0.37 0.26 0.25 0.16 0.19 /0.06| 0.26 0.14 0.20 0.09 BP - BinPacker
0.19[0:06] 0.26 0.14 0.20 '0.09 0.10 0.22 [0.07 0.18 [0.00' 0.06 Tp - Tadpole
0.38 0.24 [045 0.32 0.24 0.22 0.10 0.32 041 0.29 0.27 0.19 0.24 [0.06 0.20 [0:06] 0.30 0.16 0.19 0.09 0.10 TL - TransLig
tA T S M ID Sc Tp tA rS M ID Sc BP Tp tA T S M ID Sc BP tA - trans-ABySS

Figure 5. Tri-assembly Scores. Tri-assembly assessment score results from 84 combinations of 9 assemblers, respectively. All

assembler metrics are compared to over/underperformance to the average MEGAHIT single-assembly score. Highlighted

values range from high average assembly scores up to 0.5 (green) to low average assessment scores down to 0.0 (red). Metric

scores are consistent, with previous figures allowing for cross comparison.
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rnaSPAdes ;_/—\W
trans-ABySS v_——\,_____,-——
TranslLig
MEGAHIT
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Figure 6. Tri-assembly score distributions. Violin plots representing assessment score fre-
quency and distribution among tri-assembly runs. All assembler metrics are compared to
over/underperformance to the average MEGAHIT single-assembly score (0). All tri-assembly
scores performed equal to or greater than the baseline. Higher quality assembler combinations are
represented via higher numerical scores up to a maximum of 0.5.

4. Discussion
4.1. Single-Assembly Mode

Single-assembler comparisons reared interesting results regarding the efficiency of
de novo transcriptome assemblers compared to their genomic counterpart. Genome as-
semblers are known for their conservative style for reconstructions, whereas transcriptome
assemblers take risks to assemble every transcript isoform identified. It is largely due to
this deviation between the two software that we see gains or losses in average assessment
scores. To further elaborate, isoforms are more common among longer transcripts as there
is more genomic material, increasing the probability of the accumulation of mutations and
change over time. As longer transcript isoforms are added to the assembly, the n50/n90
lengths increase. It also helps generate more ancestral transcripts, as each variant has a
chance to align to the reference eukaryotic database of ancestral transcripts. Finally, more
raw data containing variant fragments will be incorporated into the product, resulting in a
higher HISAT?2 alignment score. In summary, de novo transcriptome assemblers should
be more than capable of outperforming de novo genome assemblers in part due to the
identification and reconstruction of isoforms, which is why it is so bizarre to observe some
transcriptome assemblers unable to outperform genome assemblers (i.e., MEGAHIT).

4.1.1. Trinity

Perhaps the most perplexing of all our results was the tendency for Trinity to underper-
form, as it has long been described in literature to be quite robust at de novo transcriptome
assembly. Trinity incorporated roughly 89% of raw data into its assembly, which is average
among assemblers tested (Figure 3). Trinity’s n50/n90 scores, however, were roughly half
of what TransLig, a non-adaptive k-mer assembler, produced. The short n50/n90 lead us
to believe that Trinity may be unable to bridge fragmented transcripts as well as other
assemblers. Upon examination of the fragmented BUSCO scores, we observe that Trinity
in fact did fragment more transcripts than other assemblers.
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4.1.2. Shannon Cpp

Reconstructions produced by Shannon Cpp were fairly close to MEGAHIT’s AAS.
Shannon Cpp exhibited a higher n50 score than MEGAHIT, but a lower n90 score. Shannon
Cpp tended to fragment more ancestral genes than MEGAHIT and that higher rate of
fragmentation may account for the lower n90 score. Shannon Cpp had a higher complete
BUSCO score than MEGAHIT; however, Shannon Cpp utilized roughly 1% less of the
raw NGS datasets than MEGAHIT did, leading to a lower average assessment score total.
Shannon Cpp utilizes a type of information theory algorithm built on a de Bruijn graph and
we speculate that this algorithm is more conservative than MEGAHITs more normalized
de Bruijn graph method, leading to more fragments and less raw NGS integration.

4.1.3. Tadpole and MEGAHIT

Tadpole, as a basic assembly tool, is not as complex as the other assemblers and tends
to create many problematic reconstructions (i.e., chimeras, nonsense repeat sequences, etc.).
This is evident as Tadpole scored the lowest in every assessment metric, except for raw
NGS data incorporation. Further exploration of Tadpole assemblies reveals obvious mis-
assemblies. This was known before the study and is why we chose Tadpole as a negative
control: a metric to use as an indication of poor assembly methodology. In addition, we
have included what we perceive to be the best genome assembler, MEGAHIT (as a single
assembler), to act as a baseline for transcriptome assemblies. Genome assemblers tend to
be more conservative with their reconstructions and therefore will score moderately well
according to assessment software metrics; however, they do not account for isoforms which
account for large portions of transcriptomes. This allows for transcriptome assemblers to
elevate themselves from the MEGAHIT baseline by providing isoform assemblies that are
of high quality to increase their metric scores higher than that of a genome assembler.

4.1.4. BinPacker

With the second highest n50/n90 scores and decent complete BUSCOs, BinPacker
ranks among the top assemblers, but on average, BinPacker’s performance is only slightly
better than MEGAHIT’s. BinPacker was poor at integrating the raw NGS data into the com-
pleted reconstruction, scoring among the bottom two in the HISAT2 assessment bracket.
Data integration depends on the quality of the raw reads, but also whether the algorithm
designed for the assembler was able to incorporate that read within the assembly. Bin-
Packer underperformed in raw NGS data incorporation; however, TransLig, the sequel to
BinPacker, improves on this flaw.

4.1.5. IDBA-Tran

Suffering from the same issue as BinPacker, IDBA-tran’s low raw NGS data utilization
rate detracts from its impressive complete BUSCO score and decent n50/n90 metrics.
Fortunately, its two strengths can carry IDBA-tran over the MEGAHIT baseline, providing
evidence that IDBA-tran provides reconstructions of better quality than a genome assembler.
An oddity is IDBA-tran’s tendency to duplicate BUSCOs, which may be caused by the
addition of five k-mer sizes and the inability for IDBA-tran to reduce redundancy among
the assembly.

4.1.6. TranLig, Trans-ABySS, and rnaSPAdes

Top three de novo assemblers are rnaSPAdes, Trans-ABySS, and TransLig. In single-
assembly comparisons these de novo transcriptome assemblers were able to largely outper-
form the other assemblers in various assessment metrics. Complete BUSCOs and raw data
utilization rates for rnaSPAdes were both part of the top two metric scores, so it is no sur-
prise rnaSPAdes scored the best among the three. rnaSPAdes was also able to produce one
of the least redundant assemblies. Trans-ABySS incorporated the most NGS data into its
assembly procedure but was not able to reconstruct as many transcripts as rnaSPAdes nor
TransLig. TransLig outperformed all assemblers in n50/n90 scores, however its raw NGS
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data utilization was lacking. It is clear from the investigated assessment metrics that each
of these assemblers excel in one area or another, which is precisely why multi-assembly
provides higher quality transcriptomes.

4.2. Bi-Assembly Mode

Bi-assembly methods, including Tadpole, led to lower overall assessment scores when
compared to pairings without Tadpole, cementing the validity of our negative control.
On average, all pairings excluding Tadpole achieved scores greater than the MEGAHIT
baseline and greater AAS when compared to the single assembly approach. Bi-assembly
increased n50/90 scores, complete BUSCOs and overall alignment scores from their single
assembly counterparts on average. All increases are expected as we nearly double the
coverage, while including several transcripts that were missed in the single assembler
methodology. We note a significant increase in AAS from single- to bi-assembly approaches
across all assemblers. Lastly, we note rnaSPAdes produced the top three bi-assembly
reconstructions, providing further evidence of the positive synergistic effects of our top
single-assemblers.

4.3. Multi-Assembly Mode

We have demonstrated the potential of utilizing the multi-assembler approach to
elevate the overall quality of reconstructions across three distinct assessment criteria. We
highly recommend the usage of Trans-ABySS, rnaSPAdes, and TransLig in combination
for de novo transcriptome assembly as they provided the highest metric scores. We
observe the highest single-assembly AAS at 0.23, highest bi-assembly at 0.45 and the
highest tri-assembly at the maximum 0.50 demonstrating that assemblers can not only
synergize well together, but also that bi-assembly increased the quality of single-assembly
by a large margin. We observe a significant increase in scores from bi- to tri-assembly
as well. Although rnaSPAdes observed no significant change in average scores, there
was still an increase in the number of novel transcripts recorded (via BUSCO) and this
metric alone is worth the addition of a third assembler. We advocate for the usage of
multi-assembler workflows as they provide the best chances of complete assemblies for
non-model organisms.

5. Conclusions

Over the past ten years, researchers have provided us with an extensive coverage of
the strengths and weaknesses of the various de novo transcriptome assemblers in single-
assembly approaches. However, there have been scarce publications to date offering
a comprehensive comparison between multi-assembly approaches. We offer a broad
comparative review of seven well-maintained de novo transcriptome assemblers and two
de novo genome assemblers scored via three distinct assessment criteria. All our work was
completed via a modular pipeline, Pincho, which we contribute to the scientific community
as a modern modular de novo transcriptomic workflow written in Python3 for Ubuntu
20.04 Focal Fossa LTS on our GitHub page.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ genes12070953/s1, Figure S1: Pincho User Interface, Figure S2: Single-assembly runtimes,
Figure S3: Tri-assembly runs sorted by lowest to highest assessment scores are each uploaded
separately from main text.

Author Contributions: Conceptualization, R.O., C.R. and J.C.S.; methodology, R.O., PG. and J.C.S;
software, R.O., C.R. and J.C.S,; validation, R.O.; formal analysis, R.O.; investigation, R.O. and J.C.S.;
resources, R.O. and J.C.S.; data curation, R.O. and ]J.C.S.; writing—original draft preparation, R.O.,
P.G. and ]J.C.S,; writing—review and editing, R.O., P.G., CR. and ].C.S,; visualization, R.O and P.G.;
supervision, J.C.S.; project administration, R.O. and J.C.S.; funding acquisition, J.C.S. All authors
have read and agreed to the published version of the manuscript.


https://www.mdpi.com/article/10.3390/genes12070953/s1
https://www.mdpi.com/article/10.3390/genes12070953/s1

Genes 2021, 12,953 12 of 14

Funding: The development of this workflow software was supported by SJU funds and NSF-DEB
2016372 to JCS.

Data Availability Statement: The data sets supporting the results of this article are available in
the NCBI SRA database, under the accession numbers: SRR8288062, SRR8288029, ERR3155280,
ERR3169394, SRR8288043, SRR4048903, SRR6890710, and SRR8288044.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Martin, J.; Bruno, V.M.; Fang, Z.; Meng, X.; Blow, M.].; Zhang, T.; Sherlock, G.; Snyder, M.; Wang, Z. Rnnotator: An automated de
novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genom. 2010, 11, 663. [CrossRef]

2. MacManes, M.D. The Oyster River Protocol: A multi-assembler and kmer approach for de novo transcriptome assembly. Peer]
2018, 6, e5428. [CrossRef] [PubMed]

3. Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. rnaSPAdes: A de novo transcriptome assembler and its application to
RNA-Seq data. GigaScience 2019, 8, giz100. [CrossRef] [PubMed]

4. Grabherr, M.G,; Haas, B.J.; Yassour, M.; Levin, ].Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.;
et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644—652.
[CrossRef] [PubMed]

5. Kannan, S.; Hui, J.; Mazooji, K.; Pachter, L.; Tse, D. Shannon: An Information-Optimal de novo RNA-Seq Assembler. bioRxiv 2016,
39230.

6.  Pincho. Pincho (Version 0.1). 2021. Available online: https:/ /github.com/RandyOrtiz/Pincho/releases/tag/v01 (accessed on 6
June 2021).

7.  Bolger, AM.,; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114-2120.
[CrossRef]

8.  Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic. Bioinformatics 2014. Version 0.39. Available online: http:/ /www.usadellab.org/
cms/?page=trimmomatic (accessed on 6 June 2021).

9. Song, L.; Florea, L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 2015, 4, 48.
[CrossRef]

10. Song, L.; Florea, L. Rcorrector. GigaScience 2015. Version 1.0.4. Available online: https://github.com/mourisl/Rcorrector/
releases/tag/v1.0.4 (accessed on 6 June 2021).

11.  Simpson, ].T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.; Birol, I. ABySS: A parallel assembler for short read sequence data.
Genome Res. 2009, 19, 1117-1123. [CrossRef] [PubMed]

12.  Simpson, ].T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.; Birol, I. ABySS. Genome Res. 2009. Version 2.2.4. Available online:
https://github.com/bcgsc/abyss/releases/tag/2.2.4 (accessed on 6 June 2021).

13. Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner; Lawrence Berkeley National Lab.: Berkeley, CA, USA, 2014.

14. Bushnell, B. BBMap. Version 38.86. Available online: https:/ /sourceforge.net/projects/bbmap/files/ (accessed on 6 June 2021).

15. Liu,]J.; Li, G; Chang, Z; Yu, T,; Liu, B.; McMullen, R.; Chen, P.; Huang, X. BinPacker: Packing-Based De novo Transcriptome
Assembly from RNA-seq Data. PLoS Comput. Biol. 2016, 12, €1004772. [CrossRef]

16. Liu, J; Li, G,; Chang, Z.; Yu, T,; Liu, B.; McMullen, R.; Chen, P; Huang, X. BinPacker. PLoS Comput. Biol. 2016. Version 1.0.
Available online: https:/ /sourceforge.net/projects/transcriptomeassembly/files/ (accessed on 6 June 2021).

17.  Peng, Y.; Leung, H.C.M.; Yiu, S.-M.; Lv, M.-].; Zhu, X.-G.; Chin, EY.L. IDBA-tran: A more robust de novo de Bruijn graph
assembler for transcriptomes with uneven expression levels. Bioinformatics 2013, 29, i326-i334. [CrossRef]

18. Peng, Y.; Leung, H.C,; Yiu, SM.; Lv, M.].; Zhu, X.G.; Chin, EY. IDBA-tran. Bioinformatics 2013. Version 1.1.3. Available online:
https://github.com/loneknightpy/idba/releases/tag/1.1.3 (accessed on 6 June 2021). [CrossRef]

19. Li, D,; Liu, C.-M,; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674-1676. [CrossRef] [PubMed]

20. Li, D,; Liu, CM,; Luo, R,; Sadakane, K.; Lam, T.W. MEGAHIT. Bioinformatics 2015. Version 1.2.9. Available online: https:
/ /github.com/vouten/ MEGAHIT /releases/tag/v1.2.9 (accessed on 6 June 2021).

21.  Schulz, M.H.; Zerbino, D.R.; Vingron, M.; Birney, E. Oases: Robust de novo RNA-seq assembly across the dynamic range of
expression levels. Bioinformatics 2012, 28, 1086-1092. [CrossRef] [PubMed]

22. Schulz, M.H.; Zerbino, D.R.; Vingron, M.; Birney, E. Oases. Bioinformatics 2012. Version 0.2.09. Available online: https:
//github.com/dzerbino/oases/releases/tag/0.2.09 (accessed on 6 June 2021).

23. Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. rnaSPAdes. GigaScience 2019. Version 3.14.1. Available online:
https:/ /github.com/ablab/spades/releases/tag/v3.14.1 (accessed on 6 June 2021). [CrossRef] [PubMed]

24. Kannan, S.; Hui, J.; Mazooji, K.; Pachter, L.; Tse, D. Shannon Cpp. bioRxiv 2016. Version 0.4.0. Available online: https:
//github.com/bx3/shannon_cpp/releases/tag/v0.4.0 (accessed on 6 June 2021).

25. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.; Pham, S.; Prjibelski,

A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012,
19, 455-477. [CrossRef]


http://doi.org/10.1186/1471-2164-11-663
http://doi.org/10.7717/peerj.5428
http://www.ncbi.nlm.nih.gov/pubmed/30083482
http://doi.org/10.1093/gigascience/giz100
http://www.ncbi.nlm.nih.gov/pubmed/31494669
http://doi.org/10.1038/nbt.1883
http://www.ncbi.nlm.nih.gov/pubmed/21572440
https://github.com/RandyOrtiz/Pincho/releases/tag/v01
http://doi.org/10.1093/bioinformatics/btu170
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://doi.org/10.1186/s13742-015-0089-y
https://github.com/mourisl/Rcorrector/releases/tag/v1.0.4
https://github.com/mourisl/Rcorrector/releases/tag/v1.0.4
http://doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
https://github.com/bcgsc/abyss/releases/tag/2.2.4
https://sourceforge.net/projects/bbmap/files/
http://doi.org/10.1371/journal.pcbi.1004772
https://sourceforge.net/projects/transcriptomeassembly/files/
http://doi.org/10.1093/bioinformatics/btt219
https://github.com/loneknightpy/idba/releases/tag/1.1.3
http://doi.org/10.1093/bioinformatics/btt219
http://doi.org/10.1093/bioinformatics/btv033
http://www.ncbi.nlm.nih.gov/pubmed/25609793
https://github.com/voutcn/MEGAHIT/releases/tag/v1.2.9
https://github.com/voutcn/MEGAHIT/releases/tag/v1.2.9
http://doi.org/10.1093/bioinformatics/bts094
http://www.ncbi.nlm.nih.gov/pubmed/22368243
https://github.com/dzerbino/oases/releases/tag/0.2.09
https://github.com/dzerbino/oases/releases/tag/0.2.09
https://github.com/ablab/spades/releases/tag/v3.14.1
http://doi.org/10.1093/gigascience/giz100
http://www.ncbi.nlm.nih.gov/pubmed/31494669
https://github.com/bx3/shannon_cpp/releases/tag/v0.4.0
https://github.com/bx3/shannon_cpp/releases/tag/v0.4.0
http://doi.org/10.1089/cmb.2012.0021

Genes 2021, 12,953 13 of 14

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski,
A.D.; et al. SPAdes. J. Comput. Biol. 2012, 19, 455-477. [CrossRef]

Robertson, G.; Schein, J.; Chiu, R.; Corbett, R; Field, M.; Jackman, S.D.; Mungall, K.; Lee, S.; Okada, H.M.; Qian, ].Q.; et al. De
novo assembly and analysis of RNA-seq data. Nat. Methods 2010, 7, 909-912. [CrossRef]

Robertson, G.; Schein, J.; Chiu, R.; Corbett, R.; Field, M.; Jackman, S.D.; Mungall, K.; Lee, S.; Okada, HM.; Qian, ].Q.; et al.
TransABySS. Nat. Methods 2010. Version 2.0.1. Available online: https://github.com/bcgsc/transabyss/releases/tag/2.0.1
(accessed on 6 June 2021).

Liu, J; Yu, T; Mu, Z,; Li, G. TransLiG: A de novo transcriptome assembler that uses line graph iteration. Genome Biol. 2019, 20, 81.
[CrossRef] [PubMed]

Liu, J; Yu, T.; Mu, Z,; Li, G. TransLiG. Genome Biol. 2019. Version 1.3. Available online: https://sourceforge.net/projects/
transcriptomeassembly/files/ TransLiG/ (accessed on 6 June 2021).

Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.;
et al. Trinity. Nat. Biotechnol. 2011. Version 2.11.0. Available online: https://github.com/trinityrnaseq/trinityrnaseq/releases/
tag/v2.11.0 (accessed on 6 June 2021).

Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, ].M.; Kelly, S. TransRate: Reference-free quality assessment of de novo
transcriptome assemblies. Genome Res. 2016, 26, 1134-1144. [CrossRef]

Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, ].M.; Kelly, S. TransRate. Genome Res. 2016. Version 1.0.3. Available online:
https://github.com/blahah/transrate/releases/tag/v1.0.3 (accessed on 6 June 2021). [CrossRef]

Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012,
28,3150-3152. [CrossRef]

Fu, L; Niu, B,; Zhu, Z.; Wu, S.; Li, W. CD-HIT. Bioinformatics 2012. Version 4.8.1. Available online: https://github.com/
weizhongli/cdhit/releases/tag/V4.8.1 (accessed on 6 June 2021). [CrossRef]

Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12,
357-360. [CrossRef]

Kim, D.; Langmead, B.; Salzberg, S.L. HISAT2. Nat. Methods 2015. Version 2.1.0. Available online: http://daehwankimlab.github.
io/hisat2 /download /#version-hisat2-210 (accessed on 6 June 2021).

Simao, FA.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, EIM. BUSCO: Assessing genome assembly and
annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210-3212. [CrossRef]

Simao, F.A.; Waterhouse, R.M.; Ioannidis, P; Kriventseva, E.V.; Zdobnov, EM. BUSCO. Bioinformatics 2015. Version 4.0.1. Available
online: https:/ /gitlab.com/ezlab/busco/-/releases/4.0.1 (accessed on 6 June 2021). [CrossRef]

Altschul, S.E; Gish, W.; Miller, W.; Myers, EW,; Lipman, D.J. Basic local alignment search tool. ]. Mol. Biol. 1990, 215, 403-410.
[CrossRef]

Altschul, S.F; Gish, W.; Miller, W.; Myers, EW.; Lipman, D.J. NCBI BLAST. J. Mol. Biol. 1990. Version 2.3.0+. Available online:
https:/ /ftp.ncbi.nlm.nih.gov /blast/executables /blast+/2.3.0/ (accessed on 6 June 2021).

Altschul, S.F; Gish, W.; Miller, W.; Myers, EW.; Lipman, D.J. NCBI BLAST. J. Mol. Biol. 1990. Version 2.10.0+. Available online:
https:/ /ftp.ncbi.nlm.nih.gov/blast/executables /blast+/2.10.0/ (accessed on 6 June 2021).

Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34,
525-527. [CrossRef]

Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. kallisto. Nat. Biotechnol. 2016. Version 0.46.1. Available online: https:
/ /pachterlab.github.io/kallisto/download (accessed on 6 June 2021).

Li, B.; Fillmore, N.; Bai, Y.; Collins, M.; Thomson, ]J.A.; Stewart, R.; Dewey, C.N. Evaluation of de novo transcriptome assemblies
from RNA-Seq data. Genome Biol. 2014, 15, 553. [CrossRef] [PubMed]

Li, B.; Fillmore, N.; Bai, Y.; Collins, M.; Thomson, J.A.; Stewart, R.; Dewey, C.N. RSEM. Genome Biol. 2014. Version 1.3.1. Available
online: https:/ /github.com/deweylab/RSEM /releases/tag/v1.3.1 (accessed on 6 June 2021).

Leinonen, R.; Sugawara, H.; Shumway, M.; on behalf of the International Nucleotide Sequence Database Collaboration. The
Sequence Read Archive. Nucleic Acids Res. 2011, 39, D19-D21. [CrossRef]

SRA Toolkit Development Team. SRA-Tools. 2014. Version 2.11.0. Available online: https://github.com/ncbi/sra-tools (accessed
on 6 June 2021).

Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project
Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078-2079. [CrossRef]
[PubMed]

Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, ].; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data
Processing Subgroup. Samtools. Bioinformatics 2009. Version 1.10. Available online: https:/ /github.com/samtools/samtools/
releases/tag/1.10 (accessed on 6 June 2021).

Shen, W,; Le, S.; Li, Y;; Hu, E SegKit: A Cross-Platform and Ultrafast Toolkit for FASTA /Q File Manipulation. PLoS ONE 2016, 11,
€0163962. [CrossRef]

Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit. PLoS ONE 2016. Version 0.16.0. Available online: https://bioinf.shenwei.me/seqkit/
download/ (accessed on 6 June 2021).

SRA Database. Available online: https://www.ncbi.nlm.nih.gov/sra (accessed on 17 August 2020).


http://doi.org/10.1089/cmb.2012.0021
http://doi.org/10.1038/nmeth.1517
https://github.com/bcgsc/transabyss/releases/tag/2.0.1
http://doi.org/10.1186/s13059-019-1690-7
http://www.ncbi.nlm.nih.gov/pubmed/31014374
https://sourceforge.net/projects/transcriptomeassembly/files/TransLiG/
https://sourceforge.net/projects/transcriptomeassembly/files/TransLiG/
https://github.com/trinityrnaseq/trinityrnaseq/releases/tag/v2.11.0
https://github.com/trinityrnaseq/trinityrnaseq/releases/tag/v2.11.0
http://doi.org/10.1101/gr.196469.115
https://github.com/blahah/transrate/releases/tag/v1.0.3
http://doi.org/10.1101/gr.196469.115
http://doi.org/10.1093/bioinformatics/bts565
https://github.com/weizhongli/cdhit/releases/tag/V4.8.1
https://github.com/weizhongli/cdhit/releases/tag/V4.8.1
http://doi.org/10.1093/bioinformatics/bts565
http://doi.org/10.1038/nmeth.3317
http://daehwankimlab.github.io/hisat2/download/#version-hisat2-210
http://daehwankimlab.github.io/hisat2/download/#version-hisat2-210
http://doi.org/10.1093/bioinformatics/btv351
https://gitlab.com/ezlab/busco/-/releases/4.0.1
http://doi.org/10.1093/bioinformatics/btv351
http://doi.org/10.1016/S0022-2836(05)80360-2
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.3.0/
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.0/
http://doi.org/10.1038/nbt.3519
https://pachterlab.github.io/kallisto/download
https://pachterlab.github.io/kallisto/download
http://doi.org/10.1186/s13059-014-0553-5
http://www.ncbi.nlm.nih.gov/pubmed/25608678
https://github.com/deweylab/RSEM/releases/tag/v1.3.1
http://doi.org/10.1093/nar/gkq1019
https://github.com/ncbi/sra-tools
http://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://github.com/samtools/samtools/releases/tag/1.10
https://github.com/samtools/samtools/releases/tag/1.10
http://doi.org/10.1371/journal.pone.0163962
https://bioinf.shenwei.me/seqkit/download/
https://bioinf.shenwei.me/seqkit/download/
https://www.ncbi.nlm.nih.gov/sra

Genes 2021, 12,953 14 of 14

54.

55.

56.

57.

Rogers, R.L.; Zhou, L.; Chu, C.; Mérquez, R.; Corl, A; Linderoth, T.; Freeborn, L.; MacManes, M.D.; Xiong, Z.; Zheng, J.; et al.
Genomic takeover by transposable elements in the Strawberry poison frog. Mol. Biol. Evol. 2014, 35, 2913-2927. [CrossRef]
Andrews, S. FastQC. Babraham. Bioinformatics 2010. version 0.11.9. Available online: https:/ /www.bioinformatics.babraham.ac.
uk/projects/download.html#fastqc (accessed on 6 June 2021).

Francis, WR.; Christianson, L.M.; Kiko, R.; Powers, M.L.; Shaner, N.C.; Haddock, S.H.D. A comparison across non-model animals
suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genom. 2013, 14, 167. [CrossRef]

Ilumina. Estimating Sequencing Coverage. Pub. No. 770-2011-022. 2014. Available online: https://www.illumina.com/
documents/products/technotes/technote_coverage_calculation.pdf (accessed on 6 June 2021).


http://doi.org/10.1093/molbev/msy185
https://www.bioinformatics.babraham.ac.uk/projects/download.html#fastqc
https://www.bioinformatics.babraham.ac.uk/projects/download.html#fastqc
http://doi.org/10.1186/1471-2164-14-167
https://www.illumina.com/documents/products/technotes/technote_coverage_calculation.pdf
https://www.illumina.com/documents/products/technotes/technote_coverage_calculation.pdf

	Introduction 
	Materials and Methods 
	Components of the Pincho Workflow 
	Dataset Criteria and Selection 
	Pincho Workflow Implementation 
	K-mer Size Determination 
	Assessment Validation 

	Results 
	Workflow Installation, System Build, and Performance 
	Average Assessment Score Generation 
	Single-Assembly 
	Bi-Assembly 
	Tri-Assembly 

	Discussion 
	Single-Assembly Mode 
	Trinity 
	Shannon Cpp 
	Tadpole and MEGAHIT 
	BinPacker 
	IDBA-Tran 
	TranLig, Trans-ABySS, and rnaSPAdes 

	Bi-Assembly Mode 
	Multi-Assembly Mode 

	Conclusions 
	References

