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ABSTRACT

The local false discovery rate (LFDR) estimates the
probability of falsely identifying specific genes with
changes in expression. In computer simulations,
LFDR <10% successfully identified genes with
changes in expression, while LFDR >90% identified
genes without changes. We used LFDR to compare
different microarray experiments quantitatively:
(i) Venn diagrams of genes with and without
changes in expression, (ii) scatter plots of the
genes, (iii) correlation coefficients in the scatter
plots and (iv) distributions of gene function. To
illustrate, we compared three methods for pre-
processing microarray data. Correlations between
methods were high (r = 0.84–0.92). However,
responses were often different in magnitude, and
sometimes discordant, even though the methods
used the same raw data. LFDR complements func-
tional assessments like gene set enrichment
analysis. To illustrate, we compared responses to
ultraviolet radiation (UV), ionizing radiation (IR) and
tobacco smoke. Compared to unresponsive genes,
genes responsive to both UV and IR were enriched
for cell cycle, mitosis, and DNA repair functions.
Genes responsive to UV but not IR were depleted
for cell adhesion functions. Genes responsive to
tobacco smoke were enriched for detoxification
functions. Thus, LFDR reveals differences and
similarities among experiments.

INTRODUCTION

To understand complex biological systems, methods are
needed for comparing different experiments on a genomic
or proteomic scale. For example, ultraviolet (UV) and
ionizing radiation (IR) generate DNA damage in different
ways, producing thymine dimers and double strand
breaks, respectively. Another DNA damaging agent,
tobacco smoke, produces benzo[a]pyrene adducts on

guanine bases in DNA. Methods are needed to compare
microarray experiments in order to identify genes that
respond to different agents, as well as genes that respond
to one agent but fail to respond to others.
Significance analysis of microarrays (SAM) identifies

genes that respond to a perturbation (1). SAM assigns
each gene a d-score d(i), which can be used to estimate
the probability that gene (i) has changed expression.
SAM estimates the false discovery rate (FDR) by
randomly permuting the sample labels to estimate the
number of genes that by chance would have a d(i) score
greater than an adjustable threshold. A 5% FDR means
that 5% of the genes ranked higher than a threshold value
were falsely identified as significant. The q-value for each
gene (i) is the FDR for the set consisting of gene (i) and
all higher ranked genes (2). Investigators find the q-value
to be useful, but one must remember that the q-value for
gene (i) is lower than the probability that gene (i) itself
was falsely identified.
Others have proposed using the local false discovery

rate (LFDR) to estimate the probability that gene (i)
was falsely identified (3–9). Unlike q-value, estimates of
LFDR calculate the false discovery rate for genes
ranked near gene (i). Thus, LFDR is based on genes
with d-scores similar to gene (i), and not on genes with
more extreme d-scores. Previous methods for estimating
LFDR have yielded comparable results. Here, we chose to
estimate the LFDR for gene (i) by counting the number
of falsely discovered genes with scores in the local neigh-
borhood of d(i) after random permutation of sample
labels.
Others have used LFDR to identify genes with changes

in expression. Here, we show that LFDR can also identify
genes without changes in expression. A gene without a
change in expression in one experiment may be of partic-
ular interest, if the same gene changes expression in a
second experiment.
While FDR characterizes a set of genes in a particular

experiment, LFDR characterizes each individual gene. We
hypothesized that LFDR could thus identify genes that
either change or fail to change in expression, and thus
facilitate comparisons between different experiments.

*To whom correspondence should be addressed. Tel: +1 650 725 6442; Fax: +1 650 736 2282; Email: chu@stanford.edu

Published online 13 October 2009 Nucleic Acids Research, 2009, Vol. 37, No. 22 7483–7497
doi:10.1093/nar/gkp813

� The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



We confirmed that LFDR could successfully identify
genes that change or fail to change for computer-
simulated data. To compare microarray experiments
graphically and quantitatively, we exploited several
tools: Venn diagrams, scatter plots, Pearson correlation
coefficients and distributions of gene function. To illus-
trate the utility of these tools, we compared responses to
UV, IR and tobacco smoke. We also compared results
generated by three methods of pre-processing a single set
of raw microarray data.

MATERIALS AND METHODS

Cell lines and treatment with UV and IR

Fifteen healthy individuals were enrolled as described
previously (10). Lymphoblastoid cells were established
by immortalizing peripheral blood B-lymphocytes with
Epstein-Barr virus. Cells were irradiated with UV using
a germicidal lamp (254 nm) to a dose of 10 J/m2 and har-
vested for RNA 24h later. For IR treatment, cells were
exposed to 5Gy of 137Cs g-rays and harvested for RNA
4h later.

Microarray analysis

Total RNA was labeled with biotin and hybridized to an
U95A_v2 GeneChip� microarray according to the manu-
facturer’s protocols (Affymetrix, Santa Clara, CA).
The expression level for each probe set was computed by
Affymetrix Microarray Suite (MAS) version 5.0 software.
Data were scaled to the average of all datasets, as
described in ref. (1). Two other pre-processing methods
were used to compute gene expression levels: gene-chip
robust multi-array average (GCRMA) (available at the
BioConductor website, http://www.bioconductor.org/)
and DNA-Chip analyzer (dChipv1.3) based on the
model-based expression index using PM only (available
at the dChip website, http://www.dchip.org/). The
complete dataset is available on the Gene Expression
Omnibus (GEO) database, http://www.ncbi.nlm.nih
.gov/geo/.
We used the paired option in SAM version 1.21 to

compute the d-scores for genes in the simulated data set
and for probe sets in the UV and IR datasets. The Excel
plug-in software is available at http://www-stat.stanford
.edu/�tibs/SAM/.

Estimation of LFDR

We estimated the LFDR for gene (i) by the following
procedure:

(1) Compute d-score d(i) for each gene (i) in the array
using SAM (1).

(2) Assign rank r(i) to gene (i), where r(i) is the
number of genes with d-scores � d(i).

(3) For a window of n genes, compute d-scores, d1(i)
and d2(i), for the genes ranked r(i) – n/2 and r(i)
+ n/2, respectively.

(4) Permute the sample labels and count the resulting
number of genes np(i) with d-scores in the neighbor-
hood of d(i) given by the interval [d1(i), d2(i)].

(5) Estimate the LFDR as

LFDR ið Þ ¼
�0 � np ið Þ

n
1

Here, �0 is the fraction of genes that did not change
expression, as estimated by SAM (11). The interval
[d1(i), d2(i)] is defined as the ‘window’ for the LFDR.
For example, a 1% window corresponds to n equal to
1% of the total number of genes.

We generated a smooth curve of the LFDR values
with a smoothing function, which is available in
the R Functional Data Analysis (FDA) package (12).
Biological functions were assigned from published litera-
ture and from the Gene Ontology (GO) database through
the Affymetrix NetAFFXTM Analysis Center.

Smoking induced epithelial gene expression data

Affymetrix HG-U133A GeneChip expression data from
epithelial cells of 40 current smokers, 25 non-smokers
and 13 former smokers was downloaded from the
Smoking Induced Epithelial Gene Expression (SIEGE)
database (13) on 4 January 2005. Expression values were
estimated using MAS 5.0 software. The multi-class option
in SAM was used to compute the d-scores for each probe
set using 1000 permutations. Hierarchical clustering of the
genes for each group of 250 genes was performed using all
81 samples using uncentered Pearson correlation and
complete linkage and displayed using Treeview (14).
Hierarchical clustering of the samples was then performed
separately within each class. The values used for clustering
were the logarithm of the ratio of the expression value of
the gene to the median of the expression values of each
gene across all samples.

RESULTS

LFDR identifies genes from simulated data with and
without changes in expression

To assess the accuracy of LFDR, we generated computer-
simulated data containing genes with and without changes
in expression. The data represented a simulated experi-
ment with 15 measurements for the expression of 10 000
genes (Figure 1A). We introduced experimental noise by
generating data with a normal distribution centered on an
average change in expression of �x=0, ±0.5, ±1.0,
±1.5, ±2.0 or ±2.5U, with standard deviations of 1U.
A total of 5000 genes had data equally distributed among
�x=±0.5, ±1.0, ±1.5, ±2.0 and ±2.5U. Since the
largest number of genes in a biological experiment
undergo insignificant changes in expression, 5000 genes
had data corresponding to �x=0.

To validate the computer simulation, we computed the
SAM d-score for each simulated gene (Figure 1B).
Approximately 35% of the unpermuted d-scores had
outlying values of <–1 or >+1, compared to 2% of
randomly permuted d-scores. The number of genes with
outlying d-scores reflected the number of genes with
changes in expression. In particular, 30% (3000) of the
simulated genes had been assigned changes exceeding the
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noise level of 1U (�x=±1.5, ±2.0, or ±2.5 units), and
another 10% of the genes had changes equal to the noise
level (�x=±1.0 unit). Conversely, 65% of the 10 000
genes had d-scores between �1 and +1, which reflected
the number of genes with changes in expression smaller

than the noise level. In particular, 60% of the genes had
been assigned changes smaller than 1U (�x=0, ±0.5),
and another 10% had changes equal to the noise level.
To further validate the computer simulation, we

estimated p0, the fraction of genes without changes in
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Figure 1. LFDR identified genes with and without simulated changes in expression. (A) Computer simulation generated changes in expression.
We simulated changes in expression before and after a perturbation for 10 000 genes. Experimental noise among 15 replicates generated a normal
distribution centered on each pre-specified change in expression, �x, with a standard deviation of 1U. The change in expression was �x=0 for 5000
genes, and �x=±0.5, ±1.0, ±1.5, ±2.0, and ±2.5U equally distributed among the remaining 5000 genes. Grey bars represent the distribution of
genes with positive changes in expression, and white bars outlined in black represent the distribution of genes with negative changes. (B) The
distribution of d-scores for simulated changes in expression. We used paired SAM to estimate the d-score for each gene in (A). Grey bars indicate the
distribution of genes as a function of d-score. White bars outlined in black indicate the distribution of genes as a function of ‘permuted’ d-scores
generated by 500 permutations, in which data before and after the perturbation were switched for randomly chosen replicates. (C) LFDR estimates
contain fluctuations that can be controlled by a smoothing function. We estimated the LFDR for each gene using a 1% window. Each point
represents a selected gene. Because of fluctuations in the calculated LFDR values, we estimated LFDR for each gene from a smoothing function
represented by the solid line. (D) LFDR accurately identifies genes with or without changes in expression. For each change in expression in the
simulated data of (A), the histogram shows the percentage of genes identified as changing (LFDR <10%, gray bars) or not changing (LFDR
>90%, black bars). For example, LFDR >90% identified as not changing 84% of the genes with pre-specified changes of zero (�x=0), and
LFDR <10% identified as changing 96% of the genes with pre-specified changes of two standard deviations (�x=2.0). The error bars indicate the
standard deviation of three simulated experiments.
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expression. SAM divides the randomly permuted data into
quartiles by d-score. Genes with d-scores in the middle
two quartiles of the permuted data are assumed to be
unchanged in expression. Then, p0 equals the number of
genes from the unpermuted data with d-scores that would
fall in the middle two quartiles divided by the number of
genes with the same range of d-scores from the permuted
data (i.e. 50% of all the genes in the experiment (11).
For the simulated data, SAM estimated p0=0.58. This

was consistent with the simulated input, in which 50% of
the genes had no change in expression, and another 10%
had a change smaller than noise in the data, �x=±0.5.
Thus, SAM generated d-scores consistent with the input
for the simulated data.
To compute the LFDR for each gene, we employed a

1% window. In other words, we created a ‘local’ window
containing 1% of all the genes, chosen for having d-scores
closest to the d-score of the index gene. The LFDR was
calculated as the number of the genes from the permuted
data that were contained in the window, divided by the
number of genes from the unpermuted data (i.e. 1% of
all the genes in the experiment). We then fitted the data
with a smoothing function (Figure 1C). As expected,
LFDR >90% identified genes with low d-scores (�0.5
< d<+0.5), and LFDR <10% identified genes with
extreme d-scores. To evaluate the utility of LFDR, we
chose LFDR >90% as the criterion that a gene has
failed to change expression, and LFDR <10% as the cri-
terion that a gene has changed expression. Of course, one
could adjust the stringency of these criteria, depending on
the particular application.
We assessed the accuracy of LFDR <10% in identify-

ing the genes with simulated changes in expression
(Figure 1D). For the 2000 genes with �x=±2.0 and
±2.5, almost all (96 and 99.9%, respectively) had values
for LFDR <10%, and thus identified as changing. When
the change in expression was smaller than the noise,
�x=± 0.5, only 1.7% of the genes were identified as
changing. Thus, LFDR <10% accurately identified
genes with changes in expression, provided that the
changes in expression were greater than the level of
noise in the simulated data.
We also assessed the accuracy of LFDR >90% in iden-

tifying genes that were not changing. For the 5000 genes
with �x=0, a total of 84% were identified as not
changing. Also, 52% of genes with �x=± 0.5 were iden-
tified as not changing. For genes with a modest change in
expression, �x=±1.5, only 0.3% of the genes were
identified as not changing. For larger changes in expres-
sion, �x=±2.0 and ±2.5, genes were never identified as
not changing. Thus, LFDR >90% accurately identified
genes without significant changes in expression.

LFDR can be estimated from experimental data

Next, we applied LFDR to actual microarray data.
We previously collected data for UV responses in
lymphoblastoid cell lines from 15 healthy individuals,
using oligonucleotide microarrays for 12 625 probe sets
(10). Figure 2A plots the distribution of genes as a
function of d-scores for unpermuted and permuted data.

SAM estimated p0=0.70, indicating that 70% of the
probe sets did not undergo changes in expression.

To assess the effect of window size, we estimated LFDR
with 1 and 10% windows (Figure 2B). The 1% window
generated LFDR estimates with smooth behavior for
genes with high d-scores, but large fluctuations for low
d-scores, which we fitted with a smoothing function
(Figure 2C) (12). The 10% window generated well-
behaved estimates for LFDR. However, the 10%
window cannot estimate the LFDR for genes with the
most extreme d-scores, since the window around each
gene must include 10% of all probe sets. We concluded
that a combination of windows would be the best way to
obtain accurate estimates of LFDR for the largest number
genes. For example, a 10% window could be used to
estimate LFDR for probe sets with d-scores in the
middle two quartiles. Then, a 1% window could
estimate LFDR for probe sets with more extreme d-values.

The relationship between LFDR and q-value differs
among experiments

A q-value and a LFDR can be assigned to each gene in a
microarray experiment (2). The q-value for gene (i) equals
the FDR for the set of top-ranked genes up to rank r(i).
In fact, the q-value equals the average LFDR for the set
of top-ranked genes. LFDR is usually greater than the
q-value, since the LFDR characterizes genes with ranks
near gene (i), while q-value reflects gene (i) plus higher-
ranked genes.

To validate our estimates for LFDR, we confirmed that
estimated q-values equaled the average LFDR for the
set of top-ranked genes associated with each q-value
(Figure 3A). To examine the relationship between
LFDR and q-value, we used paired SAM to analyze
responses to UV and IR in lymphoblastoid cells
(Figure 3B and C, respectively), and multi-class SAM to
analyze gene expression in lung epithelial cells from
current, former and never smokers (Figure 3D). As
expected, LFDR assumed values up to 100%, which
indicates certainty that a gene remained unchanged in
expression. By contrast, q-value remained less than 80%,
since q-value is limited by p0, the fraction of genes with
unchanged expression.

Differences between LFDR and q-value were substan-
tial and varied among experiments. Genes with q-values of
10% had LFDR values of 37, 34 and 28% in the data for
responses to UV, IR and tobacco smoke, respectively
(Figure 3). Despite a one-to-one relationship between
q-value and LFDR in a given experiment, the relationship
changes from one experiment to the next.

These results illustrate the utility of LFDR for
estimating the likelihood that a specific gene has been
falsely identified. A user might harbor a false sense of
confidence in a gene with a q-value of 10%. However, in
the UV response experiment, the same gene had a LFDR
of 37%, which indicates the true likelihood for falsely
identifying that particular gene. The user might account
for the difference between q-value and LFDR by multiply-
ing the q-value for each gene by a 3.7-fold correction
factor. But the correction factor would fail, since the
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relationship between q-value and LFDR is non-linear
(Figure 3). Furthermore, a q-value of 10% could be
associated with a different LFDR in a different experi-
ment, since the q-value depends on the top-ranked genes
in each experiment. In the tobacco smoke response, a gene
with a q-value of 10% had a LFDR of 28%, significantly
different from the values of 37 and 34% in the UV and IR
response experiments, respectively. Thus, if the user wishes
to focus on a specific gene, the LFDR provides the best
estimate for the likelihood that the gene was falsely
identified.

LFDR identifies genes without changes more accurately
if they change expression in another experiment

Biological experiments produce changes in expression for
some, but not all genes. Genes that fail to respond to one
perturbation may be of great interest, especially if they
respond to a different perturbation. When we compared
the UV and IR responses, a total of 3490 probe sets had
LFDR >90% after both UV and IR. As expected, most
of the probe sets showed unchanged expression, with
similar distributions for fold-change in expression
(Figure 4A and B). Changes >1.2-fold occurred in only
12% of the UV responses and 9.5% of the IR responses.
These results confirm the validity of LFDR >90% as
a useful criterion for identifying genes without changes
in expression.
Next, we examined genes that failed to change after IR,

but changed after UV. We plotted the distribution of
probe sets as a function of fold-change for the 437
probe sets with LFDR >90% after IR, and LFDR
<10% after UV. Strikingly, only 1 of 437 probe sets
changed expression more than 1.2-fold after IR (Figure
4C). As expected, almost all of the probe sets showed
changes in expression after UV (Figure 4D). Thus, virtu-
ally all genes with LFDR >90% after IR failed to change
expression, if they changed in another experiment (i.e.
LFDR <10% after UV).

The number of samples influences the comparison of
UV and IR responses

We previously compared the UV and IR responses in
human cells using the FDR estimated by SAM (10).
FDR identified a large number of genes induced by both
agents, but also identified many genes with a clear
response to one agent but an ambiguous response to the
other. LFDR provided an opportunity to compare the UV
and IR responses quantitatively.
To establish a baseline for variations in the UV

response, we compared the UV responses in cells from
individuals 1–7 and 8–14 (Figure 5A). The table shows
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responses in both groups for 163 probe sets (LFDR
<10%) and no change in both groups for 3295 probe
sets (LFDR >90%). The Venn diagram and table show
that LFDR identified 71 discordant responses: i.e. a
change in expression (LFDR <10%) in one group of
individuals, and unchanged expression in the other
group (LFDR >90%). For example, 479 probe sets
responded to UV in individuals 1–7, but 39 of the 479
probe sets remained unchanged in individuals 8–14.
In addition, 277 of the 479 UV-responsive probe sets
for individuals 1–7 had poorly defined responses (10%
<LFDR <90%) in individuals 8–14. These discordant
and poorly defined responses could be due to anomalies
in pre-processing the raw data (as discussed below),
changes obscured by noise, or heterogeneous responses
in the human population.

We also compared the IR responses for individuals 1–7
and 8–14 (Figure 5B). LFDR detected changes in both
groups for 33 probe sets, absence of changes in both
groups for 5419 probe sets, and discordant responses for
16 probe sets. The IR response included a significantly
smaller fraction of the genome than the UV response.

When we compared the UV response to the IR response
for both sets of individuals 1–7 and 8–14, the UV response
was more extensive than the IR response. LFDR identified
32 concordant and 153 discordant responses for
individuals 1–7 (Figure 5C). LFDR identified 46 concor-
dant and 218 discordant responses for individuals 8–14
(Figure 5D). Thus, relatively small sample sizes of seven
individuals produced somewhat different results from
different sets of individuals, and identified relatively few
concordant responses.

When the number of individuals increased from 7 to 15,
LFDR identified many more responses (Figure 5E).
LFDR identified 366 probe sets with responses to both
UV and IR, about 10-fold more than the number
identified from seven individuals. This striking 10-fold
increase occurred because estimates for the d-score
became much more accurate, even though the number of
samples increased by only 2.1-fold. LFDR also identified
many more discordant responses, particularly responses
to UV but not IR. For each of the comparisons of the
UV and IR responses (Figure 5C–E), the number of genes
responding to UV was significantly larger than the
number of genes responding to IR.

The scatter plot provided a quantitative comparison of
the UV and IR responses (Figure 6A). The scatter plot
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included the 911 probe sets from the Venn diagram in
Figure 5E. By restricting the scatter plot to this subset
of genes with well-defined responses, we eliminated the
confounding influence of genes with poorly defined
responses (10%<LFDR<90%). The scatter plot
shows graphically that the doses of UV and IR (10 J/m2

and 5Gy, respectively) produced roughly equivalent fold-
changes in the 366 genes responding to both UV and IR.
Despite biological equivalence for the UV/IR-responsive
genes, a large number of genes (437) responded to UV but
not IR. Thus, UV affects a much larger fraction of the
genome than IR.

For individual genes, fold-changes in the UV and IR
responses were often different. In addition, some probe
sets were induced by one agent but repressed by the

other. These included probe sets for genes such as
insulin-like growth factor 1 (IGF1), absent in melanoma
2 (AIM2), and RNA binding motif protein 14 (RBM14).
To compare responses in different experiments with a

single parameter, we used the Pearson correlation coeffi-
cient (Figure 6B). We performed the calculation using
the logarithm of fold-change in expression so that the
small number of genes with large changes would not
dominate the correlation coefficient. We also restricted
the calculation to the well-defined responses in order to
eliminate the confounding effects of noise in the data.
To calibrate the correlation coefficients generated by

microarray data, we calculated the correlation between
responses to the same agent. Using the responses in the
Venn diagrams of Figure 5A and B, the correlation
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Figure 4. LFDR identified genes that did not change expression. To examine the utility of LFDR in identifying genes without changes in expression,
we plotted fold-change distributions for the 3490 probe sets not responding to either UV or IR (LFDR >90%), and for the 437 probe sets
responding to UV (LFDR <10%), but not IR (LFDR >90%). (A) IR-induced changes for probe sets predicted to not respond to UV or IR
(LFDR >90%). IR-induced fold changes >1.2-fold occurred in only 9.5% of the probe sets. (B) UV-induced changes in probe sets predicted to not
respond to UV or IR (LFDR >90%). UV-induced fold changes >1.2-fold occurred in only 12% of the probe sets. (C) IR-induced changes in probe
sets predicted to respond to UV (LFDR <10%), but not IR (LFDR >90%). IR-induced fold changes >1.2-fold occurred in only 1 or 437 probe
sets, demonstrating improved accuracy compared to (A) in identifying probe sets without changes for those probe sets that detect changes in a
different experiment. (D) UV-induced changes in probe sets predicted to respond to UV (LFDR <10%), but not IR (LFDR >90%). UV-induced
fold changes >1.1-fold occurred in more than 99% of the 437 probe sets, as expected.
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between UV 1–7 and UV 8–14 was r=0.85, and the
correlation between IR 1–7 and IR 8–14 was r=0.97
(Figure 6B). High correlation coefficients were expected,
since responses to the same agent should be highly
correlated between two groups of individuals.

Next, we calculated the correlation coefficients between
responses to different agents, UV and IR. The correlation
between UV 1–7 and IR 1–7 was only r=0.45 (Figure
6B). To determine the reproducibility of this result in a
separate experiment, we calculated the correlation
between UV and IR in a different group of individuals.
The correlation between UV 8–14 and IR 8–14 was
r=0.63 (Figure 6B). The discrepancy between correlation
coefficients illustrated the uncertainties arising from
sample sizes of only seven individuals. Small sample
sizes are sensitive to both experimental noise in the data
and biological variations among individuals.

To compare the UV and IR responses more precisely,
we included data for all 15 individuals. When we restricted
the calculation to the well-defined responses in the
Venn diagrams of Figure 5E, the correlation coefficient
between the UV and IR responses increased to r=0.67
(Figure 6B). Nevertheless, the correlation coefficient
remained significantly less than unity, since a sizable
number of genes responded to UV but not IR, and
many genes responded to UV and IR with different fold-
changes. Thus, the correlation coefficient provided a
useful parameter that reflected the moderate degree of
similarity between the UV and IR responses.

Finally, we tested the effect of expanding our calcula-
tions to data with poorly defined responses. Instead of
focusing on the 911 well-defined responses in the Venn
diagram of Figure 5E, we expanded the calculation to
all 12 625 probe sets on the microarray. The correlation
coefficient between the UV and IR responses in all 15
individuals was r=0.50. Thus, the correlation coefficient
decreased significantly when the calculation expanded to
include poorly defined responses. Much of this decrease in
correlation may be due to experimental noise in the data.
Therefore, the calculated correlation coefficient appears to
better reflect the true biological correlation when it
includes only the well-defined responses, and excludes
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Figure 5. LFDR facilitated comparison of different experiments. Bold
type headings above and to the left of the tables indicate experiments
undergoing comparison. Row and column headings show the number
of probe sets with the indicated LFDR (<10% or >90%) for the
corresponding experiment. Table entries show the number of probe
sets with the indicated LFDR in each experiment undergoing

comparison. Venn diagrams display the number of probe sets with
LFDR <10% in both experiments (gray), and the number of probe
sets with LFDR <10% in one experiment and LFDR >90% in the
other (white). (A) UV responses in two sets of individuals showed
general concordance. We used LFDR to compare the UV responses
in cell lines 1–7 and cell lines 8–14. (B) IR responses in two sets of
individuals showed general concordance. We used LFDR to compare
the IR responses in cell lines 1–7 and cell lines 8–14. The scope of the
IR response was much smaller than the UV response. (C) UV and IR
responses in cell lines 1–7 showed significant discordance. The data
generated only 32 concordant responses, but revealed 153 discordant
responses. (D) UV and IR responses in cell lines 8–14 showed signifi-
cant discordance. The concordance and discordance were similar to
that seen for cell lines 1–7, but the Venn diagram included a larger
number of genes. The difference in Venn diagrams indicates the level of
uncertainty in using LFDR to compare different experiments using
LFDR. (E) UV and IR responses in cell lines 1=15 showed significant
concordance and discordance. When the sample size increased from 7
to 15 cell lines, the number of discordant responses increased from 2.3-
to 3.7-fold, while the number of concordant responses increased 8-fold.
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Genes induced by UV according to one method were never repressed according to the other method. However, some genes responding to UV
according to one method (LFDR <10%) failed to respond according to the other method (LFDR >90%). Furthermore, MAS 5.0 tended to
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the poorly defined responses such as those defined by 10%
<LFDR <90%.

LFDR permits comparison of the UV and IR responses
by gene function

LFDR provided a tool for determining whether damage-
responsive genes might be enriched or depleted for specific
functions within the cell. To compare the UV and IR
responses by gene function, we classified the UV and IR
responses by GO (gene ontology) terms (Figure 7). The
bar graphs depict the distribution of probe sets accord-
ing to whether or not they responded to UV or IR.

To account for the distribution of gene functions
represented in the microarray experiment, we used a
control consisting of the 3490 probe sets that failed to
respond to both UV and IR (LFDR >90%).

Cell cycle genes respond transcriptionally to DNA
damaging agents. Among the 3490 non-responsive probe
sets serving as the control, 170 (4.9%) had functions in the
cell cycle. Among the 437 probe sets responding to UV,
but not IR, 22 probe sets (5.0%) had functions in the cell
cycle, a distribution nearly identical to the control. Among
the 108 probe sets responding to IR, but not UV, seven
probe sets (6.5%) involved the cell cycle, a distribution not
statistically different from the control (P=0.37). Thus,
we failed to detect any enrichment in cell cycle genes
responding exclusively to UV or IR. In contrast, among
the 366 probe sets responding to both UV and IR, 42
probe sets (11.5%) had functions in the cell cycle. Thus,
the probe sets responding to both forms of DNA damage
were significantly enriched (P=2.6� 10�6) for cell cycle
genes.

Genes responding to both UV and IR were also
enriched for functions in mitosis (P<10�5), apoptosis
(P<10�2), and DNA repair (P<10�2), but depleted
for functions in cell adhesion (P<10�2) (Figure 7).
Genes responding to UV but not IR were depleted for
functions in cell adhesion, and genes responding to IR
but not UV were enriched for functions in mitosis.
Thus, LFDR facilitated a quantitative analysis of the dis-
tribution of cellular functions for genes responding to
DNA damage.

LFDR reveals differences in methods for pre-processing
oligonucleotide microarray data

Oligonucleotide microarrays measure the abundance of a
gene transcript by hybridization of mRNA to multiple
oligonucleotide probe pairs. Each probe pair detects the
signal from a perfect matched probe (PM) and a mis-
matched probe (MM). The use of multiple probe pairs
mitigates the effect of aberrant hybridizations that might
otherwise generate incorrect estimates for some mRNA
levels.

Several methods pre-process the data from multiple
probe pairs to estimate the mRNA level for each gene.
We examined three methods: MAS 5.0, GCRMA and
dChip. MAS 5.0 (Microarray Suite version 5.0) estimates
the expression of each gene by computing differences
(PM–MM) for each probe pair. For a given gene, probe
pairs often generate PM–MM differences that diverge
markedly from each other. These differences may be due
to cross-hybridization from other genes, or to manufactur-
ing biases. MAS 5.0 addresses this problem by discarding
differences that diverge beyond a cut-off, and averaging
the remaining differences (15).

DNA-Chip analyzer (dChip) exploits the observation
that a specific probe generates highly reproducible data,
even when multiple probes for a single mRNA generate
data that diverge from each other. The dChip algorithm
generates a model for the behavior of each probe from
all microarrays in a given experiment, and then generates
a model to estimate the expression of each gene (16).
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Figure 7. LFDR facilitated comparison of different responses according
to gene function. Probe sets were assigned to six categories according
to: whether they responded (LFDR <10%) or failed to respond
(LFDR >90%) to UV and IR; or whether they differed (LFDR <4%)
or failed to differ (LFDR >90%) among smokers, former smokers and
never smokers. The number of probe sets in each LFDR category appears
below the category. Some GO (Gene Ontology) functions were enriched
or depleted (white bars) compared to functions in the non-responding
probe sets (black bars). The percentage of probe sets with a specific
function appears as the height of each bar, and the number of probe
sets with that function appears above each bar. Asterisks denote the sig-
nificance of enrichment or depletion of gene functions by Fisher’s exact
test (*P<10�2; **P<10�3; ***P<10�4).
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The model includes methods for handling cross-
hybridizing probes and contaminated regions on the
microarray.

GCRMA (GC-robust multi-array analysis) uses a nor-
malization algorithm that includes compensation for the
GC content of the oligonucleotides. Gene expression is
estimated using the One-Step Tukey’s Biweight Estimate,
which yields a weighted mean that is relatively insensitive
to outliers (17,18).

To compare the three pre-processing methods, we
applied LFDR to the UV and IR responses. The
methods identified UV-responsive genes with different
efficiencies (Figure 8A). GCRMA and dChip identified
the largest number of genes with changes in expression
(LFDR <10%): 2063 and 2259 probe sets, respectively.
In contrast, MAS 5.0 identified only 1516 probe sets. The
methods also identified IR-responsive genes with different
efficiencies. GCRMA and dChip identified 1146 and 1337
probe sets, respectively, while MAS 5.0 was again less
effective, identifying only 815 probe sets. Thus, MAS 5.0
consistently identified fewer responsive genes than either
GCRMA or dChip.

We compared the genes identified by the different
pre-processing methods. MAS 5.0, GCRMA and dChip
showed significant concordance in identifying UV-
responsive genes (Figure 8B–D). However, some genes
yielded discordant results when analyzed by the three
methods, as revealed by scatter plots of fold-change in
expression (Figure 6C–E). The differences were biased:
dChip tended to report smaller fold-changes than
GCRMA or MAS 5.0 (Figure 6C and E). On the other
hand, the methods rarely reported opposite changes in
expression: a single gene was induced according to
dChip, but repressed according to GCRMA (Figure 6E).

Despite overall concordance among pre-processing
methods, significant numbers of genes reported as
changing by one method (LFDR <10%) were reported
as not changing by another method (LFDR >90%). For
example, of the 2259 genes identified responsive to UV
according to dChip, 11% (238 genes) were not responsive
according to MAS 5.0, and 12% (275 genes) were not
responsive according to GCRMA (Figure 8B and D).
Discordant identification of genes as changing versus not
changing also occurred between GCRMA and MAS 5.0
(Figure 8C). Thus, caution must be exercised in interpret-
ing the results for a specific gene.

The correlation coefficients for the different methods
were:

r=0.84 for dChip versus MAS 5.0;
r=0.92 for GCRMA versus MAS 5.0;
r=0.89 for dChip versus GCRMA.

The correlations among the three methods were high
enough to provide confidence that any one of the
methods provided reasonable data for comparing the
UV and IR responses. However, note that these
correlations were no higher than the IR/IR and UV/UV
correlations (Figure 6B). This was unexpected, since the
correlations among the different pre-processing methods
were based on a single set of raw UV response data, while

the IR/IR and UV/UV correlations were based on two
distinct sets of data from different sets of individuals.
Therefore, our analysis provides further evidence that
pre-processing methods may affect the apparent
outcomes of microarray experiments.

LFDR reveals changes in gene expression from
smoking exposure

To illustrate the simultaneous application of LFDR to
data from a three-armed experiment, we analyzed
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Figure 8. Different methods for pre-processing microarray data
generated different results. (A) Different methods identified different
numbers of genes that changed or failed to change after UV or IR.
We estimated expression levels from raw oligonucleotide microarray
data using three pre-processing methods: MAS 5.0, GCRMA and
dChip. SAM identified genes that changed (LFDR<10%) or
remained unchanged (LFDR >90%) after cells were exposed to UV
or IR. (B) Comparison of dChip versus MAS 5.0. The table and Venn
diagram show the concordant and discordant UV responses identified
from data pre-processed by dChip and MAS 5.0. (C) Comparison of
GCRMA versus MAS 5.0. The table and Venn diagram show fewer
discordant UV responses between these two methods, when compared
to dChip versus MAS 5.0. (D) Comparison of dChip versus GCRMA.
The table and Venn diagram show the largest number of concordant
UV responses (1554 probe sets) between these two methods, when
compared to dChip versus MAS 5.0, or to GCRMA versus MAS 5.0.
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Figure 9. LFDR facilitated comparison of three sample classes defined by smoking history. Probe sets measured gene expression in epithelial cells
obtained by bronchoscopy from three sample classes: 40 current smokers; 16 former smokers; and 25 individuals who had never smoked. We used
multi-class SAM to identify the top-ranked 750 probe sets associated with the three classes (current, former and never smokers), and analyzed the
probe sets by hierarchical clustering of the probe sets ranked: (A) 1–250, (B) 251–500 and (C) 501–750. Hierarchical clustering was performed
separately for samples in each class. Yellow represents increased expression and blue represents decreased expression relative to the median for each
probe set, as quantified in the color scale (lower right). The ranges for q-value and LFDR are shown to the left of each heat map. Current and never
smokers showed large differences in clusters for metallothionein genes (red bar) and for genes involved in detoxification of xenobiotics (green bar).
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microarray data from the Smoking Induced Epithelial
Gene Expression (SIEGE) database (13). At the time of
this analysis, the SIEGE database contained data from 40
current smokers, 13 former smokers and 25 never
smokers.

We used multi-class SAM, which generates the d-score
from Fisher’s discriminant. For gene (i), the d-score is
given by dðiÞ ¼ rðiÞ= sðiÞ þ s0½ �, where

rðiÞ ¼

P
k nkQ
k nk

� �X
k
nk xkðiÞ � xðiÞ½ �

2

� �1=2

2

Using these multi-class d-scores, we estimated the
LFDR and q-value for each probe set. A total of 750
probe sets had a q-value �5%. However, the LFDR for
these probe sets rose to values as high as 18%, confirming
the observation that a given q-value may correspond to a
much higher LFDR.

To examine the utility of the top-ranked probe sets
relative to less highly-ranked probe sets, we applied hier-
archical clustering to the probe sets ranked 1–250, ranked
251–500, and ranked 501–750 (Figure 8). For the probe
sets ranked 1–250, the q-value ranged from 0.3 to 0.6%
and the LFDR ranged from 0.3 to 4.0% (Figure 9A). The
heat map successfully distinguished current from never
smokers. Former smokers did not appear as a distinct
class, but instead resembled either current or never
smokers. When we used two-class SAM to search specif-
ically for genes that distinguished former smokers from
current and never smokers, we identified only 18 probe
sets with a q-value of 5%, and failed to find any probe
sets with a reliable LFDR.

For the probe sets ranked 251–500, the distinction
between current and never smokers was still apparent,
but not as clear (Figure 9B). For the probe sets
ranked 501–750, the distinction among the classes was
barely discernable, even though the q-values were <5%
(Figure 9C). Therefore, LFDR was more useful than
q-value for identifying genes associated with smoking
exposure.

We examined functions of the genes that correlated
most strongly with smoking status. The genes associated
with the 250 top-ranked probe sets (LFDR <4%)
included a cluster of genes strongly expressed in current
smokers, but not in former or never smokers (Figure 9,
green bar). This cluster included 18 probe sets with known
functions in the detoxification of xenobiotics: CYP1B1
(a cytochrome P450 family member), GPX2 (glutathione
peroxidase 2), and several aldo-keto reductase family
members. Many of the genes in this cluster have
previously been reported to have functions in metaboli-
zing the toxins in tobacco smoke (19–23).

A second cluster was strongly repressed in current
smokers compared to never smokers, and showed
variable responses in former smokers (Figure 9, red bar).
This cluster included seven probe sets for metallothionein
genes and one probe set for an unknown gene. In previous
studies, acute exposure to tobacco smoke increased the
expression of metallothionein genes (24). This finding
raises the possibility that smoking might first induce

pathways for metabolizing heavy metals, and then
suppress the pathways after chronic exposure.
Genes associated with smoking were distinct from genes

that responded to UV and IR. LFDR facilitated such
comparisons, even though different laboratories collected
the data on different microarray platforms (U95A versus
U133A, Affymetrix). Of the 21 unique probe sets in the
detoxification and metallothionein clusters, only six probe
sets responded to either UV or IR, while 12 probe sets
failed to respond to both UV and IR. Smoking-related
genes were enriched for functions in electron transport,
cell adhesion, and carbohydrate metabolism, but not for
functions characteristic of the IR and UV responses, such
as cell cycle, mitosis, apoptosis, or DNA repair (Figure 7).
Although cell adhesion genes were enriched among
smoking responses, they were depleted among UV and
IR responses. Thus, genes associated with smoking
differed significantly from genes responsive to UV or IR.
The distinct responses to smoking may have been due

to several factors. Responses were measured in different
cell types: lung epithelial cells for smoking exposure
and lymphoblastoid cells for UV and IR. Responses
were measured at different time points: during chronic
exposure to tobacco smoke and only hours after a single
UV or IR dose. Nevertheless, many of the distinct
responses to smoking are likely due to the different
effects of tobacco, UV and IR.

DISCUSSION

LFDR can be used to identify genes that change, or fail
to change, in response to a biological perturbation.
Computer simulation demonstrated that LFDR accu-
rately identifies such genes. LFDR <10% identified
96% of genes with changes equal to twice the standard
deviation of noise in the data. Conversely, LFDR >90%
identified 84% of genes with no change.
An important limitation is that LFDR requires data

from enough probe sets to permit a reliable estimate.
Here, we estimated the LFDR from 12 625 probe sets. A
10% window used 1260 probe sets, which produced stable
estimates for LFDR, but excluded the 10% of probe sets
with the most extreme d-scores (Figure 1). On the other
hand, a 1% window generated estimates for 99% of the
probe sets, but the estimates fluctuated for genes with
low d-scores. To ameliorate these problems, one can
apply different size windows, depending on d-score.
A second limitation is that it is difficult to estimate

LFDR for probe sets with the most extreme d-scores.
For example, in a data set with 10 000 probes, even a
1% window fails to generate a LFDR for the 100 probe
sets with the most extreme d-scores. To address this
problem, one can use the LFDR from genes with less
extreme d-scores to provide an upper limit for the LFDR.
The LFDR for a given gene depends on genes with

similar d-scores. In contrast, the q-value for a given gene
depends on the set of all genes with more extreme d-scores
in each specific experiment. Although there is a one-to-one
relationship between q-value and LFDR, the relationship
varied among different experiments (Figure 3B–D): genes
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with a q-value of 10% could be interpreted with an
unwarranted level of confidence, since LFDR for the
gene was 28–37%, depending on the experiment. Thus,
LFDR provides a more direct estimate for the likelihood
that a gene has changed expression.
Here, we report that LFDR >90% can identify genes

that fail to change expression. However, LFDR >90%
may falsely identify a gene as not changing due to a
high level of noise. A probe set may generate noise due
to inconsistent manufacturing or cross-hybridization to
other genes. Such noise should be absent if the same
probe set has LFDR <10% after a different perturbation.
Indeed, we were able to identify genes without changes
with particularly high accuracy if those genes changed
expression in another experiment (Figure 4).
Other authors have addressed the problem of analyzing

microarray experiments performed on different platforms.
Bayesian approaches generated meta-signatures shared
by multiple datasets for chronic lymphocytic leukemia
and for breast cancer (25,26). However, approaches
are needed to compare as well as combine different
experiments.
Here, we have shown that LFDR can identify genes

with and without changes in expression, and then used
several tools to compare different experiments. First,
Venn diagrams displayed the number of probe sets with
concordant and discordant responses. Second, scatter
plots displayed the magnitudes and directions of responses.
Third, the Pearson correlation coefficient provided a single
parameter for the similarity between experiments. Finally,
gene ontology compared different experiments in terms of
the functions of responsive genes, and determined whether
the responses to different perturbations were enriched or
depleted for specific functions.
We used these tools to analyze three methods for pre-

processing the UV response data: MAS 5.0, dChip and
GCRMA. SAM identified more responsive genes with
data from dChip and GCRMA. Since SAM identifies
genes based on changes in expression relative to the
standard deviation among samples, our results suggest
that MAS 5.0 may introduce more uncertainty than
dChip or GCRMA. MAS 5.0 eliminates outlier data
from individual probe pairs by employing a fixed cut-off.
Thus, a probe pair may influence the estimate for gene
expression in one hybridization but not another, depend-
ing on whether the probe pair data exceeds the cut-off
for outliers. Thus, the cut-off could generate noise by
accentuating otherwise modest fluctuations in the raw
data. Such phenomena may occur frequently enough to
explain why MAS 5.0 identified fewer responsive genes
than dChip and GCRMA. Nevertheless, data from the
three pre-processing methods showed a high level of cor-
relation with each other.
Armed with tools for comparing microarray experi-

ments, we defined similarities and differences among
responses to DNA the damaging agents, UV, IR and
tobacco smoke. The UV response included significantly
more genes than the IR response. Some genes even
showed discordant responses between UV and IR.
Tools for comparing experiments provided insights in

terms of gene function. For example, cell adhesion genes

were depleted among the UV and IR responses, but
enriched among tobacco responses. Electron transport
genes were neither enriched nor depleted among the UV
and IR responses, but strongly enriched among tobacco
responses.

These results for gene function illustrate LFDR can
complement methods such as gene set enrichment
analysis (GSEA) (27). GSEA focuses on gene sets
associated with a specific biological function, and
determines whether a specific gene set undergoes a
coordinated change in gene expression. For example,
GSEA may report that a particular gene set is enriched
for genes that increase expression, compared to genes that
decrease expression in response to a perturbation. GSEA
does not account for the genes that fail to change expres-
sion. LFDR analyzes gene sets from the perspective of the
responsive versus unresponsive genes. Thus, LFDR
provides data on whether responsive genes are enriched
for a specific function, using the number of unresponsive
genes as a control.

In conclusion, LFDR facilitated comparisons among a
broad range of different experiments, including responses
to different biological perturbations. LFDR can also be
used to compare proteomic and genomic responses to the
same perturbation. For example, a perturbation might
induce changes in the level of a phosphorylated protein
without affecting the transcription of the corresponding
gene. Software for calculating LFDR is available at the
SAM website http://www-stat.stanford.edu/�tibs/SAM/.
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