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ABSTRACT: A contracted quantum eigensolver (CQE) finds a
solution to the many-electron Schrödinger equation by solving its
integration (or contraction) to the two-electron space�a
contracted Schrödinger equation (CSE)�on a quantum com-
puter. When applied to the anti-Hermitian part of the CSE
(ACSE), the CQE iterations optimize the wave function, with
respect to a general product ansatz of two-body exponential unitary
transformations that can exactly solve the Schrödinger equation. In
this work, we accelerate the convergence of the CQE and its wave
function ansatz via tools from classical optimization theory. By
treating the CQE algorithm as an optimization in a local parameter
space, we can apply quasi-second-order optimization techniques,
such as quasi-Newton approaches or nonlinear conjugate gradient
approaches. Practically, these algorithms result in superlinear convergence of the wave function to a solution of the ACSE.
Convergence acceleration is important because it can both minimize the accumulation of noise on near-term intermediate-scale
quantum (NISQ) computers and achieve highly accurate solutions on future fault-tolerant quantum devices. We demonstrate the
algorithm, as well as some heuristic implementations relevant for cost-reduction considerations, comparisons with other common
methods such as variational quantum eigensolvers, and a Fermionic-encoding-free form of the CQE.

I. INTRODUCTION
The contracted Schrödinger equation (CSE)1−3 describes the
projection of the molecular Schrödinger equation for a N-
electron system onto a two-electron space, which generates the
stationary-state condition of the two-electron reduced density
matrix (2-RDM), instead of the wave function. Satisfaction of
the anti-Hermitian part of the contacted Schrödinger equation
(ACSE) by a quantum state is equivalent to its invariance, with
respect to all infinitesimal two-body unitary transforma-
tions.4−6 Solution of the ACSE for the 2-RDM was initially
challenging because the equation is dependent on both the 2-
RDM and three-electron RDM (3-RDM), making it
indeterminate without additional information. However, the
ACSE has been practically solved by reconstructing the 3-
RDM by its cumulant expansion as a functional of the 2-
RDM.4,5,7,8 While the ACSE does not strictly imply the CSE,9

the accuracy of its solution has been observed to approach that
of full configuration interaction in the absence of reconstruc-
tion approximations.4,10−12 The ACSE has been applied to
computing strongly correlated ground and excited states in
both chemical reactions and conical intersections.12−15

Recently, the ACSE has been solved on quantum devices
with applications to hydrogen chains, as well as the benzyne
isomers.10,16,17 On a quantum computer, the ACSE algorithm,
known as a contracted quantum eigensolver (CQE), iteratively

minimizes the residual of the ACSE, in contrast to the
variational quantum eigensolvers (VQE) that minimize the
energy, with respect to parameters according to the Rayleigh-
Ritz variational principle. Instead of propagating only the 2-
RDM as in the classical algorithm, we propagate a wave
function through state preparation on a quantum computer.
Thus, we avoid reconstructed RDMs, as the 2-RDM can be
directly measured from the quantum state while the ACSE
residual can be directly measured from an auxiliary quantum
state, or a measured 3-RDM. The resulting ACSE algorithm is
a potentially exact RDM approach that scales polynomially in
the size of the molecular system.
In this paper, we accelerate the convergence of the CQE for

the ACSE by developing quasi-second-order algorithms with
superlinear convergence. Convergence acceleration is impor-
tant for avoiding the accumulation of noise on near-term
intermediate-scale quantum (NISQ) computers, as well as
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achieving highly accurate solutions on future fault-tolerant
quantum devices. We draw upon research on optimization
algorithms on manifolds,18−20 which have applications across
science and engineering from vision to robotics, as well as
related algorithms in electronic structure for orbital opti-
mization.21,22 We specifically develop and implement a quasi-
Newton scheme with the Broyden−Fletcher−Goldfarb−
Shanno update and nonlinear conjugate gradient algorithms.
The quasi-second-order algorithms avoid storage of the
Hessian matrix while providing superlinear convergence. We
also demonstrate convergence properties as well as some
approximate implementations of the search direction and
finally compare the resulting CQE algorithms with classes of
common quantum algorithms, including the variational
quantum eigensolver.

II. THEORY
We discuss the solution of the ACSE via CQE in section II.A,
the local parametrization of the wave function in section II.B,
the quasi-second-order accelerations in section II.C, and
resource optimization in section II.D.

II.A. Solution of the ACSE. Given a molecular system with
Hamiltonian H , we can write a contraction of the Schrödinger
equation onto the two-particle space, known as the contracted
Schrödinger equation (CSE).1,3

Ha a a a E Di k l j jl
ik2| | =† †

(1)

The CSE can be split into a Hermitian and an anti-
Hermitian part, the latter of which is called the anti-Hermitian
CSE, or ACSE:4,5

H a a a a A, i k l j jl
ik2|[ ]| =† †

(2)

Here, A jl
ik2 is the residual of the ACSE, which is necessarily

zero when |Ψ⟩ is an eigenstate of the wave function. We can
also obtain the ACSE in eq 2 by considering unitary
transformations Pexp( ) generated by a parameter ϵ and a
two-body anti-Hermitian operator P:

P P a a a a
ij kl

kl
ij

i k j l
;

2= † †

(3)

The derivative of the energy, with respect to the elements of
the operator 2P, yields

E P
P

O H a a a a A
( )

( )
( ) ,

jl
ik i k l j jl

ik
2

2 2+ = |[ ]| =† †

(4)

which we observe is equal to the residual of the ACSE. In the
solution of the ACSE,5 the energy and 2-RDM can be
expressed as a system of differential equations, in terms of a
discretized, timelike parameter λ that controls the trans-
formation of the implicit wave function to minimize the
energy. As λ increases, we approach a solution of the ACSE.
On a quantum computer,10 we have a potentially exponential
advantage, in terms of simulating the exact 2-RDM (or 3-
RDM) and 2A matrices.

II.B. Local Parameterization of the Contracted
Quantum Eigensolver.We can describe the generic problem
in the variational quantum eigensolver23−26 for finding the
ground-state wave function of a quantum system as

U HUmin ( ) ( )0 0| |†
(5)

where represents a vector of ν real parameters and we
assume the wave function is properly normalized. Upon
convergence, the following equation is satisfied for all k,

U HU( ) ( ) 0
k

0 0| | =†

(6)

indicating that the gradient, with respect to all parameters,
vanishes. However, there can be significant problems
associated with describing the appropriate parametrization of
Ψ. The exact solution of the wave function scales
exponentially, which might imply that an exponential number
of parameters is necessary in a variational scheme. Using an
operator such as unitary coupled cluster provides an
exponential ansatz, but because the mapping from the
Euclidean space to the unitary space is nonlinear, there can
be singularities or unphysical minima in the parameter
space.18,27,28 In addition, it has been shown that high-
dimensional parametrizations in a random variational ansatz
generate barren plateaus where the variance in the energy
gradients vanishes as the system size increases.29,30 Because an
exponential scaling parametrization is not feasible for larger
systems, and limited excitation ansatz such as UCC singles and
doubles are not sufficiently accurate, a slew of iterative schemes
based on the VQE and UCC schemes that deviate from the
traditional CC formalism have been proposed, providing
scalable approaches that generally repeat or extend upon
certain ansatz fragments.31−33 One such approach is the
adaptive derivative assembled pseudotrotterized VQE method,
or ADAPT-VQE, which takes elements of the ACSE (or
generalized UCCSD) to generate an increasingly more-
complex variational problem.34

In the CQE approach, we instead forego the global
parametrization of the state and use an atlas of local
parametrizations,18 describing the trajectory of the state, with
the parameter space being dependent on the contracted
eigenvalue equation (which, here, is the ACSE). The term
“local” here refers to the fact that our parameters are describing
information solely in a small neighborhood around the state at
the current iteration and do not contain parameters from
previous iterations. Each local parametrization in the atlas is
concretely generated by the exponential transformation of a
two-body anti-Hermitian operator, providing a map between
the Euclidean parameter space and the space of unitary
transformations. Importantly, this compact mapping avoids
oddities or singularities that can arise from a nonlinear
mapping. Thus, the optimization is no longer defined by a fixed
reference set of parameters but rather by a local para-
metrization at each iteration n with the P of eq 3:

H Pmin e e
P

n
P P

n n
n

n n| | <
(7)

where μ denotes the dimension of the two-body operator
space, and the norm on Pn indicates that we are staying within
a neighborhood around the wave function (replacing the ϵ in
previous formulations). Our optimization is then satisfied if we
have a Ψn such that, for all two-body operators,
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which implies that we have fulfilled the ACSE. At each
iteration n, our current state is mapped to a new state through
the exponential mapping. On the classical computer, the wave
function is replaced by RDMs, and the transformation requires
an approximate reconstruction of the 3-RDM, in terms of the
2-RDM. On a quantum computer, the transformation can be
realized through standard means of exponential computations,
where we transform the Fermionic operator to the Pauli basis
and implement the exponential, in terms of elementary gates
through its trotterized form.
While it might be thought that the restriction of P to a set of

two-body operators is too restrictive, as clearly the two-body
operator space does not locally parametrize the unitary group,
the current approach iteratively constructs higher-order
excitations from the reference wave function5,9,35 (see section
II.E. of ref 5 for a discussion of the ACSE ansatz). As we
discuss in the next section, because the ACSE is solved
iteratively, we can construct quasi-second-order algorithms if
we choose each Pn in the ansatz by considering not only the
gradient of the current iteration but also the gradients of
previous iterations, which contain information about the
curvature.

II.C. Quasi-Second-Order CQE Algorithms. Previous
algorithms for solving the ACSE use path-following5 or
descent8 algorithms based on the gradient. While these
algorithms are robust to reconstruction errors, gradient-
descent algorithms are first-order algorithms with generally
linear convergence. To accelerate convergence, we can
consider choosing the search direction 2Pk by a second-order
approach such as the Newton−Raphson method:

P AHk k k
2 1 2= (9)

where Hk is the Hessian matrix. Within a certain region of the
state space, we are guaranteed quadratic convergence.36

However, the elements of the Hessian are evaluated according
to

H a a a a a a a a H

a a a a a a a a H
2

( , ,

, , )

n pq rs
ij kl

k i j k l p q r s k

k p q r s i j k l k

;
;

2
= |[ [ ]]|

+ |[ [ ]]|

† † † †

† † † †
(10)

which requires the 4-RDM or its approximation.
To address this issue, we consider the BFGS quasi-Newton

method, which uses the Broyden−Fletcher−Goldfarb−Shanno
(BFGS) update within Davidon’s method37,38 and is
summarized in Table 1. At each step of the BFGS method,
we update an approximate Hessian matrix through a secant
equation where the update is designed to keep the Hessian
positive definite. By including a direction based on the
approximate Hessian, the BFGS method achieves a superlinear
rate of convergence near the solution.
At any particular iteration, given a wave function |Ψn⟩, the

ACSE residual An, and the inverse of the approximate Hessian
Bn, we define the step direction as

P B A( )n
ij kl

pqrs
n pq rs

ij kl
n
pq rs2 ; 1

;
; 2 ;=

(11)

We next minimize the energy by a line search to obtain a
direction αn that satisfies the conditions of sufficient descent
and curvature (Wolfe conditions). In our local frame, we have
the following auxiliary BFGS functions: sn = Pn n and yn =
y A An n n1= + . Using these, we calculate Bn 1

1
+ , according to

the BFGS formula:
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(12)

We then increase n and continue until the gradient norm
∥2A∥ satisfies a convergence threshold. Step 4 in Table 1 can
be replaced with a suitable update replacement, and, in the
results, we demonstrate the use of a limited-memory BFGS
implementation, denoted l-BFGS.38

In practice, because of the symmetry of 2-RDM elements,
we can store the 2A matrix as a vector in a compact
representation, and then store the B−1 matrix exactly. For larger
systems, it is likely that even this would be prohibitive, and
instead the limited-memory approach would be necessary,
where we store only k previous steps, which is equivalent to k
2-RDMs. On a classical device, the algorithm would be very
similar, although instead of updating the wave function, we
would have a 2-RDM update step. Both the 2-RDM and 2A
updates would require the classical evaluation of the ACSE and
hence, a reconstructed 3-RDM.
On a quantum computer, we have significant advantages in

that we are not reconstructing the 3-RDM. This means that we
generate (up to statistical and noise-related errors) pure 2-
RDMs at each step, and we do not have to consider the N-
representability of the 2-RDM, or the step size in the solution
of the differential equations. An important note is that if we
want to evaluate the ACSE’s residual in the classical part of the
algorithm rather than in the quantum part by tomography of
an auxiliary state, we must be sure that the residual is
sufficiently accurate to estimate the curvature. While an
approximated 3-RDM can give good enough information to
obtain chemical accuracy in many instances, for rigorous
convergence, the cumulant portion of the 3-RDM should be
measured by tomography. Practically, this would entail
alternating evaluations of the 3-RDM (for the ACSE) and
the 2-RDM (for energy evaluations).
As an alternative to the quasi-Newton approaches, we can

instead use the nonlinear conjugate gradient (CG) ap-
proaches.38 The nonlinear CG method does not require the
storage of a Hessian or approximate Hessian, and instead
involves only a simple update step governing the contribution

Table 1. Quasi-Newton CQE Algorithm

Quasi-Newton CQE

Set 0 → n
Initialize |Ψ0⟩, 2A0, and B0
Continue until ∥2An∥ < δ:

Step 1: Update 2Pn = Bn
−1 2An

Step 2: minαdn
En(αnP̂)

◦ |Ψn+1⟩ = eαnP̂n|Ψn⟩
◦ sn = αn

2Pn

Step 3: Evaluate 2An+1

◦ yn = 2An+1 − 2An

Step 4: Calculate Bn+1
−1

Step 5: n + 1 → n
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of the previous search direction Pk . A description of the generic
CQE algorithm with a CG solver is described in Table 2.

There are numerous modifications to the conjugate gradient
method, which we do not explore here.39 Such modifications
include preconditioning schemes and modified update
coefficients, as well as additional criteria on resets and step
lengths.

II.D. Resource-Optimized CQE Search Directions. In
light of the current representation of the CQE algorithm, one
can see that the resources that are demanded on the quantum
computer will be heavily dependent on the selection and
implementation on the search direction, as each term must be
implemented individually. However, any modification to the
search direction will be detrimental to the rate of convergence
(and can potentially also negate the theoretical results). Thus,
we would like to find a tradeoff between potentially reducing
the number of terms and preserving a descent direction.38

Therefore, we focus on two approximations that still
preserve the essential nature of the ideal CQE approach: p-
depth and operator sparsification. First, we introduce a more
formal way of describing the ACSE ansatz at a given iteration

n. Let l
n( ){ } be an ordered set of anti-Hermitian two-body

operators:

a a a al
n

ijkl
l
n ij kl

i k l j
( ) ( ) ;

= † †

(13)

In the exact CQE approach, each iteration adds a new two-
body operator to the set, and these collectively are the stored
ansatz vectors. Using this, we can write the ACSE ansatz at the
Nth iteration as

en
l

m

0
l
n( )

| = |
(14)

where m is the total number of two-body exponential operators
we are implementing. We define the p-depth as follows. Given
a search direction Pn, we iterate over the elements Pn

ij kl; and the

set of operators l
n( ){ } from l = m − p to l = m. If an element

Pn
ij kl; was included in a previous operator, we update that two-
body operator as

Pn p
ijkl

n p
ijkl

n
ijkl+ (15)

From the definition, the element will only be in one of the p-
previous operators. If elements cannot be assigned to a
previous l

n( ), a new operator is appended. The ACSE only
provides information on the gradient around the exterior of the
wave function, and because, generally, each iteration does not
commute with previous iterations for p > 0, this can be
considered an approximate scheme of implementing the CQE.
As an example, if all terms are included in the initial , then we
have a single exponential form in the approximate linear
region, and any p-depth greater than 1 will be equivalent. Note
that such a case is similar to a generalized UCCSD ansatz with
different ordering under the first-order trotterization; however,
the method of updating does not reflect the true gradient terms
and, as such, provides an approximation of the operator in the
linear region.

Table 2. Conjugate Gradient CQE Algorithm

Conjugate Gradient CQE

Set 0 ← n
Initialize |Ψ0⟩, 2A0
While ∥2An∥ > δ:
Step 2: minαdn

En(αnP̂)

Step 3: Evaluate 2An+1

Step 4: Calculate βn+1

Step 5: 2Pn+1 = −2An+1 + βn+1
2Pn

Step 6: n + 1 → n

Figure 1. Comparison of methods for generating P at different H−H distances for linear H4. Near equilibrium, similar patterns can be seen, but
away from equilibrium, gradient-descent-based approaches slow down considerably. In particular, when optimizing the 1-d step size, according to a
quadratic fit, an oscillatory pattern can be seen in the norm of 2A, indicating a potential valley in a direction between the oscillating gradients. The
conjugate gradient approach allows for slightly more flexibility but exhibits stronger oscillations in the gradient. The quasi-Newton approaches offer
quick convergence across all regions of dissociation.
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The second approach is an operator sparsification scheme,
which effectively reduces the number of new terms appended
at each step. The method of ordering is of particular
importance, and we investigate two options. First, we can
sort the elements according to their absolute value, which is
important for implementation purposes (i.e., we can remove
the smallest elements first). Alternatively, we can sort elements
according to the energy contribution in the descent direction.
This value is obtained element-wise as the product A Pn

ij kl
n
ij kl; ; .

For gradient-descent approaches, these two criteria are
equivalent, and, in previous work, only the former approach
was used.
We can also control the number of terms that are removed

through a constant c ∈ [0, 1]. This is a constant scaling factor
where c = 1 (strict truncation) indicates only the largest term
in P is included and c = 0 (no truncation) indicates that all
terms in P are included. Another potentially useful control
instead of a constant scaling factor (which we do not explore
here) would be to limit explicitly the number of terms included
in each term. The last approximation is a boolean INCLUDE =
{True, False} option, whereby elements of the search direction
that would be assigned to the previous p-operators due to the
p-depth specified are included in the sparsification scheme.
The controls here can be likened to techniques used in
trotterization or compact forms of the two-body operator, with
a goal of efficiently implementing the two-body ansatz.40−42

They can be applied broadly to any optimizer instance, and
could have different effects with different optimizers.

III. APPLICATIONS AND RESULTS
In this section, we look at applications of the optimized CQE
scheme. First, we investigate the role of different optimizers.
Second, We present discuss schemes related to practical
implementations and modifications to the search direction.
Third, we show results for linear hydrogen chains and lithium
hydride with a CQE utilizing the unencoded ACSE, and finally,
we compare our results to variational quantum eigensolvers,
including the ADAPT-VQE algorithm.

III.A. Implementation of Optimized CQE. We begin by
comparing the exact (up to a first-order trotterization)
implementations of different methods for the H4 system at
different bond lengths, corresponding with differing degrees of
electron correlation. In this work, our convergence criteria is
typically taken to be the Frobenius norm of the 2A matrix. For
the conjugate gradient approach, we do not utilize any
preconditioning, and we use the update strategies of Fletcher
and Reeves.38 The limited BFGS strategy utilizes three
previously stored steps. Figure 1 displays our results. Further
computational details are included in the Appendix.
While for the bond distance near equilibrium D = 1 Å, the

different optimizers in the ACSE appear to have no apparent
advantage, the more correlated distances show strong
deviations between the different approaches. Particularly, in
the 1.5 Å case, the convergence flattens when gradient-descent-
based approaches are used. For the 2.0 Å case, this is
accentuated, as we appear to have entered a region where the
gradient is quite shallow. The quadratic step appears to be even
slightly worse in optimizing the norm of the 2A matrix than a
simple gradient descent. The conjugate gradient approach
appears to be better but shows strong oscillations in the
gradient norm (note if we loosen the update parameter, these
oscillations decrease, but we do not observe a significant

increase in convergence). The most successful approaches are
the quasi-Newton methods, which are able to achieve high
accuracy results in only a few iterations. The l-BFGS offers a
reliable approach as well, with a quality between the conjugate
gradient and full BFGS methods.
While this approach is the closest to the ideal implementa-

tion and offers some advantages for a classical quantum
simulation (i.e., similar to the classical ACSE, except instead of
the 2-RDM, we only need to store the state vector), for near-
term applications, there are several constraints. In a noiseless
regime (note that the importance of noise is also relevant, but,
since this also changes the optimization strategy, it is not
addressed directly here), addressing the compactness or
efficiency is an important problem. In particular, we would
however like to know if we can reduce the amount of terms
that are added at each iteration, using the ideas mentioned
above. These result in an appproximate search direction, which
we constrain to represent a descent direction.
We use the 1.5 Å case, which contains nontrivial electron

correlation and starts to differentiate between different
optimizers, to look at ways that we can modify the search
direction. Table 3 explores the number of iterations and
CNOT gate cost for a variety of options with the BFGS
optimizer. In particular, we examine the absolute norm or
energy contribution for the sparsity operator acting on the
search direction, as well as the inclusion or exclusion of terms
that appear in the p-depth addition scheme (specified by
include). For each of these criteria, we look at different p-
depths and values of the sparse scheme.
Many interesting trends emerge. First, there is a difference in

application of the sparsification operator acting on elements
according to their energy contribution or absolute value.
Namely, when using large c for the absolute value, problems in
the optimization can occur. These are instances where the
search direction has little overlap with the gradient, and the
largest term selected is ordered in such a way that it is not
strictly increasing. However, the descent condition is able to
converge across every configuration, albeit at different rates of
convergence. This also leads to a stratification in the rates of
convergence for the descent condition, which can be seen in
Figure 2. While the absolute value condition leads to
accelerated convergence in almost all instances, it does seem
more sensitive to using restricted operators. Of course, the
inclusion of previous terms does seem to alleviate this problem,
and because it seems to occur when the search direction is
nearly orthogonal to the gradient, resetting the optimization
might allow the optimization to continue. It is also possible
that the order of magnitude for the descent condition should
be lower than the absolute value condition, although this could
vary significantly based on the system.
Second, the INCLUDE option has a strong impact on the

rate of convergence. For both selection criteria, inclusion of
previous terms clearly helps in assisting the overall
convergence. As this can be considered as a way of increasing
the pool of operators at each step, depending on both c and the
p-depth, the advantage here makes sense. Third, the p-depth
appears to have a 2-fold role. More generally, it serves to
reduce the total number of terms needed in the ansatz. That is,
as the p-depth increases, the number of total terms in the
ansatz decreases. In addition, for a given c, we do see numerous
instances where the total number of iterations decreases as the
p-depth increases when INCLUDE = True. When INCLUDE
= False, the trends are somewhat unclear, and the optimization
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has a tendency to be more sensitive. Interestingly, for c = 0.5,
0.25, and 0.125, with INCLUDE = False, the total iterations
appear to increase as the p-depth increases, and then decrease.
More sparse (see c = 0.9, 0.5) truncations result in slower
convergence, which can be aided with the INCLUDE option,
but not completely mitigated.
While these results are obviously not generalizable to every

system, it is likely that some of these trends can be seen
elsewhere. We expect that the p-depth can lead to lower circuit
depths. In addition, while sparser operators are desirable from
a NISQ perspective, optimization, with respect to a single
parameter, is clearly detrimental to the rate of convergence.
This can be mitigated through expanding the pool directly with
more terms and the sparsification operator, or indirectly
through the p-depth.

III.B. Encoding-Free CQE. The encoding-free (or un-
encoded CQE) approaches for preparing states as an
alternative to Fermionic state preparation have recently been
explored,33,43−45 within the VQE framework as well as in
attempting to understand the success of heuristic and
nonfermionic ansatz preparation. Recent works by the present
authors showed that the Fermionic 2-RDM can be function-
alized from a qubit-particle wave function.46 As long as
Fermionic tomography is performed on a N-qubit particle
state, the 2-RDM represents a valid Fermionic 2-RDM. In
addition, in recent work, we introduce an encoding-free CQE
algorithm that evaluates the anti-Hermitian component of theT
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Figure 2. Low threshold (∥2A∥ = 10−5) results for varying values of
sparsity with different p-depths and acceptance criteria, utilizing the
BFGS optimizer for molecular H4 at the intermediate distance (D =
1.5 Å), with the descent condition. In the top two plots, we use
ACCEPT = True, where elements below the sparsity threshold are
automatically included if they are in included in one of the previous p-
terms. The bottom plot has ACCEPT = False. Only the first 125
iterations are shown.
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two-qubit-particle contraction onto the Schrödinger equation.
Table 4 displays calculations for several bond distances of H5
for both the encoded and unencoded CQE cases with the
BFGS algorithm as an example system.

The unencoded CQE under optimization matches the
Fermionic case in most instances, and it consistently has a
smaller average number of CNOT gates per iteration. For the
two longest separation lengths, the number of iterations
required does increase, leading to similar CNOT counts for the
total ansatz. A future goal would be to incorporate compilation
schemes or adjust the set of ACSE or unencoded ACSE
excitations to favor a largely commuting pool.

III.C. Comparison with VQE. Finally, we compare the
CQE approach utilizing a BFGS optimization with other
known quantum algorithms. While in previous work,16

similarities between iterative nature of the ACSE and
ADAPT-VQE were discussed, here, we provide example
calculations of VQE, ADAPT-VQE, and the ACSE that
demonstrate fundamental differences in these algorithms.
These are included in Figure 3, as well as in Table 5.
While the VQE results in Figure 3 are not that surprising,

based on the use of the unitary coupled cluster ansatz, we still
can see some interesting comparisons. For equilibrium
distances, UCCSD provides a good ansatz, and there are
numerous methods exploring the UCC ansatz.31,47 By
comparison, with ADAPT, we are able to obtain seemingly
arbitrary convergence, matching previous work. However, note
that the iterative cost of the ADAPT is much higher than either
VQE or the CQE. The CQE, on the other hand, performs
quite well in a variety of instances, with the most challenging
case being dissociated H6, where higher-order excitations
dominate and the system is strongly correlated. While the
number of macro iterations for the ADAPT procedure might
look only slightly worse than the CQE or VQE approaches,
when taken into account with the VQE cost, (i.e., micro +
macro iterations), the length of the ADAPT procedure is
somewhat unwieldy, due to the VQE subroutine. The total
number of gradient and residual evaluations for each of these
instances is seen in Table 5.
We can also look at qubit implementation of the ADAPT

scheme, which here follows the qubit-particle excitation-based
scheme of Yordanov et al.,45 and not the quasi-particle

approach taken by the original authors. We find a similar result
to previous work, presented in Figure 4. Namely, for stretched
LiH, conserving the particle number and projected spin leads
to similar qubit-based excitations. The main difference seen (as
a result of the relative scale mostly) in these results is for the
CNOT cost of the unencoded CQE approach, although a
similar decrease in the CNOT cost of the IQEB approach
exists as well. While the approaches appear to be inversely
related in the rate of convergence (through total iterations),
and the CNOT count (where the CQE schemes are more
costly), the number of parameter evaluations differs substan-
tially. While here we do not distinguish between the residuals
of the ACSE as parameters and the VQE parameters, since
these can be obtained many different ways (for instance, the
ACSE residuals can be taken from either the 2-RDM with a
quantum solver or the 3-RDM on the quantum computer, and

Table 4. Comparisons of Total Iterations, Total CNOT
Gate Count, and Average CNOT Gates Per Iteration for
Unencoded and Encoded CQE, Using the BFGS Optimizer
for H5 at Various Bond Distances from Equilibrium in the
Minimal STO Basisa

D − Deq
(Å)

iterations
(CQE,UCQE)

total CNOT × 104
(CQE,UCQE)

⟨CNOTk⟩ × 102
(CQE,UCQE)

−0.25 26, 33 1.7, 1.5 6.4, 4.5
+0.00 29, 36 2.1, 1.8 7.4, 5.0
+0.25 47, 49 3.8, 2.7 8.2, 5.5
+0.50 40, 34 4.3, 2.6 11, 7.8
+0.75 39, 28 5.7, 2.8 15, 9.9
+1.00 42, 43 6.9, 4.4 16, 10.
+1.25 47, 80 8.0, 7.4 17, 9.3

aThe accuracy of both approaches is largely similar across the
dissociation curve, although, for +1.00 and +1.25 distance separation,
the unencoded CQE requires more iterations.

Figure 3. Simulations of molecular H4 and H6 for separations of 1 Å,
and 2 Å utilizing the CQE, VQE, and ADAPT-VQE with a BFGS
optimizer. For H4 a minimal ansatz is reached in the ADAPT through
the VQE subroutine, and for H6 the CQE algorithm slightly
outperforms the ADAPT. VQE, here using the UCCSD anastz,
provides rapid convergence for near equilibrium states, but has
significant errors at larger separations, which are overcome by the
iterative ADAPT-VQE and CQE algorithms.

Table 5. Comparison of Gradient Element (VQE) and
Residual Element (ACSE) Evaluations for the CQE, VQE,
and ADAPT-VQE Methods, Corresponding to Simulations
for Molecular H4 and H6 at Separations of 1 and 2 Å

a

method quantity H4, 1 Å H4, 2 Å H6, 1 Å H6, 2 Å

CQE Iterations 13 25 46 60
Residuals 1950 3750 38640 50400

VQE Iterations 7 19 9 22
Gradients 182 494 1053 2574

ADAPT-VQE Macro 10 12 51 84
Micro 71 167 1221 5854
Gradients 362 1226 43112 354988
Residuals 660 792 16830 27720

aHere, note tha the ADAPT-VQE has a symmetry-adapted pool of
operators, which are not implemented here in the CQE or VQE
approaches. The VQE tolerance is also taken to be quite low, i.e., 10−3

in the norm of the parameter vector (whereas the VQE subroutine in
the ADAPT procedure is generally lower).
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numerous methods of measuring VQE gradients exist as well),
for larger system limits on the number of parameters should be
considered.
Despite achieving quicker convergence, from all of these

examples, we see that the main drawback to the CQE
algorithm is the iteratively increasing CNOT cost, which is due
to the use of additional gates at each step. While this should be
reasonable for high performing quantum devices, for near-term
devices, further reduction of the CNOT count is important.
However, the gain in performance we see by performing a
quasi-second order optimization in the local parameter space is
quite significant. In addition, when compared to CNOT gates
of the gradient-descent-based methods (as in Figure 1), the
optimized-ACSE allows for more flexibility in constructing the
compact ansatz.

IV. DISCUSSION
While generic algorithms have been known for approaching
the problem of quantum simulation for awhile, calculations
involving increasingly complex systems have only recently
begun to emerge. These require the advancement and
development of new quantum algorithms, similar to the past
century of classical quantum chemistry algorithms. The CQE
offers an approach that is potentially applicable in the near-
term, and provides a strong alternative to VQE.
The present work improves the convergence of the CQE

method for quantum simulation by introducing a quasi-second-
order, local parametrization of the state space. While existing
algorithms for solving the ACSE employ a local, first-order
parametrization in that the state is iteratively updated by a
series of gradient-based, unitary transformations,4,5,8 here we
present a local, quasi-second-order parametrization in which
the state is iteratively updated by a series of unitary
transformations that approximately incorporate energy-curva-
ture information. Generally, this allows for more rapid
convergence in the vicinity of the solution as well as more
flexibility in the construction of CQE algorithms. The current
work focusing on the BFGS optimizer37,38 is an example of
potential applications, and also is comparable to published
work with other methods, but other optimizers and techniques
can be readily implemented.
The largest limitation when translating this work to NISQ

devices is the presence of noise. Both sampling and device
errors can negatively impact the state. These are present as
errors in pure-state N-representability, since the state no longer
represents a pure quantum state, or in misapplications of the
target operator. Device errors are especially challenging since
they corrupt the gate sequences underlying quantum
simulation algorithms. Both additional sampling and noisy
optimization techniques can be employed to mitigate the
effects of noise. Because the CQE is iterative, it can also, in
principle, adjust for some errors generated by noise in future
iterations. Future work will further examine the effect of noise
in the CQE algorithms. As the fidelity of quantum devices
increases, the CQE will become more accurate and thereby,
more applicable to larger molecular systems.
From the discussion in section II.B, we can see that the

variational principle used in the VQE and in the current CQE
algorithm are similar in that they solve an optimization
problem, but differ in the goal of the minimization. In the
VQE, we are often trying to minimize the energy of a state
through a global parametrization of some wave function. In
addition, barren plateaus or regions where the optimization fail

become likely with an increasingly large parameter space and
hence, the suitability (i.e., over or under parametrization) of
the state is often in question. As an example, the UCCSD or
generalized UCCSD ansatz, which both have approximately
O(r4) parameters, are not sufficient to parametrize the state.
Iterative constructions of the ansatz, such as the iterative
generalized singles pair-cluster CC,31 or the ADAPT-VQE,
offer fewer parameters initially, but no bounds on the number
of required parameters. In the ACSE algorithm, the local
parametrization leads to a locally updated optimization, which
is constant, with respect to the number of parameters.
Importantly, in a VQE, the optimization converges toward a
solution of the VQE problem, which is not the ACSE. As the
VQE subproblem becomes larger and larger (i.e., in adaptive or
iterative schemes), eventually the VQE solution can (but by
design will not necessarily) satisfy the ACSE. In the CQE
approach presented here, we have convergence toward our
contracted eigenvalue problem, and not a variational subproblem.

From our calculations, we can also understand some
elements of the ADAPT-VQE algorithm, since it is related to
the CQE algorithm. The ADAPT-VQE method chooses the
largest ACSE residual at each macro iteration. This leads to a
flexible and efficient ansatz, that, when not restarted, will, by
construction, improve the energy in the VQE. However, the
reoptimized state is often not close to the previous state,
highlighting the strong variational nature of the ADAPT
algorithm. Restarting the VQE optimization, which has been
done in some ADAPT work, can lead to a suboptimal solution
of the ACSE, or for the VQE subroutine to fail. Recent work
by Liu et al.48 used a reconstructed 3-RDM in the ACSE to

Figure 4. Simulations of molecular lithium hydride at a separation of
2 Å utilizing CQE, VQE, Fermionic ADAPT-VQE and the iterative
qubit-excitation based ADAPT-VQE (IQEB), essentially a unencoded
APAPT-VQE algorithm. The upper-left shows the macro iterations of
each scheme, which are nearly identical for the encoded and
unencoded forms, and are only slightly slower for the ADAPT. The
upper-right shows the total iterations, including micro iterations in the
VQE procedure with a threshold of 10−3 in the parameter vector. The
lower-left compares the energy convergence with the ansatz cost,
showing that the ADAPT does produce a more compact
representation of the ansatz. The lower-right shows the number of
parameter evaluations (a lower bound on the number of gradients
evaluated at each optimizer step), which is linear scaling with the
ACSE procedure but for ADAPT becomes quadratic, with respect to
the number of iterations.
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obtain approximate residuals to seed the ADAPT algorithm.
Because these approximate gradients can differ in a substantial
way from the exact gradients, more terms are needed, which
significantly increases the variational flexibility of the ansatz. As
a result, these calculations exhibited faster convergence and
required fewer iterations than traditional ADAPT-VQE.
However, unlike Liu et al.,48 it is important not to use ACSE

residuals from reconstructed 3-RDMs in the CQE, because
these will likely lead to convergence issues. The 3-RDM can
still be directly obtained on a quantum computer through a
variety of techniques. Work involving qubit-particle approaches
also shows promise, with another advantage being the
increased number of commuting terms that exists between
qubit-particle excitations, as opposed to Fermionic-particle
excitations.
In terms of memory storage, the CQE primarily stores the

vectors of eq 13. The set of vectors is composed of l 2-
RDMs, or O(lr4) vectors at most, although, as seen in the
preceding discussion, each vector can be taken to be quite
sparse. The optimization occurs over the dimension of P,
which here is O(r4) and not unreasonable for highly accurate
electronic structure methods. This is equivalent to the number
of parameters in a UCC generalized singles and doubles
variational ansatz. However, the gradient evaluations in VQE
and the CQE are quite different. For the ACSE, the gradients
are evaluated at worst case using the O(r6) 3-RDM, and which
can be measured more efficiently through circuit tomography.
In contrast, VQE gradients scale with the number of
parameters and the energy evaluation, which, in some
instances, is O(r8). The ADAPT-VQE is difficult to analyze
in terms of the number of parameters required, but because
each iteration involves an evaluation of the entire pool (which
can range from a minimal set to an entire two-body pool), in
the standard Fermionic application the total number of
gradient evaluations are strictly worse than the CQE.
Another element that can be overlooked is that the ACSE is

not necessarily equivalent to the CSE, except when all higher-
order excitations are included. Despite this limitation, in the
exponential form of the ACSE, higher-order excitations can be
seen to emerge naturally through products of exponential two-
body operations. In addition, by considering information on
the curvature of the space beyond the gradient, we also should
include contributions from triple and higher excitations in our
selection of operators to propagate the wave function. In
practice, the use of the CQE for solving the ACSE leads to a
highly accurate solution.
The primary drawback of the CQE when compared to an

algorithm such as the ADAPT-VQE is the large number of
CNOT gates. Even with low-error CNOT gates, efficient and
noise-robust means of obtaining accurate gradients and 2-
RDMs will be necessary. All of these also affect the success or
failure of the underlying optimization algorithm, and so
exploring noise-tolerant approaches will also be critical for
near-term applications.

V. CONCLUSION
In this work, we address the convergence of the contracted
quantum eigensolver using tools from optimization theory. By
using methods beyond traditional gradient descent, we achieve
superlinear convergence, allowing us to propagate the wave
function rapidly toward a solution of the ACSE. Practical
implementations where the search direction is modified to

conserve quantum resources show promising reductions in the
cost of the algorithm, and we expect further simplification
schemes to be attempted aimed at improving the efficiency of
the CQE approach. In addition, the present work provides a
basis for understanding approaches that use the ACSE in pool
selection, and could lead to further hybrid optimization
schemes for use in NISQ applications.

■ APPENDIX A. COMPUTATIONAL DETAILS
All calculations were performed using the HQCA (v22.4)49 set of
tools, which utilizes QISKIT (v0.29.0)50 and PYSCF (v1.7.6)51 for
interfacing with quantum simulators and obtaining electron
integrals for circuit-based simulations. Each simulation utilizes
a minimal-basis Slater-type orbital representation (i.e., STO-
3G). The Jordan−Wigner (or qubit-particle) mapping was
utilized, with parity 2 symmetries removed for the majority of
examples. State vector or unitary simulations with no noise
were used for each run. The ADAPT-VQE results in Figure 3
were obtained using code from the respective publication,34

where analytical recursive solutions of the VQE gradients are
used. The threshold for the VQE subroutine in those instances
was 10−6. In the lithium hydride case, code from HQCA was
used. Parameters for the VQE optimization in the ADAPT-
VQE optimizations were not reset between runs�a single
parameter is essentially appended to the parameter vector.
The line-search implementation used in the BFGS, nonlinear

CG, and l-BFGS optimizations follows from the Nocedal
algorithms,38 which is present in the scipy implementation. For
some steps (notably the first few steps), often α0 = 1 is too
large, and α0 = 0.5 (or a quadratic step) is preferred. While a
dynamic step-size is not necessary for BFGS, after the first step,
we interpolate the α0 with a quadratic based on the current
energy, previous energy, and previous gradient information,
and then constrain α0 ∈ [0.5, 1], which we expect, in some
instances, leads to a more appropriate step size.
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