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In recent years, massive attention has been attracted to the development and application
of machine learning (ML) in the field of infectious diseases, not only serving as a catalyst for
academic studies but also as a key means of detecting pathogenic microorganisms,
implementing public health surveillance, exploring host-pathogen interactions,
discovering drug and vaccine candidates, and so forth. These applications also include
the management of infectious diseases caused by protozoal pathogens, such as
Plasmodium, Trypanosoma, Toxoplasma, Cryptosporidium, and Giardia, a class of fatal
or life-threatening causative agents capable of infecting humans and a wide range of
animals. With the reduction of computational cost, availability of effective ML algorithms,
popularization of ML tools, and accumulation of high-throughput data, it is possible to
implement the integration of ML applications into increasing scientific research related to
protozoal infection. Here, we will present a brief overview of important concepts in ML
serving as background knowledge, with a focus on basic workflows, popular algorithms
(e.g., support vector machine, random forest, and neural networks), feature extraction and
selection, and model evaluation metrics. We will then review current ML applications and
major advances concerning protozoal pathogens and protozoal infectious diseases
through combination with correlative biology expertise and provide forward-looking
insights for perspectives and opportunities in future advances in ML techniques in
this field.

Keywords: artificial intelligence, machine learning, protozoal parasite, image detection, public health, host-parasite
interaction, drug and vaccine discovery
Abbreviations: ML, machine learning; AI, artificial intelligence; DL, deep learning; WHO, world health organization; DNA,
deoxyribonucleic acid; RNA, ribonucleic acid; FE, feature extraction; FS, feature selection; MRMD, max-relevance-max-
distance; SVM, support vector machine; NB, Naïve Bayes; RF, random forest; k-NNC, k-nearest neighbor classification; LDC,
linear discriminant classification; LR, logistic regression; TP, true positive; TN, true negative; FP, false positive; FN, false
negative; MCC, Matthews correlation coefficient; ROC, receiver operating characteristic; TPR, true positive rate; FPR, false
positive rate; AUC, area under the curve; PCR, polymerase chain reaction; CNN, convolutional neural networks; GCN, graph
convolutional network; ANN, artificial neural networks; PPI, protein-protein interactions; VS, virtual screening; KPLS, kernel-
based partial least squares regression.
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INTRODUCTION

Machine learning (ML), a core field under AI, is an important
technology in the domain of bioinformatics (Larranaga et al.,
2006). When facing various large and complex data requiring
processing, ML can leverage sophisticated algorithms and
establish effective models to find meaningful information from
massive complex datasets (Xu and Jackson, 2019). As a step
forward in science technology, the marriage between
mathematics and computer science in ML has shown
substantial promise and has been applied to many scientific
fields, such as biomedicine (Goecks et al., 2020), phytology
(Sperschneider, 2020; Sun et al., 2020; Wang et al., 2021), and
microbiology (Qu et al., 2019; Peiffer-Smadja et al., 2020a;
Goodswen et al., 2021a). Previously, most of these studies
demonstrated the advent of high-throughput technologies that
led to increased interest in the use of ML approaches and the
combination of a plethora of omics data to conduct in-depth data
mining. However, ML has also created new inroads, moving
from more considerable theoretical research to practical
applications, such as biological-image analysis (Litjens et al.,
2017; Moen et al., 2019), disease prediction (Zou et al., 2018; Lee
et al., 2021), and diagnostic microbiology (Sinha et al., 2018;
Peiffer-Smadja et al., 2020b). Particularly, with the worldwide
COVID-19 pandemic in recent years, relevant studies have
advanced the development of AI-driven health technologies to
solve relevant biological problems of microbial infections
(Schwalbe and Wahl, 2020). The causative agents causing
infectious diseases include various types of microorganisms,
such as bacteria, viruses, fungi, and protozoans. More recently,
Goodswen et al. (2021a) reviewed ML application in
microbiology, with a significant focus on pathogenic
microorganisms, such as predicting drug and vaccine
candidates, tracking disease outbreaks, exploring microbial
interactions, and detecting pathogens. To date, ML
applications have shown a broad spectrum of prospects in
every microbiology discipline, including bacteriology,
mycology, virology, and parasitology.

The protozoan parasites, belonging to the research category of
parasitology, represent an important class of single-celled
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
eukaryotes within the kingdom of microorganisms. A list of
the most common and important protozoan parasites and their
relative data information is summarized in Table 1. These
protozoan parasites are infamous due to their ability to infect
humans and animals and lead to corresponding diseases. Here,
three representative protozoal diseases are exemplified owing to
high mortality and morbidity risk in cases of infection. The first
example is malaria caused by Plasmodium parasites, leading to
an estimated 229 million people infected worldwide in 2019, with
the latest WHO report indicating an estimated number of deaths
of up to 409,000 (WHO, 2019); the second example is Chagas
disease caused by Trypanosoma cruzi, capable of affecting 6-7
million people worldwide in 2017 and causing an estimated 7,900
deaths (Collaborators, 2018); the third example is toxoplasmosis
caused by Toxoplasma gondii, resulting in infection of one-third
of the world’s population (most are asymptomatic): this disease
is known to cause life-threatening human encephalitis (Elsheikha
et al., 2021). Other protozoan parasites are also important in the
context of public health risks, which have been documented in
detail in the WHO program (WHO, 2019). For of all these
protozoal diseases, medicinal treatment is the only solution to
alleviate the symptoms of infections; however, the emergence of
drug resistance is rapidly spreading and persisting, and there are
no commercial vaccines for protozoans yet except that RTS,S/
AS01 (RTS,S) has recently been approved by WHO for the
prevention of P. falciparum malaria in children (Laurens, 2020)

Examples of ML’s usefulness, such as image recognition-
based pathogen detection, protozoal disease prediction, and the
ability to solve various complex or nonlinear disease problems,
could aid scientists in building effective diagnostic methods and
developing new intervention measures. Given the advancement
of ML, including evolutionary DL algorithms (Lecun et al., 2015),
protozoal infectious diseases caused by protozoal pathogens,
causing great global concern regarding public health issues, are
part of a growing number of objects that use ML as an analytical
tool to address relative biological problems. This review will
present a brief description of ML, including deep neural
networks, serving as background knowledge, and providing a
survey and overview of current ML applications and advances in
protozoal pathogens and protozoal diseases.
TABLE 1 | An overview of main human protozoan parasites and the available genome links.

Causative agent Taxonomic group Caused disease Genome link†

Acanthamoeba Amoebozoa Acanthamoeba keratitis https://amoebadb.org/amoeba/app/downloads/
Entamoeba histolytica Amoebozoa Amoebiasis https://amoebadb.org/amoeba/app/downloads/
Babesia spp. Apicomplexa Babesiosis https://piroplasmadb.org/piro/app/downloads/
Cyclospora cayetanensis Apicomplexa Cyclosporiasis https://toxodb.org/toxo/app/downloads/
Cryptosporidium spp. Apicomplexa Cryptosporidiosis https://cryptodb.org/cryptodb/app/downloads/
Plasmodium spp. Apicomplexa Malaria https://plasmodb.org/plasmo/app/downloads/
Toxoplasma gondii Apicomplexa Toxoplasmosis https://toxodb.org/toxo/app/downloads/
Leishmania spp. Kinetoplastida Leishmaniasis https://tritrypdb.org/tritrypdb/app/downloads/
Trypanosoma brucei Kinetoplastida African sleeping sickness https://tritrypdb.org/tritrypdb/app/downloads/
Trypanosoma cruzi Kinetoplastida Chagas disease https://tritrypdb.org/tritrypdb/app/downloads/
Giardia lamblia Metamonada Giardiasis https://giardiadb.org/giardiadb/app/downloads/
Trichomonas vaginalis Metamonada Trichomoniasis https://trichdb.org/trichdb/app/downloads/
†Refer to the links provided by Aurrecoechea et al. (2017). The download link can access to the corresponding species in database.
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MACHINE LEARNING

Example Basic Workflow
In the ML pipeline, a variety of data types can be used as input
materials, such as numerical data, categorical data, time-series
data, and textual information. These data types can be
interconverted according to the actual need. Prior to starting
with model entailing and data training, data preprocessing, such
as data normalization and discardingmissing and duplicate values,
should be performed to ensure the reliability of the results in the
subsequent analysis. The degree to which datasets must be
preprocessed for ML varies, depending on the choice of model
and the nature of the research problem of interest. Raw input data,
such as biological sequences (DNA, RNA, and protein/peptide
sequences), are often multi-dimensional and may contain
irrelevant or redundant data; thus, feature selection and feature
extraction are typically needed so that the learning accuracy and
the result comprehensibility will be improved. After preparation,
datasets can typically be split into training and testing cohorts
(often with 70-80% of the data for training and 20-30% for testing)
(Gholamy et al., 2018). Data for training cohort are used to build a
prediction model and data for test cohort are used to evaluate the
performance of a model. In addition, several other signs of
progress also need to be considered to determine the most
suitable model and make the model practically useful: for
example, cross-validating the performance of a model, accessing
the uncertainty regarding a given prediction, and alternatively
performing hyperparameter optimization (or hyperparameter
tuning) in order to determine the appropriate combination of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
hyperparameters that maximizes the model performance. A
representative example of a basic ML workflow is shown
in Figure 1.

Feature Extraction and Feature Selection
In the complete ML workflow, feature extraction (FE) and
feature selection (FS) represent two commonly used
dimensionality reduction approaches and play pivotal roles in
determining the final prediction results (Zebari et al., 2020). FE
needs to transfer the existing features into a lower-dimensional
space with more robust pattern recognition capability (Cai et al.,
2018). Taking protein classification as an example, sequences
must be characterized, that is, the sequence information can be
converted into a numerical vector following the program’s
strategies. The main method of feature representation of amino
acid sequences is mainly based on the principles of amino acid
composition (single peptide, dipeptide, tripeptide),
physicochemical properties, position specificity, conservation,
amino acid substitution, secondary structure, and so forth. The
commonly used tools include iFeature (Chen et al., 2018) and
iLearn (Chen et al., 2021). Unlike FE, FS needs to select a subset
of the existing features without a transformation for an original
feature. According to the relationship with learning methods, FS
algorithms are typically grouped into three types: filter, wrapper,
and embedded methods (Chandrashekar and Sahin, 2014). Filter
methods (e.g., Pearson’s correlation and Chi-square) are
generally used as a preprocessing step, which uses criteria not
involving any ML algorithm and does not consider the impact of
a selected feature subset on the performance of a given algorithm
FIGURE 1 | Example schematic workflow of constructing a machine learning predictor (supervised learning approach). The overall flue contains four steps, namely,
data preparation, model training, evaluation, and prediction. Step1: data are preprocessed to ensure suitability for machine learning and are split into training and test
cohorts. The preprocessed data are characterized (i.e., numerical vector with labels) by feature extraction method and the optimal features are charactered by feature
selection methods (such as by MRMD software). Step2: A type of machine learning algorithm (e.g., SVM, RF, or neural network) is chosen based on the data to be
used and the desired task, and the models are trained on training dataset. Step3: model performance is evaluated using the test dataset through cross-validation and
by means of metrics such as ROC or accuracy. During this step, hyperparameter optimization (or hyperparameter tuning) is usually performed to determine the right
combination of hyperparameters that maximizes the model performance: for example, the maximum depth allowed for a decision tree algorithm and the number of
trees contained in a random forest algorithm. Step4: an optimal model is chosen as the final model and packaged appropriately for users (e.g., online webserver for
prediction or scripts for local use).
April 2022 | Volume 12 | Article 882995
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(Liu and Motoda, 1998; Guyon and Elisseeff, 2006). Regarding
performance advantages, filter methods are fast and highly
effective, especially for selecting subsets with a large number of
features (Talavera, 2005; Sánchez-Maroño et al., 2007). In
comparison, wrapper methods leverage the intended predictive
model algorithms to select the optimal feature subset, which
enables better performance than filter methods (Talavera, 2005).
For example, MRMD 2.0 (He et al., 2020) developed previously
by our group is a typical wrapped FS tool, which gathers different
feature sorting methods and uses PageRank algorithm, as well as
performing five-fold-cross-validation through the incremental
FS strategy and random forest classifier in order to obtain the
optimal feature combination. In the comparison test, the
performance of MRMD 2.0 is better than that of filter
methods. Moreover, compared to filter and wrapper methods,
embedded methods such as using L1 (LASSO) regularization and
decision tree perform FS through the training of an algorithm in
parallel and combine the respective advantages of filter and
wrapper methods (Lal et al., 2006; Bolón-Canedo et al., 2013;
Chandrashekar and Sahin, 2014).

Learning Tasks
ML tasks can be organized into three types: supervised,
unsupervised, and semisupervised learning. In a supervised
learning task, training data have both features and labels,
which are assigned to a prespecified algorithm (e.g.,
classification or regression) for training, and then to predict an
output or target for unlabeled datasets, such as evaluating disease
risk based on the known clinical information. In contrast, an
unsupervised learning task such as k-means cluster analysis
(Ghahramani, 2004) is an exploratory process in nature
without the correct label, defined target, and output, but it
allows the ML model to discover the similarities and
differences in unlabeled datasets. Semisupervised learning is a
learning paradigm that simultaneously involves labeled and
unlabeled examples to perform certain learning tasks and is a
type of ML method that sits between supervised and
unsupervised learning (Zhu and Goldberg, 2009). The primary
goal of semisupervised learning is to construct a better learning
procedure by harnessing unlabeled data when compared to only
labeled data. For example, a semisupervised ML approach
developed by Ashdown et al. (2020) can establish a cell-based
screen model based on labeled and unlabeled parasite images,
and the hidden labels are predicted on all unlabeled data using
trained models. This method contributes to discriminating
diverse parasite morphologies and detecting morphological
outliers at different lifecycle stages of the malaria parasite.

Commonly Used Algorithms
A variety of ML algorithms in supervised and unsupervised
learning tasks exist. In microbiological studies (Qu et al., 2019),
SVM, NB, RF, and k-NNC are extensively used algorithms. When
facing intractable classification problems, SVM can find the most
effective means of separating multidimensional space data into
two categories (Gonzalez et al., 2005); NB classifies data on the
basis of Bayes’ theorem and the independence assumptions
between the features (Rish, 2001). RF consists of multiple
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
randomized decision trees and predicts by aggregating the
average of the output from diverse trees (Biau and Scornet,
2016). k-NNC implements data classification based on the
sample’s similarity (sometimes called distance or closeness) to
nearby data points (Peterson, 2009). In practical applications, the
type of ML algorithm used typically depends on the type of actual
problem being solved, the type of variable number, and the type of
trained model that best suits the application, which may decide
the predictive results.

Apart from the conventional algorithms mentioned above,
neural networks have been considered among the most
prolifically and fruitfully used ML algorithms in recent years.
Neural networks, also known as artificial neural networks, are a
subset of ML and the heart of DL. A neural network is a
mathematical model that uses a structure similar to the
synaptic connections of brain neurons to process various
information and contains multiple processing layers, i.e., an
input layer, one or more hidden layers, and an output layer,
which consist of interconnected nodes (so-called artificial
neurons) (Lecun et al., 2015). A layer of the input node is
capable of taking advantage of various source materials (e.g.,
text, image, or numerical data) and sending them into hidden
layers of the network. The hidden layers abstract the
representations of the input data to another dimensional space
to show more abstract and nonlinear representations. Eventually,
data from the output layer result in the desired outcomes.

The main difference between artificial neural networks and
DL lies in the scale and complexity of the network layer used. A
neural network composed of more than three layers (including
input and output layers) can be regarded as a DL algorithm. A
previous review in Min et al. (2017) detailed various DL
architectures and the research advances in bioinformatics,
including deep neural networks, convolutional neural
networks, recurrent neural networks, and other emergent
architectures. These architectures have been widely applied in
many research fields, including omics, biomedical imaging, and
biomedical signal processing.

In general, compared to conventional ML algorithms, DL has
both advantages and disadvantages. The advantages are that DL
bears strong learning ability, wide-coverage, and good
portability; the disadvantages are enormous computing power,
high hardware cost, and complex model design. In the practical
application, which algorithm to choose mainly depends on the
size of the data and the intended purpose to achieve.

Model Evaluation Methods and Metrics
Different ML algorithms bear their own merits, but a suitable
algorithm can be obtained by evaluating and comparing different
models and by calculating the performance indicators. In this
regard, the confusion matrix is a very popular approach when
evaluating metrics in binary and multiclass classifications
(Kulkarni et al., 2020). It is assumed that the number of
occurrences in terms of both positive (P) and negative (N)
samples exist in two states, actual and predicted classes. The
output “TP” is true positive, which indicates that the number of
positive examples is classified correctly. Similarly, the output
“TN” is true negative and represents the number of negative
April 2022 | Volume 12 | Article 882995
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samples classified correctly. The term “FP” represents false
positive, that is, actual negative samples that are incorrectly
classified as positive; the term “FN” indicates false negative
samples, namely, actual positive samples are incorrectly
classified as negative. Regardless of the type of ML models
used, it is crucial to estimate the performance of models by
metrics. There are six frequently used metrics, i.e., accuracy,
precision, sensitivity (recall), specificity, F-score, and MCC. On
the basis of the TP, TN, FP, and FN counts in the model
evaluation, their equations are defined by the acquired counts,
and the commonly used evaluation metrics were formulated as
follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Precision =
TP

TP + FP
(2)

Sensitivity recallð Þ = TP
TP + FN

(3)

Specificity =
TN

TN + FP
(4)

F − score = 1 + b2� �� Precision � Recall
b2 � Precision + Recallð Þ (5)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FNð Þ � TP + FPð Þ � TN + FPð Þ � TN + FNð Þp

(6)

Accuracy [equation (1)] is the number of correct predictions
divided by the total number of input samples. It is worth noting,
however, predictive accuracy may generate misleading results if
used with unbalanced datasets (i.e., datasets in which one class
significantly outweighs another class). As an example, a highly
unbalanced dataset possibly exists in the classification of infected
patients and normal patients based on clinical X-ray images
(Bridge et al., 2020). A typical dataset may contain 99% normal
pixels (uninfected) and 1% abnormal pixels (infected). The test
for infection prediction might give an accuracy of 99%, which is
an overly optimistic inflated and unreliable result, suggesting
certain limitations of accuracy as a performance indicator.
Instead, MCC [equation (6)] considers positive and negative
elements ratio in some classification tasks, which confers
tremendous advantage in evaluating unbalanced datasets than
accuracy (Chicco and Jurman, 2020).

Precision [equation (2)] is calculated as the ratio between true
positives and all positives. Recall [equation (3)], also called
sensitivity, refers to the ratio between true positive samples
correctly classified in the data to all real positive samples. In
classification tasks, precision and recall are crucial yet
misunderstood as two performance metrics. The choice of
whether to use precision or recall relies on the class of questions
being asked. For example, the determination of whether an imaged
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
cell is infected with a parasite is sensitive to incorrect classification
of a parasite-infected cell image (positive sample) as a parasite-
uninfected cell image (negative sample). In terms of this, a number
of parasite-infected cells must be sure to be classified as positive
samples during the experiment; hence, precision is the preferred
metric in evaluation. If only positive samples are detected in tests,
the recall rate should be calculated with regards to parasite-
uninfected cell images that are classified as positive samples.
Indeed, precision and recall accommodate each other. When a
model shows better precision but a lower recall rate, which
indicates that the model is accurate in classifying samples as
positive samples, it can only classify a small number of positive
samples. When a model displays higher recall but a lower
precision rate, the model classifies the majority of samples as
positives, but many false positives can exist in the test. To
comprehensively weight precision and recall, the F-score metric
[equation (5)] is introduced to evaluate many kinds of MLmodels.
In the formula of F-score, the value of b > 1 means that recall is
more important than precision, and vice versa. When b = 1, i.e.,
the standard F1-score, which is the harmonic mean of the
precision and recall, both performance metrics are considered
equally crucial during evaluation.

Moreover, another extensively used evaluation metric in
classification processes is the ROC curve, which is plotted with
TPR versus FPR, or sensitivity (recall) versus 1-specificity, where
TPR or sensitivity is on the Y-axis and FPR or 1-specificity is on
the X-axis (Mandrekar, 2010). On the ROC curve, the point near
the upper left of the plot represents the critical value with higher
sensitivity and specificity. The AUC value acts as a summary of
ROC and represents the measure or degree of separating
different classes (Fawcett, 2006). Only AUC value > 0.5 or even
near 1 indicate that the model or classifier achieves good
performance in the evaluations and vice versa.
MACHINE LEARNING APPLICATIONS FOR
PROTOZOAL PATHOGENS AND
PROTOZOAL INFECTIOUS DISEASES

Literature Search Strategy
To illustrate the broad utility of ML techniques, we searched
PubMed, IEEE Xplore, and Google Scholar databases using the
search terms “genus or disease name + machine learning or deep
learning or neural networks” (e.g., Plasmodium or malaria +
machine learning or deep learning or artificial intelligence) for
published studies up to August 25, 2021. Because many studies
may exist in some applications, we searched representative
references from selected articles to enumerate more relevant
applications. In total, more than 500 articles were obtained from
our search results, and the majority of them were related tomalaria
parasite (63%), followed by two Trypanosoma (13%, and then
Toxoplasma (8%). However, only 6% of published studies reported
ML applications for other protozoal pathogens. In the following
sections, we focus on reviewing and discussing ML’s applications
in pathogen detection, public health surveillance, host-parasite
interaction, drug discovery, omics, and vaccine discovery.
April 2022 | Volume 12 | Article 882995
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Pathogen Detection
Establishing time-saving and accurate diagnostic method is
crucial in the surveillance, prevention, and control of parasitic
diseases. Traditionally, wet-laboratory experiments for molecular
diagnoses, such as PCR and real-time PCR, which can directly
detect the parasite’s nucleic acid molecule in samples, are highly
sensitive for molecular identification. Although these
technologies outperform pathogen detection, microscopy
methods for diagnostic parasitology offer time savings, low
cost, and simplicity advantages. Additionally, microscopy
methods are appropriate for point-of-care detection of
parasites using blood smears and environmental samples
without an available diagnostic laboratory. During the process
of microscopy detection, a large number of images often need to
be analyzed by health workers; therefore, ML would act as a
powerful tool for parasite detection based on image classification
(parasite-infected and uninfected cell images). Although all
protozoan parasites transition through complicated life cycle
stages, each stage differs greatly in morphology and size. Thus,
image-based morphology analysis can not only detect the
presence of pathogens in microscopic images but also
differentiate parasites from diverse lifecycle stages. According
to the literature investigated here, the prospects of automating
parasite detection using MLmethods have aroused broad interest
from many researchers owing to their significant advantages.
Currently, ML methods are increasingly applied to the detection
of various protozoal pathogens, including Plasmodium in
particular, along with other parasitic protozoans, such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Toxoplasma, Babesia, Trypanosoma, Cryptosporidium, and
Giardia. Representative papers detailing ML-related methods
for parasite image recognition and publicly available diagnostic
tools are summarized in Tables 2, 3, respectively.

Plasmodium spp.
There are five major Plasmodium species (Plasmodium falciparum,
P. vivax, P. ovale, P. malaria and P. knowlesi) that have the ability
to infect humans (Sherling and Van Ooij, 2016). Of these, P.
falciparum and P. vivax are the two most common Plasmodium
parasites due to their wide prevalence and infection worldwide. In
the cases of human infection, Plasmodium parasites exhibit
essentially the same but complex lifecycle stages that involve two
major hosts, i.e., a vertebrate host (human) and a vector host
(mosquito), of which intraerythrocytic stages (trophozoite,
schizont, and gametocyte stages) cause malaria. Since the
intraerythrocytic stages vary significantly in morphology, the
different stages of this parasite can be recognized easily by
stained blood smear images, which can serve as the image sets
used for ML-based diagnosis analysis. In terms of malaria
diagnosis, some critical solutions in ML, including image
collection, image preprocessing, parasite and cell segmentation,
feature selection, feature extraction, and cell classification, have
been reviewed previously by Poostchi et al. (2018).

An SVMmethod based on the watershed threshold algorithm
for the detection of the lifecycle stage in microscopic blood
images was proposed in Charpe et al. (2015) and shows
97.7% accuracy, 97.4% sensitivity, and 97.7% specificity.
TABLE 2 | Representative artificial intelligence applications for protozoal pathogen detection in publications.

Author Image
acquisition
method

Dataset (total) Species Classifier Result

(Charpe et al., 2015) Microscope 15 images Plasmodium SVM 97.7% accuracy, 97.4% sensitivity, and 97.7% specificity
(Abbas et al., 2019) Microscope 74 images Plasmodium SVM, KNN

and NB
96.75% sensitivity and 94.59% specificity

(Uc-Cetina et al., 2013) Microscope 120 images Trypanosoma Bayesian 98.3% sensitivity and 84.37% specificity
(Diaz et al., 2009) Microscope 450 images Plasmodium SVM 94% sensitivity and 99.7% specificity
(Uc-Cetina et al., 2015) Microscope 12,936 images Trypanosoma AdaBoost

and SVM
100% sensitivity and 93.25% specificity

(Park et al., 2016) Microscope Quantitative phase images
of unstained cells

Plasmodium LDC, k-
NNC and
LR

The highest accuracy of 99.7%, 99.5% and 99.1% in LDC,
NNC, and LR, respectively

(Liang et al., 2016) Microscope 27,578 images Plasmodium CNN 97.37% accuracy, 96.99% sensitivity, 97.75% specificity, and
97.36% F1-score

(Rajaraman et al., 2018) Microscope 27,558 images Plasmodium CNN 98.6% accuracy, 98.1% sensitivity, 99.2% specificity, 98.7%
F1-score, and 97.2% MCC

(Umer et al., 2020) Microscope 27,558 images Plasmodium CNN 99.6% accuracy, 100% precision, 99.92% recall, and 99.96%
F1-score

(Luo et al., 2021) Imaging flow
cytometry

80,146 images Cryptosporidium
and Giardia

CNN > 99.6% accuracy, 97.37% sensitivity and 99.95% specificity

(Li et al., 2020a) Microscope 13,135 images (T400
dataset) and 14,992
images (T1000 dataset)

Toxoplasma Transfer
learning

T400 –93.1% accuracy, 93.9% F1-score, 96% recall, and
91.9% precision; T1000 –94.0% accuracy, 93.9% F1-score,
92.9% recall, and 94.9% precision

(Li et al., 2020b) Microscope 24,358 images Toxoplasma,
Plasmodium and
Babesia

Deep cycle
transfer
learning

95.7% accuracy, 95.7% F1-score, 95.7% recall, and 95.8%
precision

(Li et al., 2021) Microscope 79,672 images Plasmodium GCN 98.3% accuracy, 98.5% precision, 98.3% recall, and 98.3%
F1-score
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Abbas et al. (2019) implemented the classification of the lifecycle
stage of malaria parasites in blood smear images using multiclass
SVM, k-NNC and NB algorithms, of which the multiclass SVM
can generate the best classification results by incorporating
histograms of oriented gradients and local binary pattern
features, yielding 96.75% sensitivity and 94.59% specificity
based on the proposed framework described by the authors
(Abbas et al., 2019). A study in (Diaz et al., 2009) used SVM
to classify blood smear images and to detect infected
erythrocytes, which also achieved good performance in
sensitivity (94%) and specificity (99.7%). In addition to the
excellent performance of the SVM method, Park et al. (2016)
utilized quantitative phase images of unstained cells and three
ML algorithms (including LDC, LR, and k-NNC) to detect P.
falciparum parasites at the trophozoite and schizont stages,
which achieved accuracies of 99.7% in detecting the schizont
stage (LDC method) and 98% and 99.5% for discriminating early
trophozoites (or ring stage) (LDC method) and late trophozoites
(k-NNC method), respectively.

In terms of these conventional ML algorithms, particularly
the commonly used SVM, superior performances may be
achieved in a classification task for a relatively small number of
image sets; however, novel systems are still needed to produce
highly scalable and superior results when processing a larger set
of images. As an emerging and important form of ML, DL
algorithms exhibit exceptional traits for larger digital image
recognition and analysis (Wu and Chen, 2015; Ker et al.,
2017), although it generally requires high computing power
and massive image datasets. In DL architectures, CNN is one
of the most successful approaches due to its significant capability
in computer vision and image processing (Nebauer, 1998). CNN
is based on a series of convolutional and pooling layers to process
image that has a grid pattern, and have become the most
common existing approaches for image classification between
parasite infected and uninfected cells (Figure 2).
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In previous studies, more than twenty articles have reported
CNN applications in the detection of malaria parasites. We
herein searched the references of selected articles to present
CNN applications. For example, for the first DL application in
parasitic diseases, Liang et al. (2016) designed a 16-layer CNN
toward recognizing and classifying malaria parasites, achieving
97.37% accuracy, 96.99% sensitivity, 97.75% specificity, and
97.63% F1-score. Rajaraman et al. (2018) used five pretrained
CNN (AlexNet, VGG-16, ResNet-50, Xception, and DenseNet-
121) as extractors and then evaluated these models through
classification based on 27,558 cell images with equal instances of
parasitized and uninfected cells (i.e., end-to-end feature
extraction and classification); the authors also observed that
the ResNet-50 model achieved optimal results for diagnosis at
the cell level, resulting in 98.6% accuracy, 98.1% sensitivity,
99.2% specificity, and 98.7% F1-score. Umer et al. (2020)
proposed a stacked CNN architecture (the difference from
Rajaraman et al. (2018) is the designed number of layers and
the size of the kernel) for automatic detection of malaria parasites
using 27,558 cell images, which improved the performance after
five-fold cross-validation with 99.96% accuracy, 100% precision,
99.92% recall and 99.96% F1-score. In addition to CNN
methods, Li et al. (2021) recently developed a novel DL
method based on a graph convolutional network called
DTGCN model to classify multistage parasitized and
uninfected cells (including ring, trophozoite, schizont, and
gametocyte stages) with a total of 79,672 single-cell images,
which achieved 98.3% accuracy, 98.5% precision, 98.3% recall,
and 98.3% F1-score. Collectively, these existing DL approaches
have shown promising results for malaria parasite detection,
which can be attributed to the plasticity of DL architectures and
the availability of mass-produced cell image sets available from
public medical libraries.

Mobile device systems such as smartphone applications
combining ML models and utilizing microscopic images as an
TABLE 3 | Available tools for microscopic image recognition and detection of protozoal pathogens.

Model Description Species Availability Refs

CLoDSA An image augmentation library for object classification, localization, detection, semantic segmentation
and instance segmentation.

Plasmodium https://github.
com/joheras/
CLoDSA

(Casado-
Garcia
et al.,
2019)

R-CNN Automated cell identification of malaria parasite cells using Region-based convolutional neural network
model for both brightfield and fluorescence images.

Plasmodium https://github.
com/
broadinstitute/
keras-rcnn

(Hung
et al.,
2020)

DTGCN A tool based on GCN was used for recognizing blood smear images of malaria parasite on multi-stages. Plasmodium https://github.
com/senli2018/
DTGCN_2021

(Li et al.,
2021)

DCTL Detection of three apicomplexan parasites by employing deep cycle transfer learning method to conduct
microscopic image analysis.

Toxoplasma,
Plasmodium and
Babesia

https://github.
com/senli2018/
DCTL

(Li et al.,
2020b)

FCGAN A microscopic image recognition method by employing fuzzy cycle generative adversarial network by
the combination of transfer learning.

Toxoplasma https://github.
com/senli2018/
FCGAN/

(Li et al.,
2020a)

MCellNet A deep neural network processing pipeline by combining the imaging flow cytometry as a detection
system realizes rapid, accurate and high-throughput detection and classification with respects to the
waterborne parasites.

Cryptosporidium
and Giardia

https://github.
com/upeluo/
mcellnet

(Luo et al.,
2021)
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object for analysis are expected to provide applicable value for
parasite detection. Fuhad et al. (2020) proposed a model utilizing
DL-based methods to detect malarial parasites from microscopic
images on smartphones with an accuracy of 99.23%. Yang et al.
(2020) developed a customized CNN model and implemented it
on smartphones to detect malaria parasites with over 93%
accuracy. Yu et al. (2020) designed an Android mobile phone
application named Malaria Screener (Available on Google Play),
which makes smartphones capable of automated malaria
diagnosis under light microscopy, including image acquisition,
screening, and management. Davidson et al. (2021) used a
pretrained Faster Region-based CNN model to detect malaria
infection and stage of malaria parasites from camera phone
images with an average precision of 99%, and provided an
online web tool (called PlasmoCount available at https://www.
baumlab.com/plasmocount) that can be used by the malaria
research community. Collectively, these applications can
provide great help to reduce the clinician’s labor and, through
eliminating the need for highly trained personnel, can also serve
as an important adjuvant diagnostic tool to improve point-of-
care diagnosis in resource-limited places.

Other Protozoan Parasites
Toxoplasma is also a parasite that has attracted much attention
from researchers because it infects almost all warm-blooded
vertebrates and has multiple divergent life cycle stages. Two
lifecycle stages – tachyzoites (invading red blood cells) and tissue
cysts (invading brain or muscle tissue) – are correlated with the
intermediate host, while another stage – the oocyst – is linked to
the felid host and is released by feces into the external
environment (Tenter et al., 2000). Tachyzoites are generally
crescent or banana-shaped in microscope images and are an
important stage for acute toxoplasmosis diagnosis, as they allow
disease treatment and control. Based on the features of the
Toxoplasma life cycle, Li et al. (2020a) developed a transfer
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learning-based microscopic image recognition approach to
identify Toxoplasma tachyzoites on × 400 (T400 dataset) and
×1,000 (T1000 dataset) images with a total of 28,127 single-cell
images by comparing multiple DL models, which achieved the
classification of banana-shaped Toxoplasma with accuracy of >
93% in both the T400 and T1000 datasets. In addition, Li et al.
(2020b) also proposed a transfer learning method to compare the
classification of apicomplexan parasites, including Toxoplasma
and two other protozoan parasites (Plasmodium and pear-
shaped Babesia), obtaining an average accuracy of 95.7% and
an average AUC of 99.5% for all parasite types.

Cryptosporidium and Giardia are two common parasites of
infectious enteritis in humans and agricultural animals (e.g.,
cattle and water buffalo), with widely documented waterborne
outbreaks worldwide (Feng and Xiao, 2011; Bouzid et al., 2013;
Abeywardena et al., 2015). Compared to other Apicomplexan
protozoans, the lifecycle of Cryptosporidium and Giardia is
relatively simple. Among them, Cryptosporidium involves
infectious oocysts released by the infected host through feces
into the public environment and includes several intra-host
stages from asexual to sexual reproduction (Bones et al., 2019);
Giardia has two morphological stages, namely, the intra-host
trophozoite and the environmentally resistant cyst (an infectious
stage). Infection can be acquired following the ingestion of water
and food contaminated with the infectious stage oocysts
(Cryptosporidium) or cysts (Giardia), which results in the
host’s gastrointestinal diseases and various inflammations
(Abeywardena et al., 2015). From a public health perspective,
owing to the great zoonotic impact of Cryptosporidium and
Giardia on human health (Cacciò et al., 2005; Abeywardena
et al., 2015), the detection of infectious stages (oocyst and cyst) in
the environment bears particularly critical significance for the
prevention and control of infection. In an early study, Widmer
et al. (2002) used ANN to detect immunofluorescently labeled
Cryptosporidium oocysts (525 images in total). Similarly,
FIGURE 2 | Parasite recognition and detection in blood smear image using CNN approach. A blood smear image for intracellular parasite infection is a typical
microscope image, which allows CNN to take in an input microscope image, assign importance (learnable weights and biases) to various aspects and be able to
accurately differentiate a parasite-infected red blood cell from a normal red blood cell or discerning different lifecycle stage of a parasite. The feedforward layers of
CNN contain the input layer, convolutional layer, pooling layer, flatten layer, and fully connected layer. A three-dimensional matrix presents the image data contained
in the input layer, and the image is reshaped into a single column. To conduct the convolution operation, the layer is used to create several smaller picture windows
to deliver data information. Pooling is a down-sampling operation capable of reducing the dimensionality of the feature map. The flatten layer is used to “flatten” the
input, that is, making the multi-dimensional input into one-dimensional data. The fully connected layer is used to identify and classify the object of an image, thereby
obtaining output results for probabilistic detection in red blood cells.
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Widmer et al. (2005) utilized ANN methods to identify
Cryptosporidium oocysts (1,586 images) and Giardia cysts
(2,431 images) in a relatively large-scale image set, and the
correct rates of detected oocysts and cysts were calculated to be
91.8% and 99.6%, respectively. With the development of
technology for bioparticle images such as imaging flow
cytometry and its advantage in capture speed, Luo et al. (2021)
recently reported a DL-enabled high-throughput system called
MCellNet, which is used for Cryptosporidium and Giardia
detection in drinking water. This system was tested using
80,146 single-cell images that were rapidly acquired by imaging
flow cytometry, showing > 99.6% accuracy, 97.37% sensitivity,
and 99.95% specificity.

In terms of other protozoan parasites, however, currently,
there are no available applications utilized on smartphone or
web-based systems. Given that some pathogenic parasites
belonging to the class of ubiquitous microorganisms exist in
our living environment, particularly water-borne and food-borne
parasites (e.g., Toxoplasma, Cryptosporidium, and Giardia) that,
through oral infection, potentially threaten human health, it is
worth looking forward in the future to develop intuitive,
convenient and easy-to-use applications for parasite detection
in the environment.

Public Health Surveillance
Public health surveillance is the systematic collection, analysis,
and dissemination of data on diseases of public health
importance in order to take proper actions to prevent or stop
the further spread of diseases (Nsubuga et al., 2006). Traditional
approaches for public health surveillance mainly depend on the
usage of mathematical statistics (Sonesson and Bock, 2003;
Höhle et al., 2009). However, with the tremendous growth of
AI-derived techniques in recent years, those based on ML
methods can directly derive models to perform regression,
classification, and time-series analyses and to implement public
health surveillance, instead of relying only on stringent statistical
techniques for the data-generating system. This makes this
approach more effective to solve uncertain and nonlinear
problems in some complex applications.
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ML algorithms have enabled the utilization of AI to detect
epidemiological changes, trace disease outbreaks, and analyze
disease trends and risks, from public health surveillance data
sources to provide early warning, targeted interventions, and
control measures (Zeng et al., 2021). Disparate types of data
sources for public health surveillance often involve complex and
heterogeneous factors, which are essential for identifying early,
accurate, and reliable signals of disease outbreaks. With these
existing applications, a variety of data sources for
implementation of ML-enhanced public health surveillance of
protozoal diseases, particularly malaria, can be derived from the
following five major aspects (Figure 3): environmental factors
(e.g., temperature, rainfall, and relative humidity) (Kiang et al.,
2006; Ye et al., 2007; Castro, 2017), topographic factors (e.g.,
elevation, slope, aspect, and ruggedness) (Cohen et al., 2010;
Atieli et al., 2011), geographical factors (e.g., nationality and
region) (Zhou et al., 2010; Ayele et al., 2012), vector
transmissions [e.g., the population of mosquito vectors for
malaria parasites (Athrey et al., 2012) and the population of
insect vectors for Chagas disease (Justi and Galvao, 2017)], and
disease case reports [e.g., patient clinical information, signs and
symptoms (Lee et al., 2021; Yadav et al., 2021)]. One or several
operationalizable sources of data that contain valuable signals
can be chosen as features, thereby testing signals on the ML
model to predict the disease transmission dynamics and to
evaluate the public health potential.

Malaria is still the main infectious disease of concern to
scientists, as it has considerable significance for public health
in many tropical and subtropical areas of the world. By taking
advantage of various data resources, different malaria models
have been developed to predict malaria transmission. According
to the reports in recent years, for instance, Haddawy et al. (2018)
developed a predictive model using Bayesian networks to predict
malaria outbreaks on the basis of weekly infection cases and
environmental covariates, such as rainfall, temperature and
vegetation, offering good predictive capability during numeric
case and outbreak predictions. Thakur and Dharavath (2019)
proposed a predictive model for local malaria prevalence on the
basis of the ANN method by collecting clinical and
FIGURE 3 | In terms of public health surveillance in protozoal diseases, a variety of data types can be used to construct machine learning models, capable of
deriving data from independent variables to dependent variables to obtain the prediction result of disease.
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environmental variables with big data in local areas, as well as
various satellite data that include rainfall, relative humidity,
temperature and vegetation from the time period of 1995-2014.
Based on parasite infection reports, Lee et al. (2021) extracted
patient information obtained from PubMed abstracts and
utilized six ML models (SVM, RF, multilayered perceptron,
AdaBoost, gradient boosting, and CatBoost) to predict malaria:
all models exceeded 90% accuracy, indicating that nationality
and region of travel are important factors to diagnose malaria.

Transmission vectors also play a crucial role in the prediction
of protozoal diseases. For instance, correctly identifying insect
vectors of Chagas disease in digital images employing DL
algorithm has shown benefits for people who are without
entomological expertise (Khalighifar et al., 2019); in a malaria
example, because this disease is transmitted via the bite of
infected female Anopheles mosquitoes that contain
Plasmodium parasites, it has demonstrated potential for
estimating the parity status of wild mosquitoes using an
autoencoder and ANN-based method (Milali et al., 2020).
These surveys concerning transmission vectors combined with
ML methods collectively contribute to the identification of
transmission vectors and monitoring of disease prevalence to
indirectly support public health surveillance.

Different protozoan parasites bear divergence in genetics,
geographical distribution, lifecycle, host, pathogenicity, and so
on. Thus, the implementation of public health surveillance using
ML methods and relative prediction strategies is not completely
consistent among different protozoal diseases, and the parasite’s
life cycle and parasitic manner must be considered when
choosing appropriate data types.

Host-Parasite Interaction
To establish successful pathogenicity, protozoan parasites can
infect different host tissues and cell types, and have the ability to
evolve their strategies to escape the immune response of the host
(Cox, 2002). One effective strategy for a parasite is to secrete
virulence effectors into host cells to subvert various host
pathways (Hunter and Sibley, 2012; Draper et al., 2018). In
general, a successful method of infection is mainly through PPI
where the parasite proteins target the host proteins, which is
capable of forming a biological network (Dallas et al., 2017).
During the processes of infection and invasion, PPI are crucial
for a parasite to initiate infection and establish a host immune
escape mechanism and are substantially implicated in the
identification of potential targets for new and effective
therapeutics. In most molecular experiments, identifying host-
parasite PPI is time-consuming, expensive, and generally
dependent on the experimental experience of researchers.

Interspecies interactions between hosts and pathogens,
including host-protozoan PPI, have long been explored by
employing various computational methods (Mariano and
Wuchty, 2017; Soyemi et al., 2018). Prediction methods require
features extracted from PPI to learn. Four main features are the
crucial components of bioinformatics analysis in facilitating the
construction and prediction of host-pathogen PPI (Figure 4):
(i) sequence homology-based methods (Murakami and
Mizuguchi, 2014; Zhou et al., 2014), (ii) domain and motif-
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based methods (including domain-domain interaction and
domain-motif interaction) (Wojcik and Schachter, 2001;
Kshirsagar et al., 2013; Segura-Cabrera et al., 2013; Zhou et al.,
2013; Becerra et al., 2017), (iii) 3D structure-based methods
(Davis et al., 2007; Doolittle and Gomez, 2010; De Chassey et al.,
2013), and (iv) transferring known PPI from the same organism
based on the similarity of sequence homology, domain and motif
into the predictive host-pathogen PPI (i.e., interologs) (Wuchty,
2011; Nourani et al., 2015). Additionally, further computational
investigation for potential interactions using other relative
features, such as biological function, evolutionary information,
cellular localization, and expression profile data, can also discard
some false-positive interactions and immensely improve the
quality of interaction candidates (Mariano and Wuchty, 2017).

ML methods have been adapted to predict possible PPI
between hosts and parasites. Previously, Dyer et al. (2007)
proposed a Bayesian approach for integrating known
intraspecies PPI with protein domain profiles to predict the
interactions between P. falciparum and the human host,
producing 516 PPI between proteins from these two
organisms. Wuchty (2011) utilized a computational method to
infer homologous and conserved protein interactions between P.
falciparum and the human host and evaluated them by
employing the RF algorithm. Additionally, the author further
filtered the false-positive based on expression profiles and
molecular traits, pooling a total of 2,244 host-parasite PPI.
Ghedira et al. (2020) developed an integrative computational
approach through a combination of omics expression data
(composed of infected human red blood cells and P.
falciparum protein expression profiles), domain- and structure-
based PPI, similarity of gene ontology, and eight ML classifiers
(i.e., k-NNC, logistic regression, decision tree, RF, Adaboost,
voting classifier, NB and SVM) to predict PPI between P.
falciparum and the human host, reporting 716 protein
interactions. In a recent study, Suratanee et al. (2021) predicted
human-P. vivax protein associations based on multiple features,
including known protein-protein networks in a single organism
in humans or P. vivax and protein sequence similarity, and
employed four ML algorithms (NB, neural network, RF, and
SVM) to classify defined and undefined associations. All these
methods that predict human-Plasmodium PPI through
supervised learning require the combination of protein
sequences and other relative protein sequence information to
sever as appropriate positive and negative training sets to
robustly classify the interacting proteins. These predicted
candidates from a list of host-parasite PPI could provide novel
promising targets for wet-experimental validation, thereby
reducing time and development costs.

Apart from the prediction of host-parasite PPI at the protein
level, phenotypic image analysis based on machine intelligence
algorithms can also be employed with respect to cell image sets to
recognize variations in cell properties and to analyze interactions
between biological systems (Smith et al., 2018). For example,
Fisch et al. (2019) developed an image-based analysis platform
called HRMAn that incorporates decision tree classification and
deep CNN to analyze the infection of cells with intracellular
Toxoplasma. Additionally, the authors elaborated the capability
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of HRMAn to learn phenotypes from image sets thereby
analyzing the host response and parasite fate at the single-cell
level (available at https://hrman.org/).

Drug Discovery
The rapid emergence of drug resistance and genetic variation of
parasite strains that make antibiotic drugs less effective for
treatment emphasizes the urgent need to develop novel drugs
(Borst and Ouellette, 1995; Su et al., 2019). Drug discovery starts
with the identification of an effective compound and its binding
affinity with a target protein. Additionally, the identified
compounds should have bioactive ability to limit or block
parasite growth and reproduction within the infecting host; at
the same time, one of the key issues addressed is to reduce toxic
and off-target effects. Nevertheless, in most cases, drug discovery
is a considerably complex and long process, ranging from target
selection to drug approval, which generally requires more than
ten years (Rifaioglu et al., 2019). With the availability of various
high-throughput sequencing data and small-molecule chemical
libraries, the following question is posed: how can we utilize
computational approaches to find effective compounds and to
predict the probability of effective compound-target pairs
through various large-scale datasets, while reducing the cost
and time period of the early development of innovative drugs?

Until now, the main method in the drug discovery process has
relied on VS (Walters et al., 1998; Kitchen et al., 2004), also
known as in silico screening, which is often assisted by
computational methods, including ML methods. With respect
to a disease, the goal of VS is to find the most promising
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compound assays from large chemical databases [e.g.,
PubChem (Kim et al., 2016), ChEMBL (Bento et al., 2014),
DrugBank (Law et al., 2014), and ZINC (Sterling and Irwin,
2015)], and to identify optimal compound-target pairs based on
known annotations in protein databases [e.g., UniProtKB
(UniProt Consortium, 2015), InterPro (Finn et al., 2017), and
Pfam (Finn et al., 2016)]. Previous reviews (Lo et al., 2018;
Rifaioglu et al., 2019; Kimber et al., 2021) have detailed the
application and development of ML in VS for drug discovery.
Moreover, by leveraging computer-aided encoding in VS
pipelines, ML techniques can be employed in structure-based
VS and ligand-based VS (Wilson and Lill, 2011; Vázquez et al.,
2020). Structure-based VS uses the 3D structure of both ligand
and target to predict their binding affinity, while ligand-based VS
only requires ligand properties, such as molecular fingerprints or
descriptors (Cereto-Massague et al., 2015) that encode their
structural characteristics as vectors, to identify the similarity
between a test compound and a known active compound of a
target. More information on cheminformatics studies related to
structure-based and ligand-based VS can be found in previous
reviews, such as in (Wilson and Lill, 2011; Vázquez et al., 2020).
Here, a brief workflow for the ML-based VS platform in
bioinformatics is shown in Figure 5.

Likewise, the so-called VS-based methods including a
combination of ML models are also widely applied to the
research of drug discovery against protozoal diseases, such as
malaria (Kumari and Chandra, 2015; Urista et al., 2020) and
Chagas disease (Ekins et al., 2015; De Souza et al., 2019; Yasuo
et al., 2021). In the ligand-based VS method, ML is usually used
FIGURE 4 | In host-parasite interaction, four common features in a computational workflow are worth considering for which they can further improve the accuracy
of prediction, including protein 3D structural information, domain-domain interaction and/or domain-motif interaction, and interologs based on the known PPI in an
organism.
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for the classification of active and inactive compounds by using
appropriate ML algorithms. In terms of anti-malarial compound
prediction, for example, an early study by Kumari and Chandra
(2015) classified active and inactive compounds based on the
known activity score obtained from the PubChem database and
trained three classifiers (i.e., RF, NB, and J48) to predict bioactive
anti-malarial molecules by inhibiting a target protein of P.
falciparum, M18AAP – a critical enzyme for the survival of
malaria parasites, finding that the RF classifier could perform
better classification of compounds (97.94% specificity) than
other classifiers. Urista et al. (2020) compared multiple ML
algorithms for the prediction of nanoparticle-compound
complexes against malaria parasites utilizing chemical
compounds from the ChEMBL database and experiment-based
nanoparticle data. The authors found that the best-performing
algorithm, an RF classifier trained using 27 selected features of
drugs and nanoparticles, yielded an AUC of 99.21% in ten-fold
cross-validation. In terms of compound prediction in Chagas
disease, Ekins et al. (2015) developed Bayesian classifier models
that were used to virtually screen compounds from the CDD
database (https://www.collaborativedrug.com/), and the top-
scoring compounds were tested on an acute Chagas mouse
model, with an identified antiparasitic efficacy of 85.2%. In
another study of compound prediction for Chagas disease, De
Souza et al. (2019) notably investigated 363 structurally diverse
compounds using ANN and KPLS algorithms to predict the anti-
parasite activity, yielding q2 values (correlation coefficient for the
test compound set) of 0.81 and 0.84 on the ANN and KPLS
models, respectively.

In addition, some studies have demonstrated the abilities of
DL models that were used to implement a VS pipeline and to
predict compounds against a large number of datasets.
Keshavarzi Arshadi et al. (2019) developed a graph
convolutional neural network DL model named DeepMalaria
to predict the anti-P. falciparum inhibitory properties of
compounds through a ligand-based VS method, followed by
validation of this model by predicting hit compounds from a
known compound library and already approved drugs. The
authors also further improved this model by using transfer
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learning and external validation on an independent and
imbalanced dataset, showing that most of the predicted active
compounds have greater than 50% inhibition of the P.
falciparum parasite. Similarly, in a recent study, a DL-based VS
model proposed by Neves et al. (2020) was used to predict the
antiplasmodial activity and cytotoxicity of untested compounds
to screen the prioritized compounds through experimental
evaluation. These applications highlight the capability of the
DL framework in leveraging various large compound datasets to
identify antiplasmodial activity, which may be equally applicable
to other protozoan parasitic diseases, despite a lack of relevant
research reports.

Omics and Vaccine Discovery
With the advancement of omics-based technologies such as
transcriptomics and proteomics studies, it has become
increasingly feasible to acquire personalized data about
protozoan parasites (Cowell and Winzeler, 2019). ML algorithms
promise the ability to excavate these data and incorporate other
bioinformatics tools and methods to perform deeper analyses in
several settings. In transcriptomics, RNA-seq techniques are
widely used to accurately detect gene expression profiles, and the
ML method can be used to conduct protein classification based on
transcriptomic profiles, such as in malaria parasites (Mitrofanova
et al., 2008), or to explore transcriptomic signatures through
differential gene expression analysis in parasite-infected hosts
such as leishmaniasis patients (Adriaensen et al., 2020). In the
context of proteomics, ML has also been used to predict protein
complexes with unknown function based on protein correlation
profiling mass spectrometry, such as in T. brucei (Crozier et al.,
2017), or to identify protein and/or peptide vaccine candidates for
target parasites, such as Toxoplasma and Plasmodium (Goodswen
et al., 2013b).

As a radical endeavor to prevent infectious disease, vaccine
development is a necessary process, which begins with the
identification of candidate antigens using computational
approaches and follows with the prediction of whether the host
inoculated with the vaccine can produce a protective immune
response against a given parasite. Typically, parasite-derived
FIGURE 5 | A basic workflow for virtual screening platform in the process of drug discovery. In this process, machine learning represents a powerful tool to predict
compound-target pairs using compound datasets and functional known proteins.
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effectors, such as virulence factors and outer membrane,
invasion, and virulence-related proteins, are potential antigens
used for vaccine development: in the vaccine discovery pipeline,
they can be effectively predicted by in silico approaches
(Goodswen et al., 2013a; Goodswen et al., 2014). Although the
immunogenicity regarding a set of candidate vaccines cannot be
confirmed immediately without experimental validations, many
efforts in elucidating a worthy list of vaccine candidates have
been made, such as predicting the most promising vaccines
against Toxoplasma and Plasmodium (Goodswen et al., 2013b)
and Babesia (Goodswen et al., 2021b; Goodswen et al., 2021c)
using various ML algorithms, e.g., adaptive boosting, k-NNC,
NB, ANN, RF and SVM. These works provide a reference for
researchers engaged in vaccine development to conduct further
laboratory validation, which will save substantial time
and money.
CONCLUSION

With the constant development and improvement of ML, it has
established its position across the field of infectious diseases,
including parasitic protozoans and protozoal diseases. We herein
provided a comprehensive review of ML applications in terms of
pathogen detection, public health surveillance, host-parasite
interaction, drug discovery, omics, and vaccine discovery. Of
these, image-based parasite detection has achieved the most
significant results in practical applications, particularly the use
of DL algorithms. Given these successful cases that detect
protozoal pathogens by image recognition and classification, it
is feasible that more studies in the future should apply ML
techniques to carry out the detection of water- and food-borne
protozoans causing environmental pollution and should develop
convenient detection tools for public health researchers. In many
other applications, although ML methods hold substantial
promises, they are still in the exploratory stage and require
further development and perspective validation. Some key
challenges also exist: for example, the goal of public health
surveillance in infectious disease is to predict disease burden
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and identify disease outbreaks, but ML methods partly depend
on data sources of collection, underscoring the requirement for
larger and more diverse datasets. Furthermore, ML is capable of
performing effective data mining and identifying valuable
molecular targets regarding host-parasite interaction, drug and
vaccine discovery, but there are some inherent limitations: (i) the
functions of the majority of proteins are unknown [e.g., in the
annotated genome information, 51.5% of T. gondii proteins
(ME49 strain, version release 54) and 71.8% of P. falciparum
proteins (3D7 strain, version release 54) are hypothetical
proteins or have unknown functions]; (ii) how to effectively
utilize omics data and integrate them into ML prediction models;
(iii) lacking adequate experimental validation data as training
datasets. Because datasets play critical roles in the process of ML,
it is warranted for future studies to combine data from various
sources, embrace data sharing, and establish public databases for
ML. Particularly, regarding the development of drugs and
vaccines, researchers should screen experimentally validated
molecule targets (e .g . , pharmaceut ical compounds,
biomacromolecules, and antigenic epitopes), use these data to
train ML models with high robustness and accuracy, and develop
practical bioinformatics tools for use by microbiologists.
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