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Başkent University, Turkey

Reviewed by:
Hou Yuzhu,

The College, University of Chicago,
United States
Haitao Wang,

Nankai University, China

*Correspondence:
Li Wang

liwangls@yahoo.com

Specialty section:
This article was submitted to

Cell Death and Survival,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 26 March 2021
Accepted: 23 August 2021

Published: 09 September 2021

Citation:
Liang S, Zhou X, Cai D,

Rodrigues-Lima F, Chi J and Wang L
(2021) Network Pharmacology

and Experimental Validation Reveal
the Effects of Chidamide Combined

With Aspirin on Acute Myeloid
Leukemia-Myelodysplastic Syndrome

Cells Through PI3K/AKT Pathway.
Front. Cell Dev. Biol. 9:685954.
doi: 10.3389/fcell.2021.685954

Network Pharmacology and
Experimental Validation Reveal the
Effects of Chidamide Combined With
Aspirin on Acute Myeloid
Leukemia-Myelodysplastic
Syndrome Cells Through PI3K/AKT
Pathway
Simin Liang1, Xiaojia Zhou2, Duo Cai1, Fernando Rodrigues-Lima3, Jianxiang Chi4 and
Li Wang1*

1 Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2 Department
of Hematology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China, 3 Université de Paris, Unité
de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France, 4 Center for the Study of Hematological
Malignancies, Karaiskakio Foundation, Nicosia, Cyprus

Chidamide (CDM), a novel histone deacetylase inhibitor, is currently used for patients
with peripheral T-cell lymphoma. Aspirin (ASA), an anti-inflammatory drug, has been
shown to exert anticancer activity. Herein, we investigated the effect of CDM combined
with ASA on myelodysplastic syndromes-derived acute myeloid leukemia (AML-MDS)
cells and explored the underlying mechanism. The putative targets of CDM and
ASA were predicted by network pharmacology approach. GO functional and KEGG
pathway enrichment analyses were performed by DAVID. Furthermore, experimental
validation was conducted by Cell Counting Kit-8 assay, Flow cytometry and Western
blotting. Network pharmacology analysis revealed 36 AML-MDS-related overlapping
genes that were targets of CDM and ASA, while 10 hub genes were identified by
the plug-in cytoHubba in Cytoscape. Pathway enrichment analysis indicated CDM
and ASA significantly affected PI3K/AKT signaling pathway. Functional experiments
demonstrated that the combination of CDM and ASA had a remarkable synergistic
anti-proliferative effect by blocking the cell cycle in G0/G1 phase and inducing
apoptosis. Mechanistically, the combination treatment significantly down-regulated the
phosphorylation levels of PI3K and AKT. In addition, insulin-like growth factor 1 (IGF-1),
an activator of PI3K/AKT pathway, reversed the effects of the combination treatment.
Our findings suggested that CDM combined with ASA exerted a synergetic inhibitory
effect on cell growth by inactivating PI3K/AKT pathway, which might pave the way for
effective treatments of AML-MDS.
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INTRODUCTION

Myelodysplastic syndromes (MDS) are a heterogeneous group
of myeloid disorders characterized by ineffective hematopoiesis,
peripheral blood cytopenia and high risk of transformation to
acute myeloid leukemia (AML) with poor prognosis (Cogle
et al., 2011; Scalzulli et al., 2020). MDS-derived AML (AML-
MDS) shows slower hematologic recovery and poorer outcomes
following intensive remission-induction chemotherapy than
de novo AML (Boddu et al., 2017; Ramadan et al., 2020).
Additionally, allogeneic stem cell transplantation (alloSCT)
remains the only curative option for patients with AML-MDS.
But unfortunately, it is only suitable for a minority (Schroeder
et al., 2019). Therefore, a novel effective treatment strategy with
minimal cytotoxicity still needs to be developed for AML-MDS.

Chidamide (CDM), a novel histone deacetylase inhibitor,
selectively inhibits HDAC1, 2, 3, and 10, and has been approved
for treatment of patients with recurrent or refractory peripheral
T cell lymphoma (PTCL) in China (Shi et al., 2015; Lu et al.,
2016). Strikingly, a number of studies have suggested that CDM
exerts cytotoxic effects on lymphoma (Zhou et al., 2018), multiple
myeloma (MM) (Sun et al., 2019), MDS (Liu et al., 2016),
and leukemia (Li et al., 2015), as well as non-hematological
malignancies, including lung cancer (Wu et al., 2019), colon
cancer (Liu et al., 2010) and hepatocellular carcinoma (Wang
et al., 2012). Moreover, CDM has been shown to synergize
effects with other anti-tumor agents. For example, several
studies have showed that CDM combined with hypomethylating
agents, including decitabine, resulted in synergistic effects on the
proliferation and apoptosis of myeloid leukemia cells (Xu et al.,
2019; Li et al., 2020). Co-treatment with CDM and Bortezomib
reduced proliferation, invasion and migration of gastric cancer
cells (Zhang et al., 2020). Co-treatment with CDM and Rituximab
inhibited tumor growth by upregulating CD20 in diffuse large
B-cell lymphoma (DLBCL) (Guan et al., 2020).

Aspirin (acetylsalicylic acid, ASA) has been widely used as an
anti-inflammatory, analgesic drug, as well as in cardiovascular
disease and platelet aggregation. ASA can reduce the morbidity
and mortality of several malignancies, including gastric cancer
(García Rodríguez et al., 2020), lung cancer (Erickson et al.,
2018) and prostate cancer (Hurwitz et al., 2019). Recent studies
revealed that ASA combined with other drugs, such as sorafenib
and atorvastatin, exhibited strong anti-cancer effects in vitro
and in vivo (Pennarun et al., 2013; He et al., 2017). In
addition, since ASA could affect histone methylation, we aimed
to investigate the potential effects and mechanisms of CDM
combined with ASA on AML-MDS.

Recently, network pharmacology has been used to predict
the therapeutic targets and efficacy of drugs by constructing
drug-drug, drug-target and other networks, using a variety of
database resources. Through preliminary experiment, we found
that CDM and ASA had synergistic inhibitory effect on cell
growth in leukemia cells. In this study, we aimed to investigate
the anti-tumor activity of CDM combined with ASA in AML-
MDS, explore underlying mechanisms by predicting related
targets through the network pharmacology approach, so as to
provide theoretical and experimental basis for the treatment of

AML-MDS. The flowchart of this study design was presented
in Figure 1.

MATERIALS AND METHODS

Target Prediction Based on Network
Pharmacology
SwissTargetPrediction1 and PharmMapper2 were used to
establish the targets of CDM and ASA. Genomic targets of
MDS, AML and AML-MDS were obtained from GeneCards3

and overlapping genes were collected. Subsequently, CDM-
and ASA-associated targets were mapped to these overlapping
disease-targets, followed by therapeutic targets of CDM and ASA
against AML-MDS were obtained. The STRING database4 was
used to obtain interactions among potential targets of CDM,
ASA and the aforementioned diseases. Protein interactions with
a combined score > 0.4 were selected. Cytoscape 3.2.1 was used
to construct and analyze the protein-protein interaction (PPI)
network. DAVID database5 was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses.

Reagents and Antibodies
CDM (CS055, purity > 95%) was supplied by Chipscreen
Biosciences (Shenzhen, China), while ASA was obtained from
Maclin (A800349, Shanghai, China). IGF-1 was purchased from
MedChemExpress (MCE, Shanghai, China). The following
primary antibodies were used: rabbit anti-Bcl-2 (YT0470),
cleaved Caspase-3 (YC0006) from ImmunoWay (Texas,
United States). PI3K (bsm-33219M), p-PI3K (AB1235888),
and Caspase-3 (bs-0081R) from Bioss (Beijing, China). AKT
(4691T), p-AKT (4060T), p21CIP1 (2947T) from Cell Signaling
Technology (Danvers, United States). CDK2 (H08211543)
and CDK4 (H10082274) from Wanleibio (Shenyang, China).
Mouse anti-β-actin (KM9001) from Sungene (Tianjin, China).
Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
(A0239) and anti-mouse IgG (A0258) were purchased from
Beyotime Biotechnology (Shanghai, China).

Cell Lines and Cell Culture
The human AML-MDS cell line, SKM-1, was a gift from Professor
Jianfeng Zhou working in Tongji Medical College of Huazhong
University of Science and Technology (Wuhan, China), while
the T cell acute lymphoblastic leukemia (T-ALL) cell line Molt-4
was provided by the Children’s Hospital of Chongqing Medical
University (Chongqing, China). The cells were maintained in
RPMI-1640 (Gibco, Thermo Fisher Scientific, MA, United States)
supplemented with 10% fetal bovine serum (PAN seratech,
Germany) and 100 U/ml penicillin and 100 µg/ml streptomycin
(1× P/S).

1http://swisstargetprediction.ch/
2http://www.lilab-ecust.cn/pharmmapper/index.html
3https://www.genecards.org/
4http://string-db.org/
5http://David.ncifcrf.gov/
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FIGURE 1 | Flowchart of the study design based on network pharmacology
approaches for deciphering the mechanisms of CDM and ASA acting on
AML-MDS. CDM, Chidamide; ASA, Aspirin; MDS, myelodysplastic syndrome;
AML, acute myeloid leukemia; AML-MDS, myelodysplastic
syndromes-derived acute myeloid leukemia.

Cell Viability Assay
Cells in the logarithmic growth phase were seeded at a density of
1,500 cells/well and cultured overnight. Drugs were administered
at 0.1 µL per well. After a 72-h incubation, cell viability was
measured using Cell Titer-Glo luminescent cell viability assay
kit (Promega, Madison, United States) and luminescence was
quantified using Envision Plate-Reader.

Cell viability was also measured by Cell Counting kit-8 (CCK-
8) assay (MCE, Shanghai, China). Briefly, cells were seeded at
3,000 cells/100 µL and treated with different concentrations of
CDM and ASA for 24, 48, and 72 h. CCK-8 reagent was added and
incubated for 3 h. The absorbance at 450 nm was measured using
a Multiskan Go Microplate Spectrophotometer (Thermo Fisher
Scientific, United States). Cell proliferation inhibition rate was
calculated based on the formula: absorbance of (control group
− experimental group)/absorbance of (control group – blank
group)× 100%.

Cell Cycle and Cell Apoptosis
CDM, at a concentration of 0.5 µM, or ASA, at a concentration
of 1 mM, was added to 1 million cells for 48 h. For cell cycle
analysis, cells were fixed with ice-cold 75% ethanol overnight
at 4◦C and then incubated with 50 mg/ml of propidium iodide
(PI) for 30 min at room temperature. For apoptosis, cells were
incubated with 5 µl of Annexin V-FITC and 10 µl of PI, at 4◦C for
15 min in the dark. Cell cycle and apoptosis were analyzed using
a flow cytometer (CytoFLEX, Beckman Coulter, United States).

RNA Isolation and Reverse
Transcription-Quantitative PCR
(RT-qPCR)
Total RNA was extracted from cells using TRIzol reagent
(Beyotime, China) according to the manufacturer’s instructions.
cDNA was synthesized using PrimeScript Reverse Transcription
reagent kit (Takara, Japan). Quantitative PCR (qPCR) was
performed using a CFX96 TouchTM Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, United States). The following
RT-qPCR parameters were used: 95◦C for 30 s; 95◦C for 5 s,
and 60◦C for 30 s repeated over 40 cycles. All primers were
synthesized by Tsingke (Beijing, China) and the sequences were
as follows: P21 forward: 5′-CTGCCTTAGTCTCAGTTTGTGT-
3′; P21 reverse: 5′-AACCTCTCATTCAACCGCCTA-3′; Bcl-2
forward: 5′-CTGCACCTGACGCCCTTC-3′; Bcl-2 reverse: 5′-
ACACATGACCCCACCGAAC-3′; caspase-3 forward: 5′-TGC
TGAAACAGTATGCCGACA-3′; caspase-3 reverse: 5′-CAAAT
TCTGTTGCCACCTTTCG-3′; β-actin forward: 5′-CCCAAA
GTTCACAATGTGGC-3′; β-actin reverse: 5′-GACTTCCTGT
AACAACGCATC-3′. Transcript levels were normalized to
β-actin expression and the target gene expression was calculated
using the formula 2−11Ct.

Western Blot Analysis
Total protein from the cells was harvested using RIPA lysis
buffer supplemented with 1 µM PMSF (Beyotime, Shanghai,
China) and 30 µg protein was separated on a 10% SDS-
polyacrylamide gradient gel. The proteins were transferred
onto PVDF membranes and blocked with 5% non-fat milk
in Tris Buffered Saline with Tween-20 (TBST) for 2 h
at room temperature. The blots were then incubated with
primary antibodies overnight at 4◦C. Membranes were then
washed 3 times with TBST and incubated with secondary
antibodies for 1 h at room temperature. Protein bands
were visualized with an ECL kit (Advansta, United States)
and the band intensity was analyzed using Vilber Fusion
software (Fusion, FX5 Spectra, France). β-actin was used as a
loading control.

Statistical Analysis
All data was presented as means ± standard deviation (SD)
and statistical analyses were performed using GraphPad Prism
5.01 (GraphPad Software Inc., San Diego, CA, United States).
The results were analyzed using one-way and two-way ANOVA
followed by the Bonferroni post hoc test. A value of p < 0.05
was considered as statistically significant. All experiments were
performed in triplicates.

RESULTS

Putative Targets of CDM and ASA for the
Treatment of AML-MDS
A total of 522 possible targets of CDM and ASA were predicted
by Swiss Target Prediction and PharmMapper (Supplementary
Table 1), and 607 overlapping targets of MDS, AML and
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FIGURE 2 | The network pharmacology of CDM and ASA against AML-MDS and cluster analysis. (A) The Venn diagram of the potential targets of CDM and ASA
against AML-MDS. (B) A PPI network of the overlapping targets of CDM and ASA against AML-MDS by Cytoscape software. (C) Clusters of interacted proteins by
use of MCODE algorithm. (D) Hub targets of the PPI network by use of cytoHubba. The size of node and edge was mapped to the degree and edge betweenness,
respectively. The color of the node represents the size of the degree value. The redder the color, the larger the node and the more important it is in the network.
Conversely, the greener the color, the smaller the node and the less important it is in the network.

AML-MDS were obtained from the GeneCards database
(Supplementary Table 2). Ultimately, 36 targets of CDM
and ASA against AML-MDS were collected (Figure 2A and
Supplementary Table 3). A PPI network of these predicted
targets was analyzed using STRING database and constructed
by Cytoscape, and the network contained 35 nodes and 245
edges (Figure 2B). Clustering subnetworks were produced using
the MCODE algorithm (Figure 2C). Specifically, 10 nodes were
identified as hub genes by the cytoHubba plugin in Cytoscape
and grouped together, including AKT1, ALB, CASP3, SRC,
MMP9, IL2, HRAS, CCNA2, STAT1, HSP90AA1 (Figure 2D and
Supplementary Table 4).

Biological Function and Pathway
Enrichment Analyses of Hub Targets
GO and KEGG pathway enrichment analyses of these hub genes
were performed using the DAVID database. GO analysis showed
that these targets were associated with negative regulation
of apoptotic processes and cell proliferation (Figure 3A).
Enrichment in cellular component and molecular function was
presented in Figures 3B,C, respectively. Additionally, KEGG

analysis revealed that these 10 hub targets were involved in
42 pathways, which were mainly enriched in cancer-related
pathways, especially PI3K/AKT and VEGF signaling pathways
(Supplementary Table 5 and Figure 3D).

The Synergistic Antiproliferative Effects
of CDM Combined With ASA on
AML-MDS
Then sensitivity of SKM-1 cells to the drugs was determined
according to the converting plasma concentrations. The results
showed that SKM-1 cells were sensitive to CDM and ASA
(Figure 4A). For further validation, SKM-1 and Molt-4 cells
were treated with different concentrations of the two drugs
alone. The results of CCK-8 assay showed that both CDM and
ASA inhibited cells viability in a dose- and time-dependent
manner (Figures 4B,C). At 48 h, the half-maximal inhibitory
concentration (IC50) of CDM on SKM-1 and Molt-4 cells was
(19.54 ± 3.34) µM and (1.69 ± 0.08) µM, respectively, and IC50
value of ASA was (1.69 ± 0.06) mM and (1.84 ± 0.08) mM,
respectively. Moreover, to evaluate the synergistic effect of co-
treatment on cell viability, these cells were treated with a low-dose
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FIGURE 3 | GO and KEGG pathway enrichment analyses for the hub genes of CDM and ASA against AML-MDS. (A) Biological process (BP); (B) cellular
component (CC); (C) molecular function (MF); (D) the top 20 of KEGG enrichment analysis (left panel), alluvial plot of interaction among drugs, major hub genes and
three main pathways (right panel).
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FIGURE 4 | CDM in combination with ASA inhibited the proliferation of AML-MDS cells. (A) Cell viability detected by Cell Titer-Glo luminescent cell viability assay in
SKM-1 cells treated with 8 drugs. (B,C) SKM-1 and Molt-4 cells were exposed to CDM (0.5, 1, 2, 4, and 8 µM) or ASA (0.5, 1, 2, 5, and 10 mM) alone.
(D) Combination index values were calculated with CompuSyn software. CI < 1 indicates synergy; CI = 1 is additive; and CI > 1 means antagonism. CI,
combination index; Fa, effect levels. (E) SKM-1 and Molt-4 cells were treated with 0.5 µM CDM combined with 1 mM ASA for 24, 48, and 72 h. The cell viability was
determined by CCK-8 assay. Data are mean ± SD of three independent experiments.

CDM (0.5 µM) combined with different concentrations of ASA
for 48 h. When combined with ASA, low-dose CDM decreased
the IC50 of ASA to (0.63 ± 0.06) mM and (0.94 ± 0.05) mM
in SKM-1 and Molt-4 cells, respectively. The combination index
(CI) demonstrated that CDM combined with ASA had a distinct
synergistic effect calculated by CompuSyn software (Figure 4D).
As shown in Figure 4E, CDM combined with ASA significantly
enhanced the inhibitory effect. Therefore, a combination of 0.5

µM CDM and 1 mM ASA, a value close to the IC50, was selected
for subsequent experiments.

Combination of CDM and ASA Caused
Cell Cycle Arrest at the G0/G1 Phase
To investigate the efficacy of the combination treatment on
cell cycle, cell cycle distribution of each group was detected
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FIGURE 5 | CDM in combination with ASA arrested the cell cycle at G0/G1 phase in AML-MDS cells. (A) Cell cycle distribution was detected by flow cytometry after
treatment with 0.5 µM CDM and 1 mM ASA for 48 h. The red color areas on the left and right of the images represent the proportion of cells in the G0/G1 and G2/M
phases, respectively. (B) Relative expression of P21 mRNA compared with the control group. (C) Expressions of cell cycle related protein (CDK2, CDK4, p21) were
detected by western blot. β-actin was used as a loading control. Data are mean ± SD of three independent experiments. “∗” indicates a significant difference relative
to the control group (∗p < 0.05), “#” indicates a significant difference relative to CDM-treated group (#p < 0.05), “&” indicates a significant difference relative to
ASA-treated group (&p < 0.05).

by flow cytometry with PI staining assay. As shown in
Figure 5A, the combination of CDM and ASA resulted in
a significant increase in the proportion of G0/G1 phase cells
compared with the two drugs alone. A high mRNA expression
of p21 in the combined treatment group (Figure 5B) was

observed, but there was no statistical difference between the
two mono-treatment groups. Also, Western blotting indicated
that after combined treatment, the protein expression of CDK2
and CDK4 was down-regulated while p21 was up-regulated
(Figure 5C).
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Combination of CDM and ASA
Synergistically Induced Apoptosis
Next, flow cytometry was used to detect the apoptotic effects
of the combination treatment on SKM-1 and Molt-4 cells,
and apoptosis rate was calculated as the sum of percentage
of Annexin+ cells. As shown in Figure 6A, the co-treatment
remarkably induced apoptosis compared with CDM and ASA
mono-treatment. Furthermore, Western blotting showed that the
expression of apoptosis-related protein cleaved caspase-3 was
up-regulated and the expression of Bcl-2 was down-regulated,

while no change in caspase-3 was observed. The observation was
consistent with the results of RT-qPCR (Figures 6B,C).

Combination of CDM and ASA
Suppressed PI3K/AKT Signaling Pathway
Based on the results of GO and KEGG analyses, we focused
on PI3K/AKT signaling pathway and hypothesized that the
combination of CDM and ASA could synergistically inhibit
the activation of PI3K/AKT pathway. The results of Western
blotting demonstrated that the expression levels of p-PI3K and

FIGURE 6 | CDM in combination with ASA induced cell apoptosis in AML-MDS cells. (A) Cell apoptotic rate was detected by flow cytometry after treatment of the
combination of 0.5 µM CDM and 1 mM ASA for 48 h. (B) Relative mRNA expression of Bcl-2 and caspase-3 compared with the control group. (C) Expressions of
the apoptosis-related protein (Bcl-2, caspase-3, cleaved caspase-3) were detected by western blot. β-actin was used as a loading control. Data are mean ± SD of
three independent experiments. “∗” indicates a significant difference relative to the control group (∗p < 0.05), “#” indicates a significant difference relative to
CDM-treated group (#p < 0.05), “&” indicates a significant difference relative to ASA-treated group (&p < 0.05), “NS” indicates no significant difference relative to
ASA-treated group or CDM-treated group.
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FIGURE 7 | CDM combined with ASA inhibited the activation of PI3K/AKT pathway in AML-MDS cells. (A) Western blot analysis of PI3K, p-PI3K AKT, p-AKT.
(B) Western blotting of PI3K, p-PI3K, AKT and p-AKT. (C) Western blotting of CDK2, CDK4 and p21. (D) Western blotting of Bcl-2, caspase-3 and cleaved
caspase-3. IGF-1 reversed the effect of CDM combined with ASA on AML-MDS cells. β-actin served as a loading control. Data are mean ± SD of three independent
experiments. “∗” indicates a significant difference relative to the control group (∗p < 0.05), “&” indicates a significant difference relative to ASA-treated group
(&p < 0.05), “NS” indicates no significant difference relative to the control group.
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FIGURE 8 | A schematic representation of the proposed pathway responsible for CDM combined with ASA in AML-MDS cells. (A) The predictive pathways of CDM
and ASA in AML-MDS through network pharmacology. (B) CDM combined with ASA could inhibited the activation of PI3K/AKT signaling pathways, and then
affected the expression of cell cycle and apoptosis-related proteins to induce cell cycle arrest and apoptosis in AML-MDS cells through experimental validation.

p-AKT in the combination treatment group were distinctly lower
than those in each drug alone and control group, while the
level of total PI3K and AKT remained constant (Figure 7A).
Intriguingly, IGF-1, an agonist of PI3K/AKT signaling pathway,

reversed the effects of the combination treatment on cell cycle
and apoptosis-related proteins (Figures 7B–D), indicating that
PI3K/AKT pathway was involved in the process induced by the
combination treatment of CDM and ASA.
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DISCUSSION

Drug combination has been proposed as a promising therapeutic
strategy with fewer side effects and lower toxicity, which could
be used to improve the efficacy of single-agent treatment. There
was evidence that ASA synergized with HDAC inhibitors (FK228)
to inhibit growth of COX-1 positive ovarian cancer cells (Son
et al., 2010). Zhang H. et al. (2018) also reported that in the
presence of CDM, ASA significantly suppressed tumor growth of
natural killer/T-cell lymphoma (NKTCL). In line with previous
reports, our study showed that the efficiency of co-treatment was
superior to CDM or ASA mono-treatment alone in inhibiting
growth of AML-MDS cells, suggesting that a small dose of
drug combination may be an effective therapy. However, the
underlying molecular mechanisms remain unclear.

To identify the mechanisms in which CDM and ASA
affected cell viability, we examined the cell cycle distribution
and apoptotic rate. Dysregulation of cell cycle progression is a
hallmark of cancer that enables limitless cell division. It has been
reported that CDM and ASA inhibit tumor cell proliferation by
inducing cell cycle arrest in G0/G1 and G2/M phases (Liu et al.,
2016; Fan et al., 2017; He et al., 2018; Zhang X. et al., 2018).
Our data showed that the efficiency of inducing cell cycle arrest
was significantly improved when CDM was combined with ASA.
The interactions of cyclin, cyclin-dependent kinases (CDKs) and
CDK inhibitors play indispensable roles in controlling cell cycle.
CDK2 is necessary for transition from G1 phase to S phase, while
CDK4 controls G1 phase, both of which are positive regulators
of the cell cycle (Lim and Kaldis, 2013). On the contrary, p21,
a putative tumor-suppressor protein, is negative regulator that
inhibits the CDKs/cyclin complexes in the G1 phase (Rodriguez-
Cupello et al., 2020). Our study manifested that the combination
of CDM and ASA synergistically down-regulated CDK2 and
CDK4, and up-regulated p21, leading to G0/G1 arrest.

Dysregulation of apoptosis causes excessive cell proliferation
or excessive apoptosis, resulting in disease. As a signaling
pathway that regulates cell apoptosis and survival, the Bcl-
2/Cleaved caspase-3 apoptotic pathway has been implicated in
many cancers including leukemia (Tian et al., 2019; Zhang et al.,
2019). Bcl-2 is a member of anti-apoptotic Bcl-2 family proteins,
which plays an important role in maintaining the integrity of
the outer mitochondrial membrane (OMM), while the pro-
apoptotic protein Bax inserts into the OMM and facilitates the
release of inter-membrane space (IMS) protein, leading to the
activation of caspases (Renault and Chipuk, 2014; Delbridge
et al., 2016). Cleaved caspase-3 is an activated form of caspase-
3, a major effector protease in apoptosis that triggers the
apoptotic cascade (Braunstein et al., 2020). We found that CDM
combined with ASA significantly accelerated cell apoptosis by
downregulation of Bcl-2 and activation of caspase-3, indicating
that the combination treatment might be a potential strategy for
the treatment of leukemia.

Based on the network pharmacology approach, we collected
36 putative targets of CDM and ASA against AML-MDS,
and revealed that AKT1 was one of the hub genes. Through
KEGG enrichment analysis, PI3K/AKT signaling pathway was
highlighted as a potential target. The expression of PI3K/AKT

signaling pathway is often dysregulated in various cancers and
activated PI3K/AKT pathway is implicated in a variety of
processes, including inducing tumor cell proliferation, inhibiting
apoptosis and promoting invasion and metastasis (Yang et al.,
2019). Previous studies have confirmed that blocking PI3K/AKT
pathway induces cell death by regulating cell proliferation,
apoptosis and cell cycle in leukemia (Bertacchini et al., 2015;
Banerjee et al., 2016; Cheng et al., 2019). CDM was able
to increase the acetylation levels of histone H3 and inhibit
PI3K/AKT signaling pathway, resulting in arresting colon cancer
cells at G1 phase and accelerating cell apoptosis (Liu et al.,
2010). ASA was shown to inhibit cell proliferation by blocking
cell cycle by suppressing the activation of the phosphorylation
of AKT (Zhang X. et al., 2018). Consistently, our data showed
that the expression levels of p-PI3K and p-AKT were remarkably
downregulated by the combination of CDM and ASA, leading
to the inactivation of the PI3K/AKT pathway. To confirm
this, cells were treated with IGF-1, a PI3K/AKT agonist. The
results showed that IGF-1 reversed the inhibitory effect of the
combination treatment on PI3K/AKT pathway. The above results
suggested that the combination of CDM and ASA inhibited cell
proliferation, induced cell cycle arrest and promoted apoptosis
in AML-MDS cells partially through suppressing the PI3K/AKT
pathway (Figure 8).

CONCLUSION

Our study demonstrated that CDM and ASA exerted synergistic
effect on G0/G1 arrest and apoptosis by inhibiting the PI3K/AKT
pathway in vitro. This provides a promising chemotherapeutic
strategy for AML-MDS in combination with low dose agents.
Future studies should focus on the in vivo efficacy of the
combination treatment and the determination of the optimal
combination regimens.
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