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The acute respiratory distress syndrome (ARDS) is one of the main causes of high mortality in patients with coronavirus
(COVID-19). In recent years, due to the coronavirus pandemic, the number of patients with ARDS has increased significantly.
Unfortunately, until now, there are no effective treatments for ARDS caused by COVID-19. Many drugs are either ineffective
or have a low effect. Currently, there have been reports of efficient use of mesenchymal stem cells (MSCs) for the treatment of
ARDS caused by COVID-19. We investigated the influence of freeze-dried human placenta-derived mesenchymal stem cells
(HPMSCs) in ARDS rat model. All animals have received intratracheal injection of 6mg/kg of lipopolysaccharide (LPS). The
rats were randomly divided into five groups: I: LPS, II: LPS+dexamethasone, III: LPS+HPMSCs, IV: HPMSC, and V: saline.
ARDS observation time was short-term and amounted to 168 hours. The study has shown that HPMSCs are able to migrate
and attach to damaged lung tissue, contributing to the resolution of pathology, restoration of function, and tissue repair in the
alveolar space. Studies have also shown that the administration of HPMSCs in animals with ARDS model significantly reduced
the levels of key cytokines such as IL-1β, IL-6, and TNF-α. Freeze-dried placental stem cell is a very promising biomaterial for
the treatment of ARDS. The human placenta can be easily obtained because it is considered as a medical waste. At the same
time, a huge number of MSCs can be obtained from the placental tissue, and there is no ethical controversy around their use.
The freeze-dried MSCs from human placental tissue can be stored sterile at room temperature for a long time before use.

1. Introduction

Acute respiratory distress syndrome (ARDS) can cause
severe lung damage. The overall mortality rate for patients
with ARDS is approximately 35-40% [1]. Unfortunately,
in recent years, due to coronavirus disease (COVID-19),
the number of patients with ARDS has increased dramat-
ically. The authors report that the mortality rate from
ARDS in COVID-19 patients on mechanical ventilation
ranges from 65.7% to 94% [2, 3]. The lack of a clear
understanding of the biology and pathophysiology of the
SARS-CoV-2 virus creates great problems in the search
for effective treatment [4, 5].

In recent years, scientists around the world have been
actively developing and researching for various potentially
effective drugs for the treatment of the COVID-19. However,
until this date, there is no antiviral treatment with confirmed
effectiveness for COVID-19 [6]. Many drugs are either inef-
fective or have low effect. Others, on the other hand, have
serious side effects.

Currently, interest is drawn towards the use of bone
marrow stem cells (BMSCs) for the treatment of ARDS in
COVID-19 patients. It has been reported that in animals
with an ARDS model, administration of mesenchymal stem
cells (MSCs) results in improved lung function [7]. It is
noted that intratracheal or intravenous administration of
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MSCs mitigates inflammation by reducing levels of interleu-
kin- (IL-) 1-α, IL-1β, IL-6, IL-8, IFN-γ, macrophage inflam-
matory protein- (MIP-) 1, MIP-2, and tumor necrosis
factor- (TNF-) α. At the same time, as noted by authors,
there was a simultaneous increase in the levels of IL-1 recep-
tor antagonist (IL-1RN), IL-10, prostaglandin E2 (PGE2),
lipoxin A4 (LXA4), and TNF-inducible gene- (TSG-) 6 [7].

The authors also reported that MSC transplantation in
ARDS can reduce the number of apoptotic cells in the lungs
and distal organs [8, 9] and protect alveolar macrophages
from apoptosis induced by endotoxins in part by inhibiting
the Wnt/β-catenin pathway [10]. Besides, MSC therapy
can reduce TNF-α level [11]. Besides, MSC therapy can
reduce TNF-α level [11]. It was found that cells represent
sources of paracrine factors [12, 13]. MSCs are also able to
secrete factors that enhance angiogenesis, for example, a fac-
tor that stimulates the colony of granulocytes, vascular endo-
thelial growth factor (VEGF), hepatocyte growth factor, IL-
6, chemotactic protein of monocytes-1, and TGFβ1. [14,
15]. Additionally, there are reports that MSC paracrine fac-
tors stimulate the regeneration of damaged tissues, angio-
genesis, and regulation of specific metabolic signaling
pathways [16, 17]. There are suggestions that MSCs are
capable of modulating macrophages, dendritic cells, neutro-
phils, natural killer cells, alveolar epithelial cells, and T and
B-lymphocytes [18].

We hypothesized that freeze-dried MSCs derived from
human placenta could be used to treat ARDS. We used
freeze-dried MSCs derived from human placenta for the
treatment of lipopolysaccharide-induced ARDS in rats.

2. Materials and Methods

2.1. Human Placenta Collection and HPMSC Isolation. Fol-
lowing written consent, placentas were collected from four
women donors immediately after elective caesarean section.
Table 1 shows maternal age, gestational age at delivery, fetal
and placental weights at delivery, fetal sex, and mode of
delivery.

The newly acquired placentas were washed with 0.9%
saline solution and transferred for processing to the labora-
tory within 10 minutes. To remove blood products, the pla-
centa was washed using a polyethylene catheter inserted into
the umbilical artery with 0.9% saline containing 100U/ml
penicillin and 100μg/ml streptomycin (Sigma-Aldrich). Per-
fusion was at a constant pressure of 5ml/min using a peri-
staltic pump (Thermo Fisher Scientific). Perfusion was at a
constant pressure of 5ml/min using a peristaltic pump
(Thermo Fisher Scientific). After perfusion and removal of
decidua and fetal membranes, approximately 30-50 g of pla-
cental tissue was minced and washed in physiological saline
(Oleg V Semenov et al.) [19]. Two protocols were used to
isolate human placental MSCs: in the first protocol, placental
mesenchymal stem cells were isolated by density gradient
centrifugation using Ficoll Paque Plus (GE Healthcare Bio-
Sciences, Pittsburgh, PA, USA) exactly as we described pre-
viously [13]. In the second protocol, the minced placental
tissue was incubated in 50mL 0.25% trypsin solution con-
taining 80U/mL DNase I for 1 h at 37°C. Cell suspensions

were filtered twice through 150μm cell strainers (BD, Frank-
lin Lakes, NJ, USA), and then, the cells were collected by
centrifugation at the rate of 100 g for 5 minutes followed
by washing with DMEM with 10% FBS two times. Before
lyophilization, human placental MSCs were cultured in a
culture medium (DMEM) and 20% fetal bovine serum
(FBS) as a basal medium with addition 100mg/mL strepto-
mycin and 100U/mL penicillin. The cells were cultured at
37°C in a 5% CO2 incubator and were identified based on
their phenotypic characterization, which was performed
after passage three. The placental stem cells were frozen
(-20оC) and then lyophilized with the lyophilizer (Heto-
Power Dry PL6000 freeze drier; Sjia Lab, Shenzhen, China).
First, the temperature of the lyophilizer shelf was set to
-32°C and the vacuum at 10Pa. The drying process lasted
for 16 h. Dried stem cells were stored under sterile condi-
tions at a room temperature until further use.

2.2. Flow Cytometry. To determine the expression of cell sur-
face markers, cells were incubated with MSC-specific mono-
clonal antibodies such as CD31, CD34, CD45, CD73, CD90,
CD105, CD133, and HLA-DR. All monoclonal antibodies
(Miltenyi Biotec, Germany) were assessed according to the
manufacturer’s instructions. Stained cells were resuspended
in PBS, analyzed using a FACS Calibur flow cytometer (Bec-
ton Dickinson). The calculated data were analyzed using the
Cell Quest Pro software provided by the manufacturer.

2.3. Labeling and Tracking of the HPMSCs. HPMSCs were
labeled with PKH67 Green fluorescent Cell Linker mini kit
(Lot # MKC H8480; Sigma-Aldrich, MO, USA) by following
the manufacturer’s protocol. Freeze-dried HPMSCs were
rehydrated in PBS and resuspended in Diluent C. Three
μL of PKH67 dye was added and incubated for 4min at
room temperature. Two milliliters of 1% BSA/PBS was
added to bind excess dye. Afterwards, PKH26-labeled cells
were centrifuged, lyophilized, and stored in sterile condi-
tions until use.

2.4. Animals and Experimental Design. A total of 100 male
outbred albino Wistar rats (aged 8 weeks, weighting
~250 g) were used for establishing a model of ARDS. The
animals were acquired from the vivarium of Tbilisi State
Medical University (Tbilisi, Georgia). The rats were main-
tained under controlled conditions at 24 ± 2°C using a 12h
light-dark cycle with provision of pelleted rodent diet and
water ad libitum. All animals received care according to
institutional guidelines.

We used LPS for creating a model of ARDS. Notably,
LPS is widely used for studying ARDS in animals [20, 21].

The rats were randomly divided into five groups. All
procedures were performed under anesthesia (70mg/kg
ketamine and 9mg/kg xylazine; Sigma-Aldrich). After anes-
thesia, a 20 Fr catheter has been introduced into the trachea
through the mouth in all animals, which then was connected
to the artificial lung ventilation device. After 3 minutes, the
device was turned off and LPS (from Escherichia coli K-
235, product number: L2018, Sigma-Aldrich) dissolved in
physiological solution was introduced through the catheter.
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Animals of the third group (n = 20), after LPS administra-
tion, were additionally HPMSC-labeled green fluorescent
PKH67 was introduced through the catheter. The animals
of the fourth group (n = 20) were intratracheally injected
with HPMSC-labeled green fluorescent PKH67. The animals
of the fifth (n = 20) group were intratracheally injected with
saline. Afterwards, the rats were mechanically ventilated for
5 minutes. After the restoration of normal respiration, the
animals were placed in a warm chamber for two hours and
only after that, the animals were placed in standard labora-
tory conditions. The animals of the first group were
observed without treatment. Animals of the second group
received dexamethasone, which was injected intraperitone-
ally with the dose of 2.5mg/kg. Injections were made daily
throughout the observation period.

The rats were euthanized at 12, 24, 48, 96, 120, and 168
hours, using a combination of intraperitoneal injection of
ketamine and xylazine, with subsequent laparotomy, aorta
rupture, and exsanguinations.

2.5. Determination of the Levels of Cytokines. The blood sam-
ples of each rat were collected by retroorbital puncture using
blood capillary tubes. Serum was obtained immediately by
centrifugation of blood samples at 3000 g for 10 minutes.
The expressions of IL-1β (IL-1 beta Rat ELISA Kit (Catalog
#BMS630TEN, Invitrogen), IL-6 (IL-6 Rat ELISA Kit (Cata-
log #BMS625, Invitrogen), and TNF-α (TNF alpha Rat
ELISA Kit, (Catalog #BMS622, Invitrogen) were analyzed
by enzyme-linked immunosorbent assay (ELISA) technique
(Invitrogen, Thermo Fisher Scientific) according to the man-
ufacturer’s instructions.

2.6. Wet-to-Dry Lung Weight Ratio. The wet-to-dry lung
weight (W/D) ratios were used as an indicator of liquid
accumulation in the lungs after the induction of LPS. The
right lung was weighed immediately after its removal and
afterwards, and it was dried for 5 minutes under the low
power microwaves (200W) to measure the dry weight. The
W/D ratio was calculated as follows: W/D = wet weight/dry
weight.

2.7. Histopathological Examination. For the histopatholo-
gical examination, after the extraction of the left lung, it
was immediately fixed in 10% neutral buffered formalin,
embedded in paraffin, and cut into 5μm thick slices. The

right lung was obtained to determine the wet-to-dry lung
weight ratio. The lung tissues were stained with hematoxylin
and eosin and Masson’s trichrome according to the manu-
facturers’ protocols. Immunostaining with anti-α-SMA anti-
bodies (Abcam) was performed with the Novolink DAB
Polymer Detection system (Leica Biosystems Newcastle
Ltd) according to the manufacturer’s recommendations.
Endogenous peroxidase activity was neutralized using the
Peroxidase Block reagent (hydrogen peroxide; Novolink
DAB Polymer Detection system; Leica Biosystems Newcastle
Ltd). Rabbit anti-mouse IgG was used as a secondary anti-
body (Novolink DAB Polymer Detection system).

2.8. Statistical Analysis. The GraphPad Prism 9.0 software
(GraphPad Software, Inc.) was used to process statistical
data. At each time point, the cytokine levels were estimated
and compared among the groups. To compare the differ-
ences across the multiple groups, Tukey’s post hoc tests
and one-way variance analysis were used. All experiments
were repeated at least three times. P < 0:05 was considered
to indicate a statistically significant difference.

3. Results and Discussion

Flow cytometry results showed that cell surface markers
such as CD73, CD90, and CD105 were highly expressed,
while CD31, CD34, HLA-DR, and CD45 showed low
expression, consistent with MSC profiles. We hypothesized
that cells isolated from placental tissue may have character-
istics of MSCs (Figure 1).

Intratracheal injection of LPS increased expression levels
of the proinflammatory cytokine. In animals of the first and
second groups, during the first three days, the levels of
inflammatory cytokines TNF-α, IL-1β, and IL-6 in the blood
serum were significantly increased and remained at the same
level during the entire period of observation of the animals.
The introduction of HPMSCs significantly limited the
increase of inflammation marker levels in the third group
(Figure 2).

At autopsy, the lungs of animals of the first (LPS) and
second (LPS+dexamethasone) groups were hyperemic and
edematous. Purple spots and hemorrhages were visible on
the surface of the lungs. The lungs of the animals of the third
group (LPS+HPMSCs) were slightly hyperemic. On the sur-
face of the lungs, purple spots and hemorrhages were not

Table 1: Maternal age, gestational age at delivery, fetal and placental weights at delivery, fetal sex, and mode of delivery.

Human
placentas

Maternal
age

Gestational age at
delivery

Fetal weight at delivery
(g)

Placental weight at delivery
(g)

Fetal sex
Mode of
delivery

1 28 y/o 38 weeks 3382 564 Feminine
Caesarean
section

2 32 y/o 40 weeks 3580 597 Feminine
Caesarean
section

3 35 y/o 39 weeks 3600 600 Feminine
Caesarean
section

4 41 y/o 40 weeks 3600 600 Masculine
Caesarean
section
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detected. The lungs of the animals of the fourth (HPMSCs)
and fifth (Saline) groups did not differ from the lungs of nor-
mal animals.

Compared to the animals of the second and third
groups, the W/D ratio was significant in the first group.
The only difference was that the W/D ratio has returned to
the initial level after 96 hours in the animals of the third
group.

At 48 hours, in the LPS and the LPS+dexamethasone
groups, structural damage, edema, and alveolar hemorrhage
were evident. H&E staining of the lung section also showed
alveoli filled with pink protein aceous material (Figures 3(a)
and 3(b)). The infiltration of lung tissue with inflammatory
cells was obvious (Figure 3(e)). A large number of neutro-
phils were noted in the alveolar space (Figure 3(f)). Struc-
tural damage in the LPS+HPMSC group was significantly
reduced. Only mild edema and infiltration of the lung tissue
with inflammatory cells can be seen (Figure 3(c)). In animals
of the fourth group, insignificant infiltration of lung tissue
with inflammatory cells was observed (Figure 3(d)). After
96 hours (LPS group and LPS+dexamethasone group), giant
cells (Figure 3(g)) and a large number of alveolar macro-
phages were noted in the alveolar space (Figure 3(h)).
Destruction of lung tissue was noted in the LPS group after
168 hours (Figure 3(i)). At the same time, thickening of
the alveolar septa was noted in the LPS+dexamethasone
group (Figure 3(j)). A mild thickening of the alveolar septum
was noted in the LPS+HPMSC group (Figure 3(k)). Oppo-
site, a solid structure, clear alveolar space without congestion
in the alveolar wall was displayed in the HPMSC group

(Figure 3(l)). A week after, in the LPS and LPS+dexametha-
sone groups, Masson’s trichrome staining showed the pres-
ence of fibrosis, which was expressed as an intense blue
staining of collagen fibers surrounding the vessels and bron-
chioles (Figure 4(a)). Blue coloration of collagen fibers was
also noted around the alveolar vessels and in the interstitium
(Figures 4(b) and 4(c)). This result was not observed in the
LPS+HPMSC group (Figure 4(d)). After 24 hours, fluores-
cent PKH26-labeled HPMSCs were present on the lung tis-
sue sections (Figures 4(e) and 4(f)). HPMSCs labeled with
PKH26 were also detected after 48 hours; however, after 96
hours, the amount of HPMSCs labeled with PKH26 fluores-
cent dye was significantly reduced (Figures 4(g) and 4(h)). In
the LPS and LPS+dexamethasone groups, α-SMA-positive
cells appeared in the area of fibrotic lesions 96 hours after
modeling (Figures 4(i)–4(k)). In the LPS+HPMSC group,
at the same time, a very weak α-SMA immunostaining signal
was observed (Figure 4(l)).

In this study, we investigated the efficiency of freeze-
dried human placental mesenchymal stem cells in an LPS-
induced ARDS rat model. Despite decades of research, the
prospects for effective treatment for ARDS remain bleak. A
particularly difficult situation has developed in the treatment
of COVID-19 patients. As reported by many authors, clini-
cal trials using corticosteroids, prostaglandins, nitric oxide,
prostacyclin, surfactant, lysophylline, ketoconazole, and N-
acetylcysteine failed to show a statistically significant
improvement in patient mortality [22]. Surfactant therapy
is not always effective. A Cochrane review does not recom-
mend its use in adults [23]. The use of corticosteroids for
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Figure 1: Immunophenotypic analysis of HPMSCs. (a) After isolation of human placental stem cells, immunophenotypical analysis was
conducted with flow cytometry; (b) freeze-dried HPMSCs with stereoscopic microscopy (×20); (c) freeze-dried HPMSCs after
rehydration with stereoscopic microscopy (×12); (d) Giemsa stain (×1000) of freeze-dried HPMSCs after rehydration.
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ARDS is controversial [24]. Currently, various drugs are
being actively developed for the effective treatment of ARDS
caused by COVID-19 virus, including antiviral drugs (lopi-
navir, remdesivir, favipiravir, etc.), antiparasitic drugs
(hydroxychloroquine, nitazoxanide, etc.), and corticoste-

roids, monoclonal antibodies (lenzilumab, etc.) as well as
transfusion of convalescent plasma.

Most of these drugs have shown clear improvements in
animal survival in preclinical studies but have failed to show
similar results in humans [22, 25]. Currently, cell therapy is
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Figure 2: HPMSCs and analysis of cytokine levels after modeling and treatment of ARDS. Analysis of cytokine levels. Intratracheal injection
of LPS increased expression levels the proinflammatory cytokine. In animals of the first and second groups, during the first three days, the
levels of inflammatory cytokines TNF-α, IL-1β, and IL-6 in the blood serum were significantly increased and remained at the same level
during the entire observation period. The introduction of HPMSCs significantly limited the increase of inflammation marker levels in the
third group (∗∗∗∗P < 0:0001).
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Figure 3: Continued.
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considered a promising treatment strategy for ARDS. Pre-
clinical studies in animals with induced lung injury have
shown that administration of MSCs can reduce inflamma-
tion and limit lung damage and significantly reduce mortal-
ity [26, 27]. There are reports that intrapulmonary delivery
of bone marrow mesenchymal stem cells increases survival
in mice with an acute lung injury model [28]. MSCs with
antimicrobial activity can be effectively used in the treatment
of pulmonary infections [29]. The authors note that MSCs
secrete the antimicrobial peptide LL-37, exerting an antimi-
crobial effect and stimulating bacterial clearance [30, 31].

There is an interesting report on the effectiveness of
MSCs in the treatment of sepsis-induced ARDS. As it is
known, sepsis is a complex clinical syndrome with physio-
logical, biological, and biochemical abnormalities [32]. The
lungs are reported to be the most sepsis-prone organ in
which damage to alveolar type II epithelial cells and capillary
endothelial cell (EC) can cause ARDS [33, 34]. In this study,
the authors examined the molecular defense mechanisms
provided by MSCs in sepsis. They identified three general
effects of MSC administration: (a) weakening of sepsis-
induced functional impairment of mitochondria, (b) sup-
pression of proinflammatory transcriptional responses of
endotoxin/toll-like innate immunity receptor and proin-
flammatory transcriptional responses, and (c) coordinated
expression of transcriptional programs involved in main-
taining the integrity of the vascular endothelium [35]. To
date, preclinical and clinical studies have confirmed the ther-
apeutic effect of MSCs in ARDS, including those caused by
the COVID-19 virus [36–43].

It is important to note that the anti-inflammatory effects
of MSCs are mainly explained by paracrine mechanisms,
since, as the authors have reported, after MSC therapy, few
or no transplanted donor stem cells are localized in the
host’s lung tissue [44].

Moreover, MSCs protect the endothelial barrier complex
and survival involved in the pathogenesis of acute lung injury
(ALI) via paracrine hepatocyte growth factor (HGF). As
reported by the authors, the activation of the mTOR/STAT-3

pathway provides novel mechanistic insights into MSC-
secreted HGF protection against LPS-induced vascular endo-
thelial permeability dysfunction and apoptosis, which contrib-
utes to decreasing microvascular loss and lung injury [45, 46].

We hypothesized that freeze-dried HPMSCs could be
used to treat ARDS especially in COVID-19 patients. For
determining the effectiveness of freeze-dried HPMSCs, we
created an ARDS model in rats using LPS. It is accepted that
an ideal animal model of ARDS must match the characteris-
tics of human ARDS that include rapid onset, development
of physiological dysfunction, and damage to the lung paren-
chyma; however, as the authors note, not all animal models
are likely to have all major features of ARDS observed in
humans [47]. It is reported that the most practical and
invariable small animal model of lung injury is acquired
through the administration of LPS [48].

In this article, we will not describe the advantages and
disadvantages of the LPS model in animals. Many authors
[49, 50] have already described them. We are only underlin-
ing the fact that after intratracheal administration of LPS,
the ARDS was evident in all animal groups, which was char-
acterized by a rapid onset and lung damage.

At autopsy, the lungs of animals were hyperemic and
edematous. Purple spots and hemorrhages were visible on
the surface of the lungs. After the ARDS modeling, the histo-
logical examinations have shown the thickening of interalveo-
lar septa, edema, and extensive infiltration of inflammatory
cells. With the Masson’s trichrome staining, deposition of col-
lagen was noted in the wall of the bronchi and interstitium.
Immunohistochemical methods of studying animals showed
extensive expression of actin-positive cells in the wall of the
bronchioles and adjacent blood vessels. Thus, we confirm that
the most practical small animal model of lung injury is
acquired through the administration of LPS.

Our attention was drawn to the placenta, which until this
date still is considered as the mysterious “least understood
organ” [51, 52]. In ancient times, the placenta was consid-
ered animistic, possessing mind or spirit. [53]. For decades,
clinicians have been using placental tissue fragments,

(k) (l)

Figure 3: Histological changes in lung tissue after ARDS modeling and treatment. (a) LPS and the (b) LPS+dexamethasone groups.
Structural lung damage, edema, alveolar hemorrhage, and (e) inflammatory cell infiltration. H&E staining ×200. Observation period 48
hours; (c) LPS+HPMSC and (d) HPMSC groups. The mild edema and infiltration of the lung tissue with inflammatory cells.
Observation period 48 hours. H&E staining ×200; (f) LPS and the LPS+dexamethasone groups. Neutrophils (red arrows), (g) giant cells
(green arrows), and (h) a large number of alveolar macrophages were noted in the alveolar space. Observation period 96 hours. H&E
staining ×800; (i) LPS group. Destruction of lung tissue. H&E staining ×200. (j) LPS+dexamethasone group. Thickening of the alveolar
septa. H&E staining ×400; (k) LPS+HPMSC group. A slight thickening of the alveolar septum. H&E staining ×200; (l) the HPMSC
group. A solid structure, clear alveolar space without congestion in the alveolar wall. H&E staining ×200. Observation period one week.
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Figure 4: Continued.
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amniotic and chorionic membranes, umbilical cord, placen-
tal extracts, and lyophilisates.

Placenta offers a rich source of stem cells that include tro-
phoblastic, haematopoietic, epithelial, and MSCs [54, 55].
According to the reports, amniotic epithelium cells from term
placenta express several stem cell surface markers that are
commonly found on pluripotent stem cells such as embryonic
stem cells [56]. There are reports that stem cells have been
found in the amniotic fluid and placenta, which sustained
long-term undifferentiated proliferation and differentiated
into several tissue types spanning the three germ layers [57].

There are examples effective application of placenta tis-
sue in abdominal and pelvic surgeries [58, 59], cardiac sur-
gery [60, 61], for wound healing [62, 63], for treatment of
acute chemical or thermal burns [64], in ophthalmology,
for ocular surface reconstruction, including the treatment
of persistent epithelial defects and nonhealing corneal ulcers
[65], and etc.

Our interest was aroused by articles related to the use
of placental tissue for abrogates lung fibrosis. The authors
also note that human amnion epithelial cell administration
reduces inflammation in association with decreased mono-
cyte chemoattractant protein-1, tumor necrosis factor-
alpha, IL-1 and IL-6, and profibrotic transforming growth
factor-beta in the lungs of mice. The authors noted that
the lung collagen content was significantly reduced by
hAEC treatment as a possible consequence of increased
degradation by matrix metalloproteinase-2 and downregu-
lation of the tissue inhibitors of matrix metalloproteinase-1
and 2 [66]. Similar studies have been demonstrated by
other authors stating that human amnion epithelial cells
prevent bleomycin-induced lung injury and preserve lung
function [67, 68].

The authors report that under standard cryopreserva-
tion procedures, cell recovery rates vary from 87.67% to
94.76% [69, 70]. According to the studies, without
addition of protectors, lyophilization ensures up to 70%
viability of MSCs [71, 72].

In our studies, the percentage of viable fresh cells before
the procedure was 92%, after cryopreservation and thawing,
the percentage of viable cells was 82%, and the viability of
cells after freeze-drying and rehydration was 53%. Cell via-
bility was determined by trypan blue and standard light
microscopy. Freeze-drying of MSCs of the placenta was per-
formed without the addition of protectors.

It should be noted that for many years, various methods
have been developed that increase the resistance of cells to
desiccation. It is known that the presence of trehalose on
both sides of the cell membrane increases the resistance of
mammalian cells to desiccation. However, trehalose is
impermeable to the cell membrane, which significantly
limits the possibilities of its application. To solve this prob-
lem, the authors have used a high-capacity trehalose trans-
porter (TRET1) from the African chironomid Polypedilum
vanderplanki to introduce trehalose into the cytoplasm of
mammalian cells [73]. The authors note that after desicca-
tion to 2.60 g of water per gram dry weight, in comparison
with the control CHO cells, a 170% increase in viability
and a 400% increase in growth (after 7 days) was observed
for CHO-TRET1. However, the problem of creating effective
protectors for adequate protection of intracellular compo-
nents and the cell membrane of MSCs during drying still
remains. Based on the abovementioned, our main focus
was on the growth factors that are present in lyophilized pla-
cental MSCs and their role in stimulating the regeneration of
damaged lungs.

Our data confirms the ability of HPMSCs to migrate
and attach to damaged lung tissue, contributing to the res-
olution of pathology, restoration of function, and tissue
repair in the alveolar space. These HPMSC effects appear
to be mediated by paracrine factors, although, after 96
hours, the amount of HPMSCs labeled with PKH26
fluorescent dye was significantly reduced. Other authors
have also reported that the anti-inflammatory effects of
MSCs have been mostly attributed to paracrine/endocrine
mechanisms [7].

(k) (l)

Figure 4: Masson’s trichrome staining, immunohistochemistry, and the fluorescence microscopy of the lung section after ARDS modeling
and treatment. (a, b) LPS and LPS+dexamethasone groups. The intense blue staining of collagen fibers surrounding the bronchi and alveolar
vessels. (c) Blue staining of collagen fibers in the lung interstitium. Masson’s trichrome staining ×800. (d) LPS+HPMSC group. Slight blue
coloration of collagen fibers around the vessels. Masson’s trichrome staining ×200/800. Observation period one week. (e–h) LPS+HPMSC
group. HPMSCSs labeled with the PKH26 fluorescent dye on the sections of lung tissue. (e) At 24 hours after their intratracheal injection;
H&E staining ×800. (f) Fluorescence microscopy; observation period 24 hours. Magnification ×800; (g, h) Fluorescence microscopy.
Observation period 96 hours. Magnification ×800; (i, j) LPS group. α-SMA-positive cells appeared in the area of fibrotic lesions.
Magnification ×400/800 (dark brown staining); (k) LPS+dexamethasone group. Intensive staining of α-SMA-positive cells. Magnification
×400; (l) LPS+HPMSC group. Weak α-SMA immunostaining signal. Magnification ×400. Observation period one week.
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It is reported that after lyophilization BMSC is observed
to retain >80% of paracrine factors, including VEGF-1,
insulin-like growth factor 1, EGF, hepatocyte growth factor,
keratinocyte growth factor, angiopoietin 1, factor-1 derived
from stromal cells, chemoattractant protein of monocyte-1,
and erythropoietin [74, 75]. It is also reported that resolution
of ARDS can be improved by the release of several paracrine
factors produced by MSCs, which restore lung function [76].

Our earlier studies have shown that the decellularized and
lyophilized human placenta tissue contains numerous growth
factors such as EGF, bFGF, KGF, VEGF, TGF-a, TGF-b,
PDGF, HGF, and NGF [13]. Thus, based on our own research
and analysis of the literature, we can assume that freeze-dried
stem cells of the human placenta, as well as decellularized tis-
sue of the human placenta, have antimicrobial, anti-inflamma-
tory, and immunomodulatory properties [77–80].

The results of our research have demonstrated that in
comparison with the animals that received no treatment or
received only dexamethasone, the administration of
HPMSCs in the animals with ARDS model significantly
reduced the levels of key cytokines such as IL-1β, IL-6, and
TNF-α. Our results are consistent with those of other
authors who report that MSCs decrease the expression of
several proinflammatory cytokines such as TNF-α, IL-1β,
IL-6, and IFN-γ and increase anti-inflammatory cytokines
such as IL-4 and IL-10 [81].

The role of the cytokine storm in the development of
ARDS in COVID-19 patients is being actively discussed in
the literature [82]. Cytokine storms can occur with viral
infections such as H1N1 influenza, H5N1 influenza [83,
84], and SARS-CoV-2 [85]. As reported by many authors,
the inflammatory process caused by viral infection induces
the stimulation of proinflammatory cytokines such as IL-
1β, IL-2, IL-6, IL-7, IL-8, IL-10, IFN-γ, and TNF-α [86, 87].

The prognosis of COVID-19 may worsen significantly
due to overproduction of mainly proinflammatory cytokines
such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, which mainly
target the lung tissue [88]. The role of multiple immunolog-
ical processes that engage neutrophils, macrophages, and
dendritic cells involved in lung tissue damage in ARDS
should also be noted [89].

Based on this, result can be said that HPMSCs are safe
and effective for ARDS treatment. However, we believe that
for the successful use of HPMSCs in clinical practice, it is
necessary to understand better their role in the mechanism
of repair of the lung damaged.

4. Conclusion

Our research confirms that HPMSCs have ability to migrate
and attach to damaged lung tissue, contributing to the reso-
lution of pathology, restoration of function, and tissue repair
in the alveolar space. Freeze-dried placental stem cell is a
very promising biomaterial that it can be used for the treat-
ment of ARDS, especially for cases caused by COVID-19.
The human placenta can be obtained because it is consid-
ered as a medical waste. At the same time, a huge number
of MSCs can be obtained from the placental tissue, and there
is no ethical controversy regarding its use. The freeze-dried

MSCs from human placental tissue can be stored in sterile
conditions at a room temperature for a long time until use.
However, in order to use HPMSCs successfully, it is first
necessary to understand the mechanism of damaged lung
repair in ARDS using HPMSC paracrine factors. It is also
necessary to resolve issues such as optimal timing and dura-
tion of administration, dose, and optimal delivery route.
This requires more extensive and thorough research.
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