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Abstract

Introduction: We developed a machine learning model to predict whether or

not a cochlear implant (CI) candidate will develop effective language skills

within 2 years after the CI surgery by using the pre-implant brain fMRI data

from the candidate. Methods: The language performance was measured 2 years

after the CI surgery by the Clinical Evaluation of Language Fundamentals-

Preschool, Second Edition (CELF-P2). Based on the CELF-P2 scores, the CI

recipients were designated as either effective or ineffective CI users. For feature

extraction from the fMRI data, we constructed contrast maps using the general

linear model, and then utilized the Bag-of-Words (BoW) approach that we pre-

viously published to convert the contrast maps into feature vectors. We trained

both supervised models and semi-supervised models to classify CI users as

effective or ineffective. Results: Compared with the conventional feature extrac-

tion approach, which used each single voxel as a feature, our BoW approach

gave rise to much better performance for the classification of effective versus

ineffective CI users. The semi-supervised model with the feature set extracted

by the BoW approach from the contrast of speech versus silence achieved a

leave-one-out cross-validation AUC as high as 0.97. Recursive feature elimina-

tion unexpectedly revealed that two features were sufficient to provide highly

accurate classification of effective versus ineffective CI users based on our cur-

rent dataset. Conclusion: We have validated the hypothesis that pre-implant

cortical activation patterns revealed by fMRI during infancy correlate with lan-

guage performance 2 years after cochlear implantation. The two brain regions

highlighted by our classifier are potential biomarkers for the prediction of CI

outcomes. Our study also demonstrated the superiority of the semi-supervised

model over the supervised model. It is always worthwhile to try a semi-

supervised model when unlabeled data are available.

Introduction

Approximately 1–6 infants per 1000 are born with severe

to profound sensorineural hearing loss (SNHL) (Northern

1994; Bachmann and Arvedson 1998; Kemper and Downs

2000; Cunningham and Cox 2003). If left untreated,

hearing loss can have detrimental effects on the speech,

language, and communication abilities of children (Ching

et al. 2009; Luckner and Cooke 2010; Pimperton and

Kennedy 2012; Yoshinaga-Itano 2014). These children will

have difficulties in developing language abilities due to

their inability to detect acoustic-phonetic signals.
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Cochlear implantation, a surgical procedure that implants

an electronic device (the cochlear implant or CI) into the

cochlea, is effective for restoring hearing, even in severely

to profoundly deaf patients with hearing thresholds of

75 dB HL and above (Geers et al. 2009; Hayes et al. 2009;

Moog and Geers 2010; Geers and Hayes 2011). In infants

and toddlers with prelingual or congenital SNHL, more

than two decades of accumulated data show that many of

these children can develop and continue to maintain

good speech and language abilities with the use of a CI,

even in the long term (Beadle et al. 2005; Geers and

Sedey 2011; Geers et al. 2011; Ruffin et al. 2013). How-

ever, variability in speech and language outcomes among

this age group of CI patients remains high and individual

outcomes may be difficult to predict (Zaidman-Zait and

Most 2005; Lazard et al. 2010; Niparko et al. 2010; Tobey

et al. 2013). According to the Food and Drug Administra-

tion, approximately 38,000 children in the United States

received a CI as of December 2012 (NIDCD, 2013). While

many congenitally deaf CI recipients achieve near-normal

language skills, about 30% of the recipients do not derive

the expected benefit from the surgery (Niparko et al.

2010). The reasons underlying the varied benefits across

different individuals are not always clear. Furthermore,

current behavioral methods used to predict language out-

comes for a CI candidate prior to surgery may be inaccu-

rate, particularly in infants. Improved prognostic

information would be helpful to clinicians and parents in

setting expectations during the CI decision process, par-

ticularly given the high medical cost and anesthetic risks

of this surgery. The motivation for this study using fMRI

and machine learning classification of pre-implant brain

activation to auditory stimulation in CI candidates is to

develop a neurobiological biomarker for speech and lan-

guage outcomes.

Numerous studies investigating factors that influence

language outcomes following cochlear implantation have

been reported in the literature. Nikolopoulos et al. (1999)

first studied the influence of age at implantation with 126

prelingually deafened children younger than 7 years of

age at the time of implantation. Regression analysis and

Spearman rank correlation coefficients revealed that lan-

guage outcome was negatively correlated with age at

implantation. Since then, several studies investigating the

influence of age at implantation on speech and language

outcomes have been published (Baumgartner et al. 2002;

Manrique et al. 2004; Svirsky et al. 2004, 2007; Connor

et al. 2006), for different age of participants, etiology of

deafness, and method for measuring language skills. In

addition, mutations in gap junction protein beta2 (GJB2)

were found to be a common cause of SNHL. Influence of

GJB2 mutations on cochlear implantation outcomes was

analyzed in (Bauer et al. 2003; Cullen et al. 2004; Sin-

nathuray et al. 2004a,b), by comparing the language per-

formances between groups with and without GJB2

mutations. Other influencing factors include inner ear

malformation (Eisenman et al. 2001; Kim et al. 2006),

meningitis (El-Kashlan et al. 2003), communication mode

(oral vs. total) (Osberger et al. 1998; Osberger and Fisher

2000; Kirk et al. 2002), pre-implant speech recognition

skills (Zwolan et al. 1997; Osberger and Fisher 2000),

pre-implant residual hearing (Gordon et al. 2001;

Niparko et al. 2010), parent–child interactions (Niparko

et al. 2010), and socioeconomic status (Niparko et al.

2010). Approximately 50% of the variability in post-

implant speech perception outcomes was explained by

factors like duration of hearing loss before implantation,

length of implant use, mode of communication, and

implant characteristics (Sarant et al. 2001). Although a

variety of influencing factors have been investigated, a

predictive model combining these variables has not been

developed. Furthermore, despite extensive pre-implant

social, behavioral and clinical work-ups by pediatric

cochlear implant teams, there continues to be variability

in outcomes that does not appear to be accounted for by

any of these parameters.

Within the past decade, functional Magnetic Reso-

nance Imaging (fMRI) has been discussed as a way to

assess auditory function in the brains of children as well

as adults (Scheffler et al. 1998; Anderson et al. 2001;

Lazeyras et al. 2002; Patel et al. 2007; Propst et al. 2010).

With improvements in acquisition, preprocessing, and

analysis, it has been suggested that pre-implant fMRI

could be translated into an objective predictor for CI

outcomes (Patel et al. 2007). Indeed, the hypothesis

motivating the design for our original fMRI study in

infants with congenital SNHL was that the pre-implant

cortical activation patterns revealed by fMRI during

infancy would correlate with auditory performance

2 years after the CI surgery. Meanwhile, machine learn-

ing methods have begun to demonstrate success for ana-

lyzing neuroimaging data and show promise for

translation of neuroimaging findings in populations to

making predictions for individual patients (De Martino

et al. 2008; Pereira et al. 2009; Cuingnet et al. 2011). In

this work, we attempted to develop a machine learning

model based on pre-implant fMRI data to predict the

language outcomes 2 years after cochlear implantation in

congenitally deaf infants with SNHL. The Support Vector

Machine (SVM) model we developed uses pre-implant

fMRI data from an individual CI candidate to predict

whether or not the candidate will develop effective lan-

guage skills within 2 years after the cochlear implanta-

tion. This type of prognostic model could be extremely

useful and is currently not available to clinicians by any

other means.
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Materials and Methods

Participants

Forty-four infants and toddlers participated in a clinically

indicated MRI brain study with sedation. This study was

conducted under the approval of Cincinnati Children’s

Hospital Medical Center Institutional Review Board (IRB).

Twenty-three participants had SNHL (12 females, average

age = 20.0 months, range = 8–67 months). All the SNHL

children received the CI surgery. Their MRI data were

acquired before the surgery. The remaining 21 participants

were normal hearing (NH) controls (16 females, average

age = 12.1 months, range = 8–17 months). They received

clinical MRI scans with sedation for indications not likely to

be related to the auditory system or temporal-parietal regions

of the brain. Inclusion criteria for the control group included:

gestational age of at least 36 weeks, normal otoacoustic

emissions, and normal neuroanatomy determined by the

neuroradiologist upon review of anatomical MR images. NH

children who did not meet these criteria were excluded from

this study. As a result, the average age of the NH children was

not perfectly matched to the average age of the SNHL

children, even though we required the NH subjects to have

ages matched to the SNHL group when we were collecting the

data. However, this age difference will not invalidate our analy-

sis as discussed in the Discussion section. Informed consent of

parent or guardian was obtained prior to the study protocol.

Cochlear implantation outcomes

Two years after the CI surgery, we administered a battery

of tests to assess hearing, speech, language, and cognitive

function in the CI recipients. The tests were used to evalu-

ate the CI recipients’ auditory, speech, and language out-

comes following CI at a point in development when

standardized behavioral measures of these skills could be

used. For this study, we used the data from the Clinical

Evaluation of Language Fundamentals-Preschool, Second

Edition (CELF-P2) (Wiig et al. 2004) as the primary lan-

guage outcome measure of interest. The CELF-P2 detects

language delay or language impairment in children between

the ages of three and 7 years. The subtests of CELF-P2

focus on different language domains such as word struc-

ture, sentence structure, expressive vocabulary, concepts,

and following directions. These subtests help in the assess-

ment of both receptive and expressive components of lan-

guage. CELF-P2 is standardized on more than 1500

children including children with hearing impairment (HI).

Additionally, age equivalent norms are available for direct

comparison between the target and control populations.

CELF-P2 is routinely used in the clinic as a diagnostic as

well as therapeutic tool to evaluate and monitor the pro-

gress in children’s language abilities. Thus, this valid and

reliable test (Friberg 2010) was used in this study at the 2-

year follow-up stage to evaluate CI recipients’ language

skills post-implantation. Sixteen of the 23 CI recipients had

2-year follow-up scores for the CELF-P2. Follow-up scores

for the remaining seven children were not available for rea-

sons such as family moving away from the area or a toddler

unwilling to comply with the testing during a clinical follow

up visit. There were 5 scores/indices for the CELF-P2,

namely the core language score, receptive language index,

expressive language index, language content index, and lan-

guage structure index. The follow-up scores for the 16 par-

ticipants are listed in Table 1.

Table 1. CELF-P2 test scores for the CI recipients.

Participant index Core language Receptive language Expressive language Language content Language structure Sum Effective

1 45 45 45 45 45 225 No

2 45 45 45 45 45 225 No

3 45 45 45 45 45 225 No

4 45 45 56 45 59 250 No

5 50 53 50 57 55 265 No

6 53 59 53 53 50 268 No

7 53 59 57 59 57 285 No

8 65 63 65 67 71 331 Yes

9 69 63 75 69 81 357 Yes

10 77 67 69 71 79 363 Yes

11 65 63 77 75 88 368 Yes

12 69 71 75 79 83 377 Yes

13 73 69 81 75 86 384 Yes

14 73 73 83 77 91 397 Yes

15 79 69 81 79 90 398 Yes

16 81 75 87 79 90 412 Yes

CELF-P2, Clinical Evaluation of Language Fundamentals-Preschool, Second Edition; CI, cochlear implant.
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Each of the five scores/indices of the CELF-P2 used in

this study provides a standard score ranging from 45 to

155 with a mean of 100 and a standard deviation of 15

(Table 1). The score 45 corresponds to a percentile rank

of <0.1, whereas a score of 155 corresponds to a per-

centile rank of >99.9. In children with hearing loss and

particularly with severe to profound congenital SNHL,

the scores are substantially lower than the maximum

value. The five scores/indices are highly correlated with

each other. Based on the 16 samples in Table 1, we cal-

culated the pair-wise correlations between the five scores/

indices. The pair-wise Pearson’s correlation coefficient

ranged from 0.90 to 0.95, and the Spearman’s correlation

coefficient ranged from 0.87 to 0.92. Given the continu-

ous outcome scores, a regression model might be more

desirable than a classification model. However, regression

function estimation is more challenging and requires

more samples (Devroye et al. 1996; Wang et al. 2010).

Considering our limited sample size as well as the con-

spicuous gap in the outcome scores (second to the last

column in Table 1), we decided to train a classification

model at present. To assign the class labels based on the

CELF-P2 scores, we performed a k-means clustering with

k = 2. The two clusters were labeled as effective and

ineffective CI users, respectively. The effective group

included nine subjects (4 females, average age =
21.1 months) with high follow-up scores, whereas the

other cluster with seven subjects (3 females, average

age = 19.7 months) was ineffective. As shown in Table 1,

participants 1–7 were ineffective subjects with class label

�1, and the remaining were effective subjects with class

label +1. The class labels for the seven children (5

females, average age = 18.7 months) without follow-up

scores were unknown. We then trained classification

models to separate the effective from the ineffective

CI-users.

It is well-known that pre-implant residual hearing is a

good indicator for the subsequent success of cochlear

implantation. Specifically, children with more residual

hearing are likely to be effective CI-users, whereas those

with less residual hearing tend to be ineffective CI-users.

Our present work would be less meaningful, if the effec-

tive and ineffective CI-users in our project could be dis-

tinguished merely based on the pre-implant hearing

thresholds. To exclude this possibility, we plotted the pre-

implant hearing thresholds and post-implant language test

scores in Figure 1. Obviously, the effective and ineffective

CI-users were not separable based on the pre-implant

hearing thresholds alone. Furthermore, our previous

regression analysis using age at implantation and pre-

implant hearing threshold as independent variables also

failed to predict the post-implant language test scores

with a satisfactory accuracy.

MRI data acquisition & preprocessing

Anatomical images for this study were acquired using a

Siemens 3T Trio scanner in the clinical Department of

Radiology. Isotropic images of the brain were acquired

using an inversion recovery prepared rapid gradient-echo

3D method (MP-RAGE) covering the entire brain at a

spatial resolution of 1 9 1 9 1 mm in an axial orienta-

tion. These high-resolution 3D-T1-weighted images were

used for coregistration of fMRI scans which were also

acquired during this scheduled MRI.

Functional MRI (fMRI) data were acquired using the

silent background auditory stimulation paradigm we have

referred to as Hemodynamics Unrelated to Sounds of

Hardware (HUSH) paradigm (Schmithorst and Holland

2004). This approach allows auditory stimuli to be pre-

sented to participants during silent intervals of the gradi-

ents with echo planar images acquired during the peak of

the hemodynamic response to the stimulus, 6–12 sec after

onset. Three auditory stimuli consisting of noise, speech

and silence were presented to the participants via cali-

brated MR-compatible headphones. The pre-implant

hearing threshold for each participant was measured

using standard audiometry methods to yield a hearing

level in decibels for each ear. The sound level of the audi-

tory stimulus was set at an intensity of 10–15 dB above

the measured hearing thresholds for each patient using a

calibrated, MRI compatible audio system (Avotec Silent

Scan Audio System, SS3100; Avotec Inc., Stuart, FL)

Figure 1. The pre-implant hearing threshold and post-implant

language test score for the participants. The post-implant language

test score is the sum of the five CELF-P2 test scores (Table 1). Red

circle points represent ineffective CI-users. Green square points

represent effective CI-users. Blue diamond points represent unlabeled

samples. Since the unlabeled samples do not have the post-implant

language test scores, we set their values to be 300 in order to show

them in this figure. Furthermore, two of the seven unlabeled samples

have the same pre-implant hearing threshold of 100. They are

overlapped in the figure. Thus, it appears that there are only six

diamond points in the figure.
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driven by a computer with discrete setting that was cali-

brated to the SPL level at the headphones. Auditory stim-

uli were presented for 5 sec duration and fMRI data were

acquired during periods of silence between auditory pre-

sentations for 6-sec (Schmithorst and Holland 2004). A

timing diagram for the fMRI data acquisition and stimu-

lation paradigm is appended in the supplementary mate-

rials (Fig. S1). Three contrasts can be computed from this

three-phase fMRI data: speech versus silence, noise versus

silence, and speech versus noise.

Cortical activation maps for each contrast were created

on a voxel-by-voxel basis. Data preprocessing was per-

formed using standard procedures in SPM8. Images were

realigned to remove residual motion effects (Thevenaz

et al. 1998), normalized to the infant template in the

MNI space (Friston et al. 1995; Altaye et al. 2008), and

smoothed with an 8 mm Gaussian kernel. Finally, the

general linear model (GLM) (Worsley et al. 2002) was

used to construct three separate contrast t-maps (speech

vs. silence, speech vs. noise and noise vs. silence) for each

individual, which were submitted for subsequent machine

learning analysis. The reported brain areas and coordi-

nates are in the MNI framework.

Feature extraction

We used the Bag-of-Words (BoW) approach that we pre-

viously developed for feature extraction (Tan et al. 2013).

The BoW approach was originally developed in document

classification for assigning a document to two or more

classes. All the words occurring across all of the docu-

ments constitute a dictionary. Suppose we have N words

in the dictionary. Based on this dictionary, a document

can be represented into an N-dimensional feature vector,

with each word becoming a feature. The value of a fea-

ture is measured as the occurrence frequency of the corre-

sponding word in the document. We have introduced

this idea to the contrast maps. By analogy, each contrast

map represents a document, each characteristic contrast

region is a word, and all the characteristic contrast

regions occurring across all of the contrast maps consti-

tute a dictionary. Given a contrast map, a series of char-

acteristic contrast regions were derived by thresholding

the contrast map and subsequently merging the selected

voxels into spatially coherent regions. On the basis of the

Student’s t-distribution (with the degree of freedom of

60), we had seven thresholds, that is, 1.671, 2.000, 2.390,

2.660, 2.915, 3.232, and 3.460, corresponding to the one-

sided P-values of 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001,

and 0.0005, respectively. The seven thresholds gave rise to

seven contrast ranges [1.671, 2.000), [2.000, 2.390), ���,
[3.460, + ∞). We also considered the corresponding neg-

ative contrast ranges, (�∞, �3.460], ���, (�2.390,

�2.000], (�2.000, �1.671], because the contrast map

speech versus silence included both speech>silence and

silence>speech. The positive contrast ranges came from

the contrast speech>silence, whereas the negative contrast

ranges came from the contrast silence>speech. Each con-

trast range was considered separately; take the contrast

range [1.671, 2.000) for example. We first selected the

voxels with contrast value within this range. The selected

voxels were then merged into regions by connecting the

voxels adjacent to each other in the 3D space, in which

each voxel had 26 neighbors if it was not on the border.

Voxels that were connected made up a region, that is, a

connected component, which was added into the dic-

tionary as a word. We extracted all the words occurring

across all the subjects and all the contrast ranges to build

a dictionary for each type of contrast map. The dictionary

was then applied to each subject to convert his/her corre-

sponding type of contrast map into a feature vector. The

value of a feature was calculated as the mean contrast

value of the voxels within the corresponding region.

We analyzed two sets of BoW features. BoW21 con-

structed the dictionaries exclusively from the 21 NH sub-

jects, whereas the BoW44 used all the 44 subjects including

the 23 SNHL subjects to construct the dictionaries. Hypo-

thetically, the activated/deactivated brain regions from the

NH subjects should be included in the dictionaries, because

they represented the actual brain activation pattern in

response to external auditory stimuli in sedated infants and

were likely to distinguish between effective versus ineffec-

tive CI-users. With those considerations, we did not con-

sider the feature set which constructed the dictionary using

the 23 SNHL subjects alone as we expected such a feature

set would miss a number of features that would be critical

for predicting effective or near-normal speech and language

outcomes. For comparison purposes, we also trained mod-

els with voxel features. In this approach, each voxel became

a single feature, the value of which was the image intensity

of this voxel in the contrast maps (Ryali et al. 2010;

Nouretdinov et al. 2011; Rizk-Jackson et al. 2011; Broder-

sen et al. 2012; Oliveira et al. 2013; Hart et al. 2014). For

convenience, we denoted this approach as VOX.

Supervised SVM model

The input for the supervised SVM model training is a

training set D = {(X1, y1), ���, (XM, yM)}, where M is the

number of training samples, Xm = (x1, . . ., xN) and

ym 2 {�1, + 1} are the feature vector and class label for

the m-th sample, respectively, N is the number of fea-

tures. Our learning objective is to estimate the model

ŷ ¼ wX þ b, where w = (w1, . . ., wN) is the weight vector

and b is the bias by minimizing the objective function in

Equation (1).
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1

2
kw2k þ C

XM

i¼1

ni

s:t:8Mi : yiðwXi þ bÞ� 1� ni; ni � 0

(1)

where C is a regularization parameter controlling the

trade-off between margin and training error, ξ is the slack

variable.

Semi-supervised SVM model

The inputs for the semi-supervised SVM model training

are a set of labeled samples D1 = {(X1, y1), ���, (XM, yM)}
and a set of unlabeled samples D2 = {X1, . . ., XK}, where
M is the number of labeled samples and K is the number

of unlabeled samples. In our project, we had seven unla-

beled samples, whose follow-up scores were missing. The

semi-supervised model has the same format as that of the

supervised model, namely ŷ ¼ wX þ b, but with a differ-

ent objective function as defined in Equation (2).

1

2
kw2k þ C

XM

i¼1

ni þ U
XK

j¼1

n�j

s:t:8Mi : yiðwXi þ bÞ� 1� ni; ni � 0

8Kj : yjðwXj þ bÞ� 1� n�j ; n
�
j � 0

1

K

XK

j¼1

maxð0; yjÞ ¼ r

(2)

where the first term measures the margin, the second and

third term measure the training errors on labeled samples

and unlabeled samples, respectively, C is the regulariza-

tion parameter for the labeled samples, and U is the regu-

larization parameter for unlabeled samples, r is the ratio

of positive samples within the unlabeled samples, which is

a user specified parameter.

The training process of a semi-supervised model includes

three steps: (1) Train a supervised model based on the

labeled samples, followed by application of this initial

model to the unlabeled samples. The K * r unlabeled sam-

ples with the highest predicted scores are assigned to +1,
and the remaining are assigned to �1. (2) Assign a tempo-

rary parameter Utmp and re-train a new model with all of

the samples, including the unlabeled samples. Switch the

labels of a pair of unlabeled samples according to a certain

rule to achieve the maximal drop of the objective function

in Equation (2). Repeat this process until no pair of the

unlabeled samples meets the switching rule. (3) Increase the

value of Utmp and then repeat step (2). When Utmp ≥ U,

terminate the training process and output the model. In

this project, both the supervised and semi-supervised mod-

els were trained using the SVMlight package (Joachims

1999). Linear kernel was used for the SVM models.

Feature selection

The goal of feature selection was to find a subset of fea-

tures to approximate the relationships between the feature

vectors and the response variable, instead of using all the

features, which may include irrelevant features. We

employed the recursive feature elimination (RFE)

approach for feature selection. RFE performed feature

selection by removing the irrelevant features iteratively.

The algorithm started by training an SVM model with all

of the features. Based on the trained model, features were

ranked based on their absolute weights. Features with the

lowest absolute weights were discarded, and a new SVM

model with the new feature set was trained. This process

was repeated until the number of features reached the

predefined threshold.

Predicting new subjects

Given a new sample, whose class label was unknown

whereas feature vector X was available, we calculated the

ŷ by inserting X into the learned model ŷ ¼ wX þ b. If

ŷ� d, the new sample was predicted to have class label

+1. Otherwise, its class label was predicted to be �1. The

threshold d was set to be 0 by default. The semi-

supervised model and the supervised model had different

w and b, and consequently their predictions were different.

Model evaluation

We employed the Leave-One-Out Cross-Validation

(LOOCV) approach to evaluate the supervised models as

well as the semi-supervised models when the parameter r

was already known before the model training. For the

supervised model, we performed a LOOCV on the 16

labeled samples. Specifically, we performed 16 rounds of

training and testing, each round of which was called one-

fold of cross-validation. In the k-th fold, the k-th labeled

subject was used for testing, and the remaining 15 sub-

jects were used for training. In this way, each labeled sub-

ject was used for testing once. The model was evaluated

based on the predictions on the 16 testing samples accu-

mulated across the 16 folds of cross-validation. For the

semi-supervised model with parameter r set to be a pre-

defined value, the evaluation approach was generally the

same as that applied to the supervised model. We also

performed 16 rounds of training and testing, with each of

the labeled samples left-out for testing once. The only dif-

ference was that, for each fold of cross-validation, the

semi-supervised model had 22 training samples, including

15 labeled samples and seven unlabeled samples, whereas

the supervised model had only 15 training samples. Please

note the unlabeled samples were used only for training
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but not for testing, and both the supervised model and

semi-supervised model were tested on the same 16 labeled

samples.

For the semi-supervised model whose parameter r was

unknown before the model training and needed to be

optimized during the model training, we employed a

nested LOOCV approach for model evaluation. A flow-

chart for the nested LOOCV is shown in Figure 2. As we

see from Figure 2, the nested LOOCV consisted of an

outer LOOCV and an inner LOOCV. The outer LOOCV

was used for model evaluation, and the inner LOOCV

was used for parameter selection. In the k-th iteration of

the outer LOOCV, the k-th labeled subject was used for

testing, and the remaining 22 subjects, including 15

labeled samples and seven unlabeled samples, were used

for training and parameter selection. Since parameter r

was the ratio of positive samples within the unlabeled

samples, we considered r starting from 0 to 1, stepping by

0.1, which gave us 11 different values for r. Under each r

value, we performed an inner LOOCV on the 22 subjects,

which was the same as the LOOCV procedure described

in the previous paragraph except that we had only 15

instead of 16 rounds of training and testing here, because

the 22 subjects only included 15 labeled samples. Then we

selected the r value that led to the highest F-measure,

which was calculated based on the predictions on the 15

labeled samples. The F-measure was defined in Equation

(3).

sensitivity ¼ true positive

true positive + false negative

sensitivity ¼ true negative

true negative + false positive

F-measure ¼ 2 � sensitivity � specificity

sensitivity + specifity

(3)

The F-measure defined as the harmonic mean of sensitiv-

ity and specificity promotes a balance between sensitivity

and specificity of the classifier, and is often used as a sin-

gle measure of classification performance. Using the

selected r value, we trained a model with the 22 subjects,

and applied the trained model to the k-th labeled subject

for testing. Thus, we completed one iteration of the outer

LOOCV. There were 16 iterations for the outer LOOCV,

with each of the 16 labeled samples left-out for testing

once. The nested LOOCV was used only when the param-

eter r was tuned automatically. If r was predefined to be a

fixed value such as 0.6, the inner LOOCV was no longer

needed because there was no need to optimize the param-

eter r and the LOOCV as described in the previous para-

graph was used for the model evaluation in such a case.

More concretely, the nested LOOCV was only used in the

section Semi-supervised model with automatic parame-

ter selection. Based on the results in this section, parame-

ter r was set to be predefined values in the remaining

analysis of this study, and therefore the LOOCV was used

for model evaluation after this section, except for the

blind test on NH subjects.

On the basis of the predictions on the testing samples,

we calculated the sensitivity, specificity, accuracy, and area

under the receiver operating characteristic curve (AUC)

to estimate the generalization performance of the models.

Furthermore, we calculated the Pearson’s correlation coef-

Figure 2. A flowchart for the nested LOOCV that we used to

evaluate the semi-supervised model when the parameter r was

unknown before the model training. The outer LOOCV included 16

rounds of training and testing. For each round, one labeled sample

was left-out for testing, and the remaining 15 labeled samples and

the seven unlabeled samples were used for training. We submitted

these 22 samples to the inner LOOCV box. All the activities in the

inner LOOCV box were confined to these 22 samples. The goal of the

inner LOOCV box was to optimize the parameter r. Different r values,

ranging from 0 to 1 and stepping by 0.1, were tried in the inner

LOOCV box. Specifically, we performed a LOOCV on the 22 samples

for each value of r. An inner LOOCV included 15 rounds of training

and testing. For each round, one labeled sample was left-out for

testing, and the remaining 14 labeled samples and the seven

unlabeled samples were used for training. The LOOCV performance

was calculated based on the predictions on the 15 testing samples

accumulated across the 15 rounds of testing. The r value that

achieved the best LOOCV performance was selected. With the

optimized parameter r, we jumped out of the inner LOOCV box and

returned to the outer LOOCV box. Then we trained a model with the

optimized parameter r using the seven unlabeled samples and the 15

labeled samples in the blue ellipse, and applied this model to the left-

out labeled sample for testing. Thus, we completed one round of

training and testing for the outer LOOCV. This process was repeated

16 times, with each labeled sample left-out for testing once. The

predictions on those 16 testing samples were used for the evaluation

of the model.
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ficient (Pcorr) as well as the Spearman’s rank correlation

coefficient (Scorr) between the predicted scores and the

sum of the CELF-P2 test scores, which are listed in the

second to the last column in Table 1. Pcorr was used to

quantify the linear relationship, whereas Scorr was used

to measure the monotonic relationship. A model with

high correlations was desirable.

Results

Supervised model

As defined in Equation (1), the supervised model had one

user-defined parameter, C. The effect of the parameter C

on the classification performance is shown in Fig. S2. As

we see, the parameter C had negligible effect on the clas-

sification performance as long as C was larger than a

threshold, which was consistent with the previous empiri-

cal studies (Abidine and Fergani, 2013; Cherkassky and

Ma, 2004). When C was smaller than the threshold, the

classification performance was generally worse than the

stable state. In some cases, for example, BoW21 feature

set from the contrast speech versus noise, we may find a

parameter C that was smaller than the threshold but

achieved a slightly better performance than the stable

state. For robustness purposes, however, we set C = 1 for

the supervised models since the classification performance

reached the stable state when C = 1. The LOOCV perfor-

mance for the supervised SVM models is shown in

Table 2. Among the performance measures, we focused

on Pcorr and Scorr. We can see that the contrast speech

versus silence outperformed the other two contrasts,

which was consistent across the three types of features.

The VOX approach obtained almost zero correlations for

the contrasts noise versus silence and speech versus noise,

which suggested that these two contrasts had very limited

predictive power. Combining these two contrasts with the

contrast speech versus silence did not improve the classi-

fication performance, which implied that including these

two contrasts in the training added noisy features and

disturbed the classification. In comparison with the VOX

approach, our BoW approaches achieved better perfor-

mance for all the three contrasts. Additionally, the

BoW21 returned comparable performance as BoW44, but

with fewer features.

Semi-supervised model with automatic
parameter selection

The semi-supervised model had three parameters, namely

C, U and r, as denoted in Equation (2). The parameter U

is usually set to be equal to C, which is also followed by

the SVMlight package. Thus, we actually had two parame-

ters, namely C and r, for the semi-supervised model. If

the two parameters were optimized simultaneously, the

computation time would be considerably long, because

the number of combinations of the possible values for

these two parameters was large. For simplicity, it was

acceptable to start with parameter C fixed to be a reason-

able value (Chapelle et al. 2006; Nie et al. 2013). Based

on our previous experience and the results in Figure S2,

we started by setting C = 1 for the semi-supervised mod-

els. For the experiment in the current section, the param-

eter r was optimized automatically. The model was

evaluated using the nested LOOCV approach (Fig. 2).

Results are shown in Table 3. In comparison with the

supervised models whose performance is shown in

Table 2, the semi-supervised models achieved comparable

performance for VOX, and better performance for both

BoW21 and BoW44 across all of the three contrasts. We

also noticed that the correlations (Pcorr and Scorr) for

the contrast speech versus silence were considerably

Table 2. LOOCV performance for the supervised SVM models. The feature vectors from the three contrasts were concatenated to form the fea-

ture vector for the “Combine”. Due to the large number of features, we did not train the model with the three contrasts combined for VOX. The

best AUC, Pcorr and Scorr across the different feature sets was highlighted in bold.

Feature type Contrast No. of features Sensitivity (%) Specificity (%) Accuracy (%) AUC Pcorr Scorr

VOX Speech vs. Silence 26767 33.3 42.9 37.5 0.51 0.29 0.11

Noise vs. Silence 26767 44.4 42.9 43.8 0.54 0.04 0.04

Speech vs. Noise 26767 66.7 57.1 62.5 0.59 0.07 0.02

BoW44 Speech vs. Silence 1156 33.3 71.4 50.0 0.56 0.35 0.23

Noise vs. Silence 1216 55.6 71.4 62.5 0.63 0.21 0.13

Speech vs. Noise 803 66.7 71.4 68.8 0.67 0.17 0.09

Combine 3175 77.8 71.4 75.0 0.65 0.15 0.14

BoW21 Speech vs. Silence 658 44.4 85.7 62.5 0.73 0.38 0.44

Noise vs. Silence 806 55.6 57.1 56.3 0.60 0.21 0.14

Speech vs. Noise 434 66.7 71.4 68.8 0.68 0.19 0.15

Combine 1898 66.7 57.1 62.5 0.59 0.16 0.01

LOOCV, Leave-One-Out Cross-Validation; SVM, Support Vector Machine.
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higher than the other two contrasts (Table 3). Further-

more, the correlations for BoW21 were higher than or at

least as good as the BoW44 across different contrasts. The

BoW21 with the contrast speech versus silence achieved

AUC of 0.97, Pcorr of 0.60 and Scorr of 0.76, which sig-

nificantly surpassed other combinations. Analyzing its

automatically selected parameters across different folds of

cross-validation, we noticed that 15 of 16 folds had

selected 0.6 for the ratio r, which corresponded to four

effective and three ineffective children within the unla-

beled samples. This ratio was very reasonable, because it

was consistent with the ratio on the labeled samples (9

effective vs. 7 ineffective). The labeled samples and unla-

beled samples came from the same distribution, and

therefore their ratios of positive samples were expected to

be close to each other. The only fold that selected a dif-

ferent ratio had selected the ratio 0.7 corresponding to 5

effective and 2 ineffective, which was very close to the

ratio selected during other folds. Hence, we were confi-

dent that the parameter selection process was very stable

across different folds of cross-validation. For the BoW44

with contrast speech versus silence, the parameter selec-

tion was not as stable as BoW21, but it also selected the

ratio 0.6 in 12 of 16 folds. The VOX approach for the

contrast speech versus silence selected the ratio 0.6 in

only four folds. Five other ratios were selected at least

once, but none of them were selected for more than four

folds. Therefore, the parameter selection was considerably

unstable for the VOX approach, which might be a reason

why the semi-supervised model with VOX features did

not achieve an improvement in classification performance

when compared with the corresponding supervised

model. The automatically selected r values for the other

two contrasts are summarized in Figure S3. As we can

see, the most frequently selected r values were consistent

across different feature sets within the same type of con-

trast, indicating that our BoW features did not change

the general distribution of samples when compared with

the VBM features. However, the most frequently selected

r values varied between different contrasts. This was pos-

sible because features from different contrasts were proba-

bly very different, and consequently the distributions of

samples were different as well. Since the two contrasts

noise versus silence and speech versus noise had limited

classification performance, it was reasonable to assume

that the effective and ineffective CI-users were not sepa-

rated as well as the contrast speech versus silence. Conse-

quently, the r values relying on the sample distributions

from the former two contrasts were likely to be unreli-

able.

We also investigated the effect of parameter C on the

classification performance for the semi-supervised models.

We repeated the above experiments with parameter C set

to be different values. The results are shown in Figure S4.

Since the nested LOOCV was considerably slow, the VBM

feature sets were computationally prohibitive for this

experiment, and therefore we did not show the results for

the VBM feature sets in Figure S4. Consistent with the

supervised models, the classification performance had

reached the stable state when C ¼ 1. Hence, we set C ¼ 1

for the remaining analysis in this study.

Semi-supervised model with fixed
parameter r

Since the contrast speech versus silence outperformed the

other two contrasts and all the three feature sets selected

the ratio r of 0.6 most frequently for this contrast, we

performed a LOOCV on the contrast speech versus

silence with the parameter r fixed to be 0.6. Results for

this experiment are shown in Table 4. The performance

of BoW21 did not change when compared to its perfor-

mance in Table 3. This was expected because only one

fold had changed the ratio from 0.7 to 0.6. However,

locking r = 0.6 for the BoW44 model changed the ratio

in four folds, and achieved better performance. VOX fea-

Table 3. Nested LOOCV performance for the semi-supervised models. The parameter ratio r was selected automatically.

Feature type Contrast No. of features Sensitivity (%) Specificity (%) Accuracy (%) AUC Pcorr Scorr

VOX Speech vs. Silence 26767 44.4 42.9 43.8 0.56 0.23 0.11

Noise vs. Silence 26767 44.4 85.7 62.5 0.57 0.12 0.04

Speech vs. Noise 26767 66.7 57.1 62.5 0.63 0.17 0.06

BoW44 Speech vs. Silence 1156 66.7 71.4 68.8 0.73 0.49 0.53

Noise vs. Silence 1216 55.6 85.7 68.8 0.73 0.37 0.31

Speech vs. Noise 803 77.8 71.4 75.0 0.71 0.20 0.15

Combine 3175 77.8 57.1 68.8 0.65 0.19 0.16

BoW21 Speech vs. Silence 658 77.8 85.7 81.3 0.97 0.60 0.76

Noise vs. Silence 806 55.6 71.4 62.5 0.70 0.37 0.34

Speech vs. Noise 434 77.8 71.4 75.0 0.75 0.26 0.21

Combine 1898 77.8 57.1 68.8 0.78 0.32 0.22

LOOCV, Leave-One-Out Cross-Validation.
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ture set achieved significantly higher AUC and correla-

tions, when comparing its performance in Table 4 with

that in Table 3. To make our comparisons more convinc-

ing, we used the R package pROC (Robin et al. 2011) to

compare two AUCs. A two-sided P-value was calculated

to show if two AUCs were significantly different. We set

the significance level at 0.05. In comparison with the

supervised models, the AUCs for the semi-supervised

models were significantly higher for BoW44 (P-

value = 0.02) and BoW21 (P-value = 0.04), but not for

VOX (P-value = 0.09). Comparing among the semi-

supervised models with different feature sets, the AUC for

BoW21 was shown to be significantly higher than the

AUC of VOX (P-value = 0.03), but not significantly

higher than the AUC of BoW44 (P-value = 0.08). Mean-

while, we did not detect significant difference between

BoW44 and VOX for the semi-supervised models. Since

the combination of BoW21 and contrast speech versus

silence was consistently better than all other combina-

tions, we focused on this feature set in the remaining

analysis of this study, with the ratio of positive samples

within the unlabeled samples fixed at 0.6 unless stated

explicitly as a different value.

Why did semi-supervised model perform
better?

Adding the seven unlabeled samples to the training set

increased the sample size by approximately 45%. We

speculated that these unlabeled samples contributed to

the characterization of the distribution of the two groups

of samples, for example, effective and ineffective CI-users,

and consequently helped to identify the accurate hyper-

plane separating the two groups of samples. To support

our speculation, we analyzed the models across different

folds of cross-validation. As described above, the models

were defined by the weight vector w and the bias b. Con-

sidering that w specified the orientation of the separating

hyperplane, we measured the difference/distance between

two w vectors as 1 � cos h, where h was the included

angle between the two w vectors. Each fold of cross-vali-

dation yielded a model, and each model had a weight

vector w. We had 16 models, each of which was trained

with one of the 16 labeled samples left out for testing,

and then we obtained 120 unique distances by calculating

the pair-wise distance among the 16 weight vectors. Thus,

we had 120 distances for the supervised approach and the

semi-supervised approach, respectively. We noticed that

the 120 distances were not independent of each other.

For example, let three models be m1, m2, and m3. Let the

distance between m1 and m2 be d12, the distance between

m2 and m3 be d23, and the distance between m1 and m3

be d13. According to the triangle inequality theorem, we

would know that d12 � d23j j\d13\d12 þ d23. In other

words, d13 is not independent of d12 and d23. Therefore,

the paired two sample t-test or Wilcoxon signed-rank test,

which required the samples to be independent to each

other, was not appropriate for testing if the means of the

120 distances were significantly different between super-

vised and semi-supervised model. A summary of the 120

distances is shown in Figure 3A. As we see, the median

and the largest distance were clearly smaller for semi-

supervised model in comparison with supervised model.

A detailed pair-wise comparison is shown in Figure 3B.

Among the 120 distances, the semi-supervised approach

was only slightly higher than the supervised approach for

10 distances, suggesting that the weight vectors from the

semi-supervised models were much more similar to each

other than that of the supervised models across different

folds of cross-validation. Furthermore, we also calculated

the standard deviation (std) for the bias b across different

folds of cross-validation. The std for the supervised model

was 0.08, which was also higher than the 0.04 for the

semi-supervised model. These results confirmed that the

semi-supervised models were more stable and consistent

across different folds of cross-validation.

Figure 4 shows the distance matrices calculated from

the weight vectors as described above. From this figure,

we can see that the hyperplane learned by the supervised

learning for folds 1, 8, and 13 had considerable deviation

from other folds, whereas the semi-supervised model only

had a small deviation for the fold 13. When the hyper-

plane deviated by a large amount, the predicted value for

the testing sample was very inaccurate, which had a great

effect on the AUC score, given the limited sample size.

AUC, the area under the receiver operating characteristic

(ROC) curve, evaluates the ranking of the predicted val-

ues for the testing samples. If the predicted value for any

negative sample is lower than the predicted value for any

positive sample, then it is a perfect ranking and the AUC

will reach 1. Figure 5 shows the ROC curves for the

supervised model and semi-supervised model. In the

ROC curve, each vertical segment represents a positive

sample and each horizontal segment represents a negative

sample. As shown in Figure 5, we marked the 1st, 8th,

and 13th testing sample on the ROC curve of the super-

Table 4. LOOCV performance for the semi-supervised models with

r = 0.6 for the contrast speech versus silence.

Feature

type

Sensitivity

(%)

Specificity

(%)

Accuracy

(%) AUC Pcorr Scorr

VOX 66.7 42.9 56.3 0.70 0.49 0.42

BoW44 77.8 71.4 75.0 0.83 0.55 0.58

BoW21 77.8 85.7 81.3 0.97 0.60 0.76

LOOCV, Leave-One-Out Cross-Validation.
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vised model. We can see that the 1st and 8th testing sam-

ples were positive samples, but the predicted values for

these two samples were lower than almost all negative

samples. As a result, the ROC curve cannot climb higher

than 0.8 until the false-positive rate reached as high as

0.8. The 13th sample was a negative sample, but its pre-

dicted value was higher than most positive samples.

Accordingly, the ROC curve was forced to move horizon-

tally even though the true positive rate was relatively low.

Due to the influence of these three samples, the area

under the ROC curve cannot be high for the supervised

model. Conversely, the ranking of the predicted values

from the semi-supervised model was very close to the

perfect ranking, except that the predicted value for the

13th sample was higher than two positive samples but

lower than all other positive samples. This explains the

very high AUC of the semi-supervised model.

We show a two-dimensional toy example in Figure 6 to

make the above explanation more straightforward. In this

example, we also had nine positive, seven negative, and

seven unlabeled samples. The ratio of positive samples on

the unlabeled samples was set to be 0.6. For this example,

the supervised model achieved LOOCV AUC of 0.82,

whereas the semi-supervised model achieved an AUC of

0.92. From the hyperplanes learned across different folds of

cross-validation, we noticed that samples A and B were two

special samples. They had determined that the area covered

by the yellow ellipse belonged to the positive group. If the

sample A or B was left out for testing, the supervised model

had only one training sample within the yellow ellipse, leav-

ing this area almost uncovered by the training samples.

Based on the distribution of training samples, the model

learning algorithm was likely to derive a hyperplane classi-

fying the yellow ellipse as negative. Thus, the learned hyper-

plane deviated considerably from the actual hyperplane

represented by the red line in the figure. Thanks to the

unlabeled samples, especially the two within the yellow

ellipse, the distribution of samples stayed unchanged after

leaving sample A or B out for testing. Accordingly, the

semi-supervised model learning algorithm returned a

hyperplane very close the actual hyperplane. In addition,

we noticed that five of seven unlabeled samples were classi-

fied to the positive group in the semi-supervised model,

(A)

(B)

Figure 3. Stability of the weight vectors across different folds of cross-

validation. One-hundred-and-twenty unique pair-wise distances were

calculated among the weight vectors, for the semi-supervised model

and the supervised model, respectively. (A) On each box, the central

mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not

considered outliers, and outliers are plotted individually. (B) Each bar

represents one of the 120 unique distances. y-axis is the distance from

the supervised model minus the distance from the semi-supervised

model.

Figure 4. Pair-wise distance among the

weight vectors across different folds of

cross-validation. The left panel is for the

supervised model, and the right panel for

the semi-supervised model. Each panel is a

symmetrical distance matrix. The color

represents the distance, with hot colors

representing large distance values and cool

colors representing small distance values.

The two panels use the same color scale as

shown by the color bar.
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although the user specified ratio was 4 positive versus 3

negative. This observation implied that the semi-supervised

learning does not force the model to follow the prespecified

ratio. On the contrary, it considers the sample distribution

in general and finds out the hyperplane minimizing the

objective function, even at the cost of some training errors

from the unlabeled samples.

Based on the evidence above, we concluded that the

semi-supervised model is more stable and accurate when

compared to the supervised model. Due to the high fea-

ture-to-sample ratio, the distribution of samples in the

feature space was not apparent. In such case, the super-

vised model is sensitive to the elimination of certain sam-

ples. For the semi-supervised model, however, including

the unlabeled samples makes the distribution of samples

better-defined. Thus, the semi-supervised model remains

stable even after removing some samples from the train-

ing set.

Blind test on normal hearing infants

Although the semi-supervised model was indeed more

stable across different folds of cross-validation, one could

still argue that the supervised model trained with all of

Figure 5. ROC curves for the supervised

model and semi-supervised model. The

models were trained on the feature set

extracted by BoW21 from the contrast

speech versus silence. The parameter r for

the semi-supervised model was fixed to be

0.6. The ROC curves and AUCs were

derived based on the predicted values on

the testing samples with the LOOCV

approach.

Figure 6. A two-dimensional example for

the comparison between supervised model

and semi-supervised model. The red line

represents the hyperplane learnt with all

available data, 16 samples for the

supervised model and 23 samples for the

semi-supervised model. The two black lines

in each panel represent the hyperplanes

learnt with sample A or B left out for

testing, respectively. Since the two

hyperplanes are very close to each other,

they appear to be completely overlapped.
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the labeled samples would be as accurate as the semi-

supervised model. To rule out this possibility, we per-

formed a blind test on the NH samples. Theoretically, all

of the NH participants had normal hearing and should be

categorized to the effective group, although they did not

have CELF-P2 scores to provide a label. As we described

in the section Feature extraction, we had constructed a

dictionary for the contrast speech versus silence. This dic-

tionary was applied to each NH infant to convert his/her

contrast map into a 658-dimensional feature vector. We

then trained a supervised model with the 16 labeled sam-

ples, as well as a semi-supervised model with all of the 23

samples, including seven unlabeled samples, and applied

these two classification models to classify the NH infants.

The supervised model successfully classified 66.7% of the

NH infants as effective, whereas the semi-supervised

model correctly classified 81.0%, which was close to the

LOOCV classification accuracy on the labeled samples.

This result further confirmed that the semi-supervised

model was more accurate than the supervised model.

Semi-supervised model by adding the
unlabeled samples one by one

We investigated how the classification performance chan-

ged as we added the unlabeled samples one by one. As we

changed the set of unlabeled samples to be added to the

training, the parameter r changed accordingly. If parame-

ter r was unknown, we needed to perform nested LOOCV

to evaluate the model. For simplicity and consistency, we

first trained a semi-supervised model using all of the 23

samples to assign labels for the unlabeled samples. Subse-

quently, the predicted labels for the unlabeled samples

were used to calculate the parameter r, which was used as

the input for model training for the experiment in this

section. For example, we first added one unlabeled sam-

ple, which gave us a sample size of 17 including 16

labeled samples and one unlabeled sample. If this unla-

beled sample was an effective CI-user according to the

predictions above, we set parameter r to be 1.0. After

that, we added the 2nd unlabeled sample. If the 2nd unla-

beled sample was an ineffective CI-user, we set the

parameter r to be 0.5, given the 1st unlabeled sample was

an effective CI-user. Then, we added the 3rd unlabeled

sample, 4th unlabeled sample, etc. Models were tested

using the LOOCV approach, since r was already deter-

mined before the model training. The order in which the

samples were added was generated randomly. Considering

the possible bias effect of the order, we tried two sets of

orders, and added the samples in both forward order and

reverse order. The results are shown in Table 5. The sam-

ple indexes for the two orders were not the same, for

example, the 7th sample from Order 1 and the 7th sam-

ple from Order 2 were not the same sample. From

Table 5, we found that the classification performance was

the same as or very similar to that of the supervised

model, when we added only one or two unlabeled sam-

ples. Adding the 4 positive unlabeled samples alone also

did not improve the classification performance. Mean-

while, the improvement was negligible when only the

three negative unlabeled samples were added to the train-

ing set. The improvement became significant only when

we added both positive and negative unlabeled samples.

Furthermore, the performance improved gradually as we

added more samples. There seemed to be a jump in per-

formance when we added five or six unlabeled samples.

Table 5. LOOCV performance of the semi-supervised model when adding the unlabeled samples one by one.

Random order

Forward order Reverse order

Sample index Label Ratio r AUC Pcorr Scorr Sample index Label Ratio r AUC Pcorr Scorr

Order 1 1 + 1.0 0.73 0.38 0.44 7 + 1.0 0.73 0.38 0.44

2 � 0.5 0.73 0.42 0.40 6 + 1.0 0.73 0.38 0.44

3 + 0.6 0.79 0.50 0.53 5 � 0.6 0.76 0.46 0.44

4 � 0.5 0.81 0.54 0.56 4 � 0.5 0.81 0.50 0.49

5 � 0.4 0.90 0.56 0.69 3 + 0.6 0.92 0.56 0.70

6 + 0.5 0.94 0.57 0.72 2 � 0.5 0.92 0.56 0.70

7 + 0.6 0.97 0.60 0.76 1 + 0.6 0.97 0.60 0.76

Order 2 1 + 1.0 0.73 0.38 0.44 7 � 0.0 0.73 0.40 0.40

2 + 1.0 0.73 0.38 0.44 6 � 0.0 0.75 0.43 0.44

3 + 1.0 0.73 0.38 0.44 5 � 0.0 0.75 0.43 0.44

4 + 1.0 0.73 0.38 0.44 4 + 0.3 0.78 0.47 0.50

5 � 0.8 0.87 0.54 0.63 3 + 0.4 0.81 0.50 0.49

6 � 0.7 0.95 0.59 0.72 2 + 0.5 0.92 0.56 0.70

7 � 0.6 0.97 0.60 0.76 1 + 0.6 0.97 0.60 0.76

LOOCV, Leave-One-Out Cross-Validation.
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We speculated that adding 5 or 6 unlabeled samples

reached a point where the sample distributions were well-

defined and the distinction between the two groups of

samples became obvious, which might have explained the

performance jump.

Semi-supervised model with artificial
unlabeled samples

We also investigated whether the improvement in classifi-

cation performance was dependent on these particular

seven unlabeled samples. Could we still obtain a perfor-

mance improvement if we were given another set of unla-

beled samples? We assumed that the labeled samples were

good representations of the actual sample populations,

for example, CI effective users and CI ineffective users.

Under this hypothesis, the mean and standard deviation

for each sample population can be estimated using the

labeled samples. Thus, the simulated samples were gener-

ated by adding white noise to the population mean as

formulated in Equation (4).

x ¼ mþ alpha � s � rand (4)

where x is the feature vector for the simulated sample, m

and s are the mean and standard deviation of the labeled

samples, respectively, x, m, s are 658-dimensional vectors

since there are 658 features for the contrast speech versus

silence. rand is also a 658-dimensional vector containing

pseudorandom values drawn from the standard normal

distribution, which was generated by the randn function

in MATLAB. alpha is a parameter used to control the

noise strength. We estimated the mean m and standard

deviation s for the CI-effective group and CI-ineffective

group separately, and generated five simulated samples

for each group. Thus, we had 26 samples, including 16

labeled samples and 10 unlabeled samples. A semi-

supervised model with parameter r equal to 0.5 could be

trained. Still, the LOOCV approach was used to evaluate

the model. For each alpha, we performed this experiment

10 times and calculated the mean and standard deviation

for the performance measures across the 10 runs. The

results are shown in Table 6.

We can see that adding the simulated unlabeled sam-

ples to the training set helped to improve the classifica-

tion performance when compared with the supervised

model (Table 2). This result suggested that the perfor-

mance improvement for the semi-supervised model did

not depend on the particular seven unlabeled samples in

our original dataset. The semi-supervised model is

expected to outperform the supervised model even with

another set of unlabeled samples. Although the semi-

supervised model with the simulated unlabeled samples

performed better than the supervised model, it did not

perform as good as the semi-supervised model with the

seven actual unlabeled samples (Table 4). This was very

reasonable, because the simulated samples were derived

from the distribution of the labeled samples, and they did

not contribute as much information as the seven actual

samples about the actual sample distribution.

Model with feature selection

In RFE, there are two parameters: the percentage of fea-

tures to be removed in each iteration and the final num-

ber of features to be kept. The first parameter primarily

affects the speed of training. If this parameter is small,

the training will be slow, and it is less likely to remove

relevant features when compared with large values. In our

project, we set this parameter at 1%, and required the

algorithm to remove one feature at a time if the total

number of features was less than 100. For the second

parameter, there was not an effective way to determine

the threshold before the experiment. Therefore, we tried

different thresholds, and performed a LOOCV at each

threshold. The classifier performance is shown in

Figure 7. We plotted the AUC, Pcorr and Scorr under

different thresholds. We also plotted the 95% confidence

intervals for the AUCs, which were calculated with the

pROC package (Robin et al. 2011). When the number of

selected features was set to be 1, the classification problem

was not solvable with the default slack variables defined

in the SVMlight package. Thus, the SVMlight package

attempted to relax the slack variables gradually. However,

the training did not converge after 96 h of computation.

From Figure 7, we can see that the confidence intervals of

the AUCs overlapped, with the number of selected fea-

tures ranging from 2 to 650, indicating that the perfor-

mances, despite random fluctuations, did not change

significantly over this interval. In other words, two fea-

tures would be enough to separate the effective group

from the ineffective group. Hence, we set the number of

selected features at 2, and performed a LOOCV with RFE

for feature selection. We achieved classification accuracy

of 93.8%, AUC of 0.92, Pcorr of 0.78 and Scorr of 0.72.

This excellent performance confirms that two features are

Table 6. LOOCV performance of the semi-supervised model with

simulated unlabeled samples.

a AUC Pcorr Scorr

0.1 0.83 � 0.02 0.49 � 0.01 0.53 � 0.02

0.2 0.82 � 0.02 0.48 � 0.02 0.52 � 0.03

0.3 0.78 � 0.02 0.45 � 0.02 0.48 � 0.03

0.4 0.76 � 0.01 0.44 � 0.01 0.45 � 0.02

0.5 0.76 � 0.01 0.43 � 0.03 0.45 � 0.02

LOOCV, Leave-One-Out Cross-Validation.
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sufficient to separate the effective group from the ineffec-

tive group using the semi-supervised SVM model based

on features extracted from the fMRI contrast of speech

versus silence.

We also analyzed the performance of the supervised

model with RFE for feature selection with the selected

number of features set at 2. With the LOOCV approach,

we achieved accuracy of 68.8%, AUC of 0.71, Pcorr of

0.56, and Scorr of 0.45, which was much lower than that

of the semi-supervised model.

Validate the feature selection algorithm

We hypothesized that the two features selected by the

RFE algorithm have strong discriminative power in dis-

tinguishing effective from ineffective CI users. These

selected features may serve as biomarkers for predicting

the CI outcomes. Ideally, we would like to predict lan-

guage performance outcome based on fMRI contrast for

speech versus silence. Our features came from the brain

regions that responded to the speech stimulus. There

might be a chance that all or most of the features were

good predictors. Any random selection of two features

may yield a good model. If this is true, the features

selected by the RFE algorithm will be unreliable and can-

not be used as biomarkers. To exclude this possibility, we

randomly selected two features from the 658 features to

train a semi-supervised model, and used the LOOCV

approach to evaluate the model. We repeated this experi-

ment 100 times and observed a considerable number of

runs in which the classification problem was not solvable

unless the slack variables were relaxed, indicating that the

effective group and ineffective group were not separable

based on the two randomly selected features. Further-

more, none of the 100 runs achieved an AUC higher than

0.92, which was the performance when we employed the

RFE algorithm for automatic feature selection. Only 3 of

the 100 runs achieved an AUC above 0.8. This result indi-

cated that not all features or combinations of features

were equally good predictors for the classification of effec-

tive versus ineffective CI users. We concluded that the

RFE algorithm correctly selected the features with the

strongest discriminative power.

Stability of feature selection

Because the features were selected automatically for each

fold of cross-validation, they might vary across different

folds. We had 16 folds of cross-validation in total, and

selected two features at each fold, which led to 32 features

in total. We calculated the occurrence frequency for each

feature that had occurred for at least once. Besides, there

could be multiple features that came from the same brain

region and were highly correlated with each other. Such

redundancy was attributed to the inherent properties of

our feature extraction approach. For example, some char-

acteristic contrast regions might occur in more than one

subject as described in the section Feature extraction. In

such cases, there were multiple copies of this region in the

vocabulary. The features corresponding to such regions

were highly correlated. Such features were considered to be

redundant and selected interchangeably during the feature

selection process. The 64 selected features across different

folds of cross-validation, that is, 32 from the semi-super-

vised model and 32 from the supervised model, involved 13

different features. Among the 13 features, a pair of features

had a correlation as high as 0.99, and we had verified that

this pair of features came from approximately the same

brain region. Therefore, we treated this pair of features as

one single feature when we calculated the occurrence fre-

quency. Except for this pair of features, the correlations

between other pairs of selected features were mostly below

0.8 with a few pairs above 0.8 but below 0.9. Thus, all of

the other selected features were treated as different features.

As shown in Figure 8, the feature selection was clearly more

stable for the semi-supervised model when compared with

the supervised model. Due to the limited number of sam-

ples in the supervised learning, the selected features in each

fold of cross-validation might fit the training samples too

well to be generalizable to the testing samples. This was a

possible explanation for the unstable feature selection and

unsatisfactory LOOCV performance for the supervised

model.

Comparing Figure 8B with Figure 8A, the most fre-

quently selected feature in Figure 8B and that from

Figure 8A were the same feature. However, the second

most frequently selected features did not match, and the

Figure 7. LOOCV performance for the

semi-supervised model using RFE for

feature selection with the number of

selected features changing from 2 to 650.
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correlation between these two features was only 0.46. As

we mentioned above, features were eliminated one by one

at the late stage of RFE. We trained a semi-supervised

model with all the 23 samples, using RFE for feature

selection. Let the last 10 features be labeled as A to J. If

we reduced the number of selected features from 10 to 2,

the first feature to be eliminated was the feature J, fol-

lowed by feature I and H, etc. The last two features kept

in the model were feature A and B. We found that the

two most frequently selected features from Figure 8B cor-

responded to the features A and B, and the second most

frequently selected feature in corresponded to the feature

D. On the basis of these observations, we concluded that

the selected features from the semi-supervised model were

consistent with the selected features from the supervised

model. The semi-supervised model did not select certain

features to fit the unlabeled samples. Therefore, we

excluded the possibility that some unlabeled samples

might be outliers, which forced the feature selection to be

fixed on certain features and consequently improved the

stability of feature selection. Instead, the improved stabil-

ity should be attributed to the improved statistical power

of the training set due to the inclusion of unlabeled sam-

ples.

Discriminative brain regions

We trained a semi-supervised model with all of the 23

subjects and used the RFE for feature selection with the

number of selected features set to be 2. Then, we back-

projected the two discriminative brain regions onto the

infant template (Altaye et al. 2008) as shown in Figure 9.

As we mentioned above, these two features are actually

the features 1 and 2 in Figure 8B. The first predictive

feature corresponds to a brain region located in the left

superior and middle temporal gyri and aligns with our

original hypothesis that brain activity in this area might

be predictive of outcomes following cochlear implantation

in infants. However, using univariate correlation or

regression analysis with age at implantation and pre-

implant hearing threshold as covariates, we have not been

able to find persuasive predictive value by looking at a

region of interest in this part of the brain alone. This

implies that one single-brain region is not enough for the

classification. Only the combination of multiple brain

regions makes a good prediction for the language func-

tion for infants receiving a CI. To verify this observation,

we showed the distribution of samples in Figure 10 using

the brain activities of the two discriminative brain

regions. As we can see, the CI-effective and CI-ineffective

users were not separable using either a horizontal line or

a vertical line, which confirmed that only one brain

region was not enough for the classification. Combining

these two brain regions, the two groups of individuals

were separable by a diagonal line. The other important

region is located in the right cerebellum, whose predictive

power was underestimated according to our original

hypothesis. However, based on a substantial number of sci-

entific publications supporting the role of cerebellum in

supporting language functions (see Discussion section),

this discovery is not so surprising as it remains unconven-

tional. This finding demonstrates the advantage of machine

learning techniques, which can automatically detect the

predictive features and draw our attention to features that

are important but beyond our prior knowledge.

Discussion

In this study, we presented a semi-supervised SVM model

for predicting whether or not a prelingually deaf in infant

Figure 8. Occurrence frequency of

selected features across different folds of

cross-validation. The horizontal axis is the

feature index, and the vertical axis is the

occurrence frequency of a feature. (A).

Supervised model. (B). Semi-supervised

model.
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or toddler receiving a CI will develop effective language

skills within two years after the surgery. Such prognostic

information could be extremely useful and is currently

not available to clinicians by any other means. The aver-

age cost of cochlear implantation in the United States is

$60,000 including device, surgery, and post-implantation

therapy fees (Battey 2007). A reliable predictive tool can

guide preoperative counseling, help to calibrate expecta-

tions, influence post-CI speech and language therapy and

prevent subsequent disappointment. Noninvasive neurobi-

ological information about developing auditory and lan-

guage networks in the brain available via fMRI and

accurate interpretation of such data using the approach

we have developed may also guide timely intervention

with CI, and consequently maximize the benefits of CI.

The findings of this study demonstrate the remarkable

power of a semi-supervised machine learning approach to

the analysis of group fMRI data. Where simple linear

regression models between fMRI statistical parameter

maps and hearing outcome measures have failed to pro-

vide a method by which fMRI data from individual sub-

jects can be used to make a prognosis about possible

speech and language outcomes, two features extracted by

a machine learning algorithm appear to be able to pro-

vide us with a method of doing so. Even with a limited

sample size, we have demonstrated a classification accu-

racy of 93.8% based on two features from brain activation

maps of infants listening to natural language during an

fMRI scan. Clearly, the methodology needs further explo-

ration and verification with a larger sample size. As the

sample size increases, the classification problem becomes

more complicated, and it may require additional features

to make an accurate classification. But at this stage

machine learning classification of fMRI data appears to

offer promise in producing an objective prognosis for

speech and language outcomes in individual prelingual CI

recipients. For the two brain regions highlighted by our

current algorithm, we discuss below their functions, and

the probable biological mechanisms underpinning their

involvement in the classification of effective and ineffec-

tive CI users.

Left superior and middle temporal gyri

Wernicke first described the role of the superior temporal

gyrus (STG) in speech perception (Wernicke 1874). Audi-

torily presented speech stimuli are known to activate the

STG (Mummery et al. 1999; Patel et al. 2007; Vannest

Figure 9. Two discriminative brain regions

from the contrast speech versus silence.

Images are displayed in neurological

orientation using the xjView toolbox

(http://www.alivelearn.net/xjview). The

coordinate of the center of the first region

is (�54, �70, 13). This region is located in

an area corresponding to left superior and

middle temporal gyri. The second region is

located in the right cerebellum. Its central

coordinate is (10, �86, �27).

Figure 10. Distribution of samples within the two-dimensional space.

Horizontal axis represents the brain activity in left superior and middle

temporal gyri (first brain region in Figure 9), and the vertical axis

represents the brain activity in right cerebellum (second brain region

in Figure 9).
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et al. 2009) whereas lexical/semantic processing requires

inputs from the middle temporal gyrus (MTG) (Vanden-

berghe et al. 1996; Holland et al. 2007). The left STG has

been shown to analyze phoneme and word forms (DeWitt

and Rauschecker 2013). Jamison et al. (2006) demon-

strated, using an fMRI paradigm, that the right STG is

specialized for detecting spectral changes even for non-

speech stimuli, whereas the left STG is more highly

attuned to temporal variations typical of auditory speech

inputs. Recently, Duffy et al. reviewed the utility of the

Frequency Modulated Auditory Evoked Response

(FMAER) technique in the diagnosis of childhood lan-

guage impairment (Duffy et al. 2013). The FMAER is

based on the detection of quick frequency modulation

(FM) changes in speech and its source can be traced to

posterior STG bilaterally. The authors found that the

FMAER was absent in children with language impair-

ments, especially those with speech comprehension defi-

cits. Children with hearing impairment are known to

have language delays and/or deficits (Ching et al. 2010;

Yoshinaga-Itano 2014). Thus, it is reasonable that our

SVM models, both the semi-supervised model and the

supervised model, identified the STG as one of the areas

differentiating between effective and noneffective CI users

based on the variable language proficiency of children

with congenital hearing impairment. (Petersen et al.

(2013) using positron emission tomography (PET), found

that the left STG was activated in a speech comprehen-

sion task in postlingually deaf adults but not in prelin-

gually deaf adults. They attributed this finding to the

exposure to language in the postlingual HI group. In this

study, it is possible that the left STG was identified in the

classification of effective versus noneffective CI users as

this brain area in the former group may be better tuned

to analyzing incoming speech stimuli. At the same time,

it is important to note the differences between the two

studies before such direct comparisons can be made; for

example, in terms of populations studied (adult CI recipi-

ents vs. infant/toddler CI candidates), stimulus presenta-

tion (monaural vs. binaural), and subject state during

acquisition (awake vs. sedated).

In an early landmark PET study aimed at parcellating

the brain areas responsible for different aspects of sen-

tence comprehension, Mazoyer et al. (1993) found that

the left STG and MTG were activated in response to sto-

ries in the native tongue. By comparing different con-

trasts, they concluded that “the activations in the left

middle temporal gyrus. . . reflect processing beyond the

single-word level” (p. 469), that is, syntactic processing in

addition to phonological and lexical analysis. Using PET,

Kang et al. (2004) studied the fluorodeoxyglucose (FDG)

uptake in the brains of 87 children with congenital hear-

ing impairment ranging from 1 to 15 years of age. Giraud

and Lee re-analyzed their data and found an age-depen-

dent increase in metabolism in both the superior and

middle temporal gyri on the left side (Giraud and Lee

2007). Following a subset of the same participants as they

became CI recipients, the authors found the left pre-

frontal and parietal areas correlated positively with speech

perception scores irrespective of the age at implantation

or duration of deafness. The authors suggested that these

age-dependent and independent hypermetabolic changes

may indicate a two-step cortical reorganization process in

children with congenital HI. In this study, a similar corti-

cal reorganization may have played a role in the effective

group resulting in greater language gains post-implanta-

tion. In another study of neural activation using PET,

Giraud et al. (2000) found the STG and MTG to be

highly active in CI users in response to unrelated sen-

tences. In addition, the anterior portion of the left MTG

was also activated in response to a story-listening task.

This observation indicates that the left STG and MTG

continue to play a role in speech processing/language

acquisition after cochlear implantation. Our results sug-

gest that pre-CI activation of left STG in response to a

natural speech stimulus is one of two key features in the

fMRI results that are predictive of later language out-

comes for prelingually deaf children receiving a CI.

Right cerebellum

For over 200 years, the cerebellum was primarily consid-

ered to be the center of motor control (Rolando 1809;

Holmes 1939). However, this view has been challenged in

the past two decades (Habas 2001). In one of the early

neuroimaging studies supporting cerebellum as a sensory

center, Gao et al. (1996) demonstrated dentate nuclei to

be active in response to cutaneous stimulation. Later,

overt and covert speech production abilities were associ-

ated with cerebellar involvement in both normal (Riecker

et al. 2000; Seger et al. 2000; Frings et al. 2006) and dis-

ordered (Eckert et al. 2003) populations. However, stud-

ies have also indicated cerebellar recruitment in speech

reception tasks. Papathanassiou et al., in a PET study,

found right cerebellar activation in normal hearing adults

in response to a story listening task – similar to the one

used in this study (Papathanassiou et al. 2000). Redcay

et al., using event-related fMRI, observed right cerebellar

activation in normal hearing toddlers in response to natu-

ral speech as compared to silence, a similar contrast to

the speech versus silence contrast used in this study (Red-

cay et al. 2008). Ackermann et al. have also shown cere-

bellar involvement in the discrimination of vowel

duration and voice onset time – important aspects of

speech perception (Ackermann et al. 1997). Strelnikov

et al. (2006) studied regional cerebral blood flow (rCBF)
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changes in response to prosodic cues in normal hearing

adults. They found right cerebellar activation when partic-

ipants listened to sentences with intonation patterns. They

concluded that the right cerebellum (in addition to the

right dorsolateral prefrontal cortex) plays an important

role in extracting syntactic and prosodic information

(such as pauses and associated pitch changes) from natu-

ral sentences.

Fabbro et al. (2000) observed morpho-syntactic and

speech comprehension deficits in patients with focal

lesions involving the right cerebellum and vermis. In this

study, the right vermis was identified as one of the

regions in the cerebellum to be a biomarker of the effec-

tive versus ineffective classification of CI users. The ver-

mis has long been considered as the limbic cerebellum

(Anand et al. 1959) in that it has cerebro-cerebellar pro-

jections to the cerebral limbic system and it mediates

some emotional responses (Timmann and Daum 2007).

It is possible that the vermis is tuned to tapping the emo-

tional content in speech stimuli, even under sedation.

Alternatively, the right cerebellum may “reflect some basic

low-level aspect of neural processing that may be relevant

to speech but cannot be a consequence of accessing the

speech system itself” (p. 1761) (Johnsrude et al. 1997).

In a review of cerebellar functions, Marien et al. (2001)

observed that “the cerebellum modulates cognitive func-

tioning of at least those parts of the brain to which it is

reciprocally connected” and is involved in “various non-

motor language processes such as lexical retrieval, syntax,

and language dynamics” (p. 580). This view was recently

corroborated by Murdoch based on additional evidence

using neuroimaging studies (Murdoch 2010). In the

review, Murdoch emphasized the supportive function of

the cerebellum in language tasks as opposed to direct

involvement – which, in part, may explain the lack of

explicit language dysfunction as a result of direct injury

to the cerebellum.

Cerebro-cerbellar interaction

In this study, two regions – right cerebellar vermis and

left cerebrum (temporo-parietal) – were identified to suc-

cessfully discriminate between effective and ineffective CI

users. This observation may be explained by the right

cerebellar-left cerebral pairing observed in neuroimaging

and electrophysiological studies of language lateralization

(Desmond et al. 1998; Gronholm et al. 2005). Pap-

athanassiou et al. (2000) found a coupling of the tradi-

tional left cerebral language areas with right cerebellar

regions for both speech comprehension and production.

Strelnikov et al. (2011) found deactivations in the supe-

rior temporal gyrus and the right cerebellum in response

to degraded speech in normal hearing listeners. Wong

et al. (2008) also identified similar areas but with activa-

tion instead of deactivation, likely the effect of differences

in intelligibility of speech stimuli used in the two studies.

Although noise was not explicitly added to speech stimuli

in this study, the effects of acoustic MRI scanner noise

interleaved with the story segments certainly present a

noisy background to the subject who also has a poorly

performing auditory system due to congenital deafness.

In this study, we compared the predictive power of

three different feature sets, namely VOX, BoW21, and

BoW44. The BoW features exhibited much better perfor-

mance than the VOX features, which was expected as we

analyzed in our previous paper (Tan et al. 2013). The

classification performance for BoW21 was better than or

at least as good as BoW44. BoW21 feature set only

included the regions active in the NH infants, whereas

BoW44 included the active regions from both NH con-

trols and SNHL patients. It is likely that regions detected

in the 21 NH participants included all the relevant brain

regions for classification of effective versus ineffective CI

users. Regions from the SNHL patients did not add any

information for the classification process and simply

introduced noise into the classification due to aberrant

and inconsistent activation patterns. Also notice that the

age and gender were not perfectly matched between the

SNHL group and the NH group. However, we did not

think that this age/gender difference would weaken our

analysis or jeopardize our conclusion as we were classify-

ing effective versus ineffective CI-users rather than NH

versus SNHL. The average age of NH children was

8 months younger than the average age of SNHL chil-

dren. Although such an age difference during infancy is

likely to significantly affect auditory activation patterns,

the feature set (BoW21) extracted based on the activation

pattern of the NH children was shown to perform well in

the classification of effective versus ineffective CI-users,

even in an older group of infants and toddlers. Admit-

tedly, it would be ideal to use a better age/gender-

matched group of NH children, which may help to fur-

ther improve the classification accuracy. Since our

approach works on our current dataset, which represents

the worst situation, it is not unreasonable to expect it will

work on an ideal dataset.

Correlations (Pcorr and Scorr) for the contrast speech

versus silence were considerably higher than the other

two contrasts. The human auditory system is highly

attuned to human speech sounds and recent theories sug-

gest that the right and left hemisphere structures are

specifically tuned to temporal and spectral features of the

speech waveform, respectively (Hickok and Poeppel 2007;

Ghitza et al. 2012; Poeppel et al. 2012; Wang et al. 2012).

Human speech therefore activates a more extensive audi-

tory network than any other form of auditory stimula-
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tion. When speech is contrasted with silence we can

expect the maximum difference in brain activity to occur

within this auditory language network. Therefore, it is

not surprising that we find the greatest correlations

between the features from the fMRI contrast for speech

versus silence with the CELF-P2 scores as shown in

Table 2 and Table 3. Somewhat more surprising is that

the auditory system of an infant with severe to profound

SNHL still responds maximally to this type of stimulus

during fMRI with auditory stimulation prior to cochlear

implantation, while she/he is still deaf. The fact that this

contrast produces the best classification performance for

our chosen model suggests that infants who have the

greatest response to human speech (more specifically the

voice of the mother of infants and toddlers themselves)

are most likely to develop good language capabilities with

cochlear implantation.

In this study, we also compared the supervised model

with semi-supervised model. A straightforward explana-

tion was included to illustrate the superiority of the semi-

supervised model, where the unlabeled samples helped to

characterize the distribution of samples in the feature

space, and therefore the classifier was able to find a more

optimal hyperplane to separate the different groups of

samples. Furthermore, adding the unlabeled data to the

analysis increased the statistical power of training data

due to a larger sample size, which helped to highlight the

most discriminative features during feature selection.

Although the semi-supervised model showed a remarkable

power in the current project, we are not saying a semi-

supervised model is always better than a supervised

model. As shown in the section Semi-supervised model

by adding the unlabeled samples one by one, adding

either unlabeled positive samples alone or unlabeled nega-

tive samples alone produced a classification performance

the same as or very close to that of the supervised model.

The superiority of a semi-supervised model over super-

vised model depends on how much the unlabeled samples

contribute to the characterization of the distribution of

different groups of samples. Based on our experience, a

semi-supervised model will perform at least as good as a

supervised model, and therefore it is always worthwhile

to try a semi-supervised model when unlabeled data are

available. Please note this is only an empirical observa-

tion, a mathematical proof is needed to support this con-

clusion. Besides, we also compared the semi-supervised

SVM model with two other related models, namely trans-

ductive SVM (TSVM) model and standard logistic regres-

sion model. The TSVM model was trained using SVMlight

package with the parameter r set to be 0.56, which was

the ratio of positive samples among the labeled samples

(9 positive samples vs. 7 negative samples). The logistic

regression model was trained using the “glmfit” function

in MATLAB. The two models were evaluated using the

LOOCV approach as well. Results are summarized in

Table 7. We can see that the performance of the TSVM

model was worse than that of the semi-supervised SVM

model (Table 3) for most of the feature sets. This was

expected for reasons as explained below. In our project,

we had 16 labeled samples and seven unlabeled samples.

Let the number of positive samples within the seven unla-

beled samples be N. During the LOOCV process, the

TSVM model added the left-out sample to the training

set as an unlabeled sample. If the left-out sample was pos-

itive, the parameter r (which was the ratio of positive

samples within the unlabeled samples) would be (N + 1)/8.

If the left-out sample was negative, the parameter r would

be N/8. Thus, the parameter r kept changing, and there

was not a good way to optimize the parameter r. For the

semi-supervised model, however, the parameter r was a

constant (N/7), and it can be optimized using a nested

LOOCV as illustrated in Figure 2. Due to the nonoptimal

parameter r, the performance of the TSVM model was

adversely affected. Furthermore, the standard logistic

regression model demonstrated almost random classifica-

tion for most of the feature sets. This was because the

number of samples was much smaller than the number of

features for our dataset, in which case the logistic regres-

sion model without regularization was not estimable. As a

result, the logistic regression model was unreliable and

performed poorly for the LOOCV.

In order to develop a prognostic tool that will eventu-

ally be useful clinically, several improvements to the

model would be needed as future efforts. First, a larger

sample size is needed to train an initial regression model

instead of a classification model. We will continue to use

the semi-supervised learning for the regression model,

considering the difficulties in recruiting participants and

there will still be unlabeled samples whose follow-up

scores are not obtainable among the newly recruited

infants. An additional benefit of a larger training dataset

would be the possibility of constructing a more complete

assessment of patient outcome based on additional mea-

sures of speech, language and cognitive ability for each

participant. In the current analysis we have classified

patients as effective and ineffective CI users based exclu-

sively on the CELF-P2 scores. While this test provides a

comprehensive assessment of language fundamentals in

preschool-aged children, it does not include measures of

speech ability or general cognitive function. Clearly the

effectiveness of CI usage, even during the early develop-

mental stages, should be based on a broader range of cog-

nitive abilities than language alone, even though a high

degree of correlation might be expected among such

assessments. Availability of comprehensive neurocognitive

data for a larger patient population would allow for a
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more accurate evaluation of the effectiveness of CI usage,

which in turn should improve training of the model and

result in a more accurate predictive model.

Another potential research direction might involve

improving the feature extraction algorithm. For the cur-

rent BoW algorithm, we defined the thresholds based on

the P-values for the T-statistics. Optimization of these

thresholds might maximize the brain regions while pre-

serving the homogeneity of the contrast intensities within

a single region. Finally, we focused on fMRI image fea-

tures alone in this study. In future work, the age at

implantation and the pre-implant hearing threshold

should be included as two additional features in a clini-

cally relevant predictive model, since these variables are

known to account for much of the variance in CI out-

comes.

Conclusion

In this work, we have confirmed that our BoW approach

is more accurate than the conventional approach for fea-

ture extraction to enhance performance of a machine

learning approach to making predictions about future

clinical outcomes based on fMRI data alone. Not surpris-

ingly, fMRI measures of brain activity stimulated by

human speech provided contrasts that were most predic-

tive of language outcomes after cochlear implantation.

Semi-supervised learning made the maximal use of the

available data, and provided a stable and accurate classifi-

cation model for predicting the CI outcomes. Capitalizing

on the excellent performance of the semi-supervised

model, we have validated the hypothesis that pre-implant

cortical activation patterns revealed by fMRI during

infancy correlate with language performance 2 years after

cochlear implantation. By using the recursive feature

elimination algorithm for feature selection, we discovered

that two features from the fMRI contrast map for speech

versus silence were sufficient for classifying effective from

ineffective CI users based on our current dataset. We

highlighted these two features as discriminative brain

regions. One of these two regions is located in an area

corresponding to left superior and middle temporal gyris.

The left STG is implicated in spectral, phonemic, and lex-

ical processing of human speech. The left MTG is

involved in syntactic processing. These observations have

been made not only in congenitally hearing impaired

children but also in young CI recipients. These findings

suggest that the left STG and MTG play an important

role in speech processing/language acquisition even in

congenitally deaf infants and toddlers. In this study,

cortical development in these areas may have played a

role in the effective group, resulting in greater language

gains post-implantation. The second region is located in

the right cerebellum. The involvement of the right cere-

bellum in the speech versus silence contrast suggests

that it may play a role in extracting syntactic and pro-

sodic information from natural speech and points to

the supportive function of the cerebellum in linguistic

tasks.

On the basis of this preliminary result, we are opti-

mistic that a reliable machine learning model based on a

larger training set can eventually be applied in the clinical

setting to provide specific prognostic information to

patients considering cochlear implantation.

Table 7. LOOCV performance for the transductive SVM (TSVM) model and logistic regression (LR) model.

Model Feature type Contrast Sensitivity (%) Specificity (%) Accuracy (%) AUC Pcorr Scorr

TSVM BoW44 Speech vs. Silence 88.9 28.6 62.5 0.80 0.36 0.68

Noise vs. Silence 77.8 57.1 68.8 0.66 0.32 0.26

Speech vs. Noise 33.3 71.4 50.0 0.55 0.03 0.09

Combine 77.8 71.4 75.0 0.76 0.40 0.36

BoW21 Speech vs. Silence 77.8 42.9 62.5 0.67 0.37 0.33

Noise vs. Silence 77.8 57.1 68.8 0.74 0.31 0.27

Speech vs. Noise 44.4 71.4 56.3 0.52 0.00 �0.18

Combine 88.9 57.1 75.0 0.66 0.37 �0.02

LR BoW44 Speech vs. Silence 44.4 71.4 56.3 0.51 0.08 �0.07

Noise vs. Silence 77.8 42.9 62.5 0.62 0.27 0.17

Speech vs. Noise 77.8 42.9 62.5 0.62 0.08 0.09

Combine 33.3 71.4 50.0 0.56 �0.07 0.10

BoW21 Speech vs. Silence 22.2 71.4 43.8 0.43 �0.09 �0.08

Noise vs. Silence 33.3 71.4 50.0 0.51 �0.02 0.03

Speech vs. Noise 55.6 42.9 50.0 0.54 �0.17 �0.21

Combine 44.4 57.1 50.0 0.60 �0.07 0.05

LOOCV, Leave-One-Out Cross-Validation; SVM, Support Vector Machine.
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performance for the supervised models.

Figure S3. Automatically selected parameter r across dif-

ferent folds of cross-validation.
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performance for the semi-supervised models.
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