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MYC/MIZ1-dependent gene repression inversely
coordinates the circadian clock with cell cycle and
proliferation
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The circadian clock and the cell cycle are major cellular systems that organize global phy-

siology in temporal fashion. It seems conceivable that the potentially conflicting programs are

coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock

and conversely promotes cell proliferation while downregulation of MYC strengthens the

clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the

formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the

core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1

expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data

suggest that MYC acts as a master coordinator that inversely modulates the impact of cell

cycle and circadian clock on gene expression.
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M
any aspects of mammalian physiology and behaviour
are rhythmically regulated by the circadian clock1. On a
cellular level, the circadian clock is dependent on

interconnected transcriptional/translational feedback loops. In
brief, the core transcription activator complex BMAL1/CLOCK
(or its homologue BMAL1/NPAS2) rhythmically activates
expression of clock genes including CRYs, PERs, REV-ERBs and
RORs. CRYs and PERs are inhibitors of CLOCK/BMAL, whereas
REV-ERBs are repressors that control in coordination with ROR
activators expression of BMAL1, CLOCK and NPAS2. The
D-box-specific transcription factors E4BP, DBP, TEF and HLF
additionally contribute to the regulation of specific clock genes2.

Disruption or misalignment of circadian rhythms in humans
has been associated with numerous pathological conditions
including cancer3,4. Mice with chronic jet-lag or disrupted
circadian physiology due to lesions of their suprachiasmatic
nuclei exhibit accelerated growth of tumours5,6. Vice versa,
cancer types correlating with impaired cell cycle and proliferation
frequently exhibit aberrant expression of clock genes7,8. MYC is
an oncogene, which is found to be deregulated in different
cancers and, amplification of MYC often correlates with tumour
aggression and poor prognosis9. MYC and its partner MAX are,
like the circadian transcription factors BMAL1, CLOCK and,
NPAS2, members of the bHLH transcription factors family,
which form heterodimers that bind to so-called E-box motifs.
MYC regulates transcription of up to 15% of the transcriptome
including genes involved in apoptosis, cell growth and
proliferation10,11. Recently, MYC has been suggested to
attenuate the circadian clock by activating via circadian E-box
sites transcription and expression of REV-ERBa/b, which
would then repress transcription of BMAL1 (ref. 12). Since the
DNA-binding specificity of MYC/MAX and CLOCK/BMAL1
complexes is highly similar, it seems conceivable that
overexpressed MYC could constitutively activate and
overexpress the E-box-dependent circadian repressor genes
REV-ERBa/b, PER1/2 and CRY1/2.

Here we show, that overexpression of MYC attenuates the
circadian clock of U2OS cells. Downregulation of the clock by
overexpressed MYC is dependent on MYC/MIZ1 complexes,
which are recruited to non-E-box sites in the promoters
of BMAL1 and CLOCK. MYC/MIZ1 complexes stimulate
proliferation of U2OS cells, suggesting that MYC inversely
correlates the circadian clock and the cell cycle.

Results
BMAL1 and MYC share common target genes. We therefore
tested whether and how MYC/MAX and CLOCK/BMAL1 might
regulate common circadian genes. A comparison of published
chromatin immunoprecipitation sequencing (ChIP-seq) data sets
of U2OS cells revealed a significant overlap between both cis-
tromes, with 28% (574/2048) of BMAL1 binding sites overlapping
with sites also bound by MYC (refs 13,14; Fig. 1a). Such common
binding sites include the core circadian clock genes REV-ERBa,
PER1/2 and DBP as well as clock-controlled genes such as SCN5A
(Fig. 1b and Supplementary Fig. 1a). However, co-transfection of
HEK293 cells with MYC/MAX expressing constructs did, in
contrast to CLOCK/BMAL1, not strongly activate the circadian
reporter genes REVERBa-luc, PER2-luc and SCN5A-luc (Fig. 1c).
To compare the activating potential of MYC/MAX and
CLOCK/BMAL1 at E-boxes we assayed expression of a minimal
promoter fused to 6 synthetic E-box elements (6xEbox-luc).
Similar synthetic E-box reporters have been shown to be activated
by MYC (ref. 15). Co-transfection of the 6xEbox-luc reporter with
CLOCK and BMAL1 vectors resulted in notably higher luciferase
activity than co-transfection with MYC and MAX vectors (14 fold

versus 3–4 fold; Fig. 1d). Interestingly, simultaneous expression of
MYC/MAX together with CLOCK/BMAL1 hampered activation
of the 6xEbox-luc reporter (Fig. 1d). Similarly, MYC/MAX
interfered with stronger activation of REVERBa-luc and PER2-luc
reporter genes by CLOCK/BMAL1 (Supplementary Fig. 1b). The
data suggest that MYC/MAX has a weaker activation potential
than CLOCK/BMAL1 at synthetic as well as endogenous
circadian promoters. Yet, MYC/MAX is functionally dominant
over CLOCK/BMAL1.

Overexpression of MYC disrupts the circadian clock. Next, we
generated a U2OS cell line expressing a doxycycline-inducible
V5-tagged MYC (U2OS t-rex tetO-MYC:V5). In presence of
doxycycline total MYC (endogenousþ induced) was B9-fold
overexpressed (Fig. 4d and Supplementary Fig. 4c).

Twenty four and thirty six hours after induction, MYC:V5 was
efficiently recruited to circadian E-box sites in REV-ERBa and
PER2 (Fig. 1e). Rhythmic recruitment of BMAL1 to these loci was
not compromised, yet BMAL1 occupancy was reduced 36 h after
induction of MYC:V5 (Fig. 1f). The data suggest that at any given
time the saturation level of the E-boxes with either transcription
factor was rather low such that the transcription factors did not
physically compete for common binding sites. The functional
dominance of MYC/MAX could reflect a MYC/MAX induced
chromatin state that allows binding of CLOCK/BMAL1 but
interferes with stronger activation of target genes.

We then asked whether overexpression of MYC affects
expression levels and circadian rhythms of clock genes. Induction
of transgenic MYC:V5 attenuated the circadian expression
rhythms of PER2-luc and Bmal1-luc reporters in synchronized
U2OS cells, while expression of green fluorescent protein
(control) had no effect (Fig. 1g and Supplementary Fig. 1c,d).
Unexpectedly, however, the expression level and rhythm of
the non-E-box-dependent Bmal1-luc reporter were strongly
attenuated already shortly after induction of MYC:V5, whereas
rhythmic expression of the E-box regulated PER2-luc reporter
was affected with delayed kinetics (Fig. 1g). Surprisingly,
expression levels of PER2-luc decreased in the presence of
overexpressed MYC (Supplementary Fig. 1c) indicating that the
MYC:V5 did not activate the E-box containing circadian
promoter. Overexpression of MYC:V5 attenuated expression of
endogenous BMAL1 and blunted its circadian profile about 1 day
earlier and more strongly than the rhythm of the E-box
containing PER2 gene (Fig. 1g,h). Furthermore, MYC:V5
expression caused downregulation of the non-E-box genes
CLOCK and NPAS2 (Supplementary Fig. 1e).

It has been suggested that MYC activates REV-ERBa via
E-boxes, which in turn would downregulate BMAL1 and thereby
attenuate the circadian clock12. Indeed, overexpression of a
doxycycline-inducible FLAG-tagged REV-ERBa repressed
Bmal1-luc levels and damped its rhythms (Supplementary
Fig. 2a), indicating that REV-ERBa is a potent repressor of
BMAL1 in U2OS cells.

We therefore asked whether MYC activates REV-ERBa in
U2OS cells. Circadian expression profiles revealed that levels of
REV-ERBa, as well as of REV-ERBb, were downregulated rather
than activated by overexpressed MYC (Fig. 2a). The data are in
agreement with the dominant negative effect of MYC/MAX
over CLOCK/BMAL1 in transient expression of REVERBa-luc
(Supplementary Fig. 1b).

To analyse the impact of MYC on REV-ERBa in more detail we
constructed a MYC-overexpressing cell line (U2OS t-rex
tetO-MYC:V5) that expresses under control of the Rev-erba
promoter a destabilized nuclear venus reporter (Rev-VNP)16.
Rev-VNP was rhythmically expressed as assessed by quantifying
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the total fluorescence and the number of fluorescent objects
(cells) per well (Fig. 2b, black curves). Overexpression of MYC
triggered a transient activation of Rev-VNP with a peak B7 h
after induction, which was followed by downregulation and
blunting of the circadian Rev-VNP rhythm (Fig. 2b, red curves).

We then integrated over a 3-day time course (24–96 h) the total
number of fluorescent objects (cells expressing Rev-VNP above
threshold) to assess whether the MYC-dependent loss of
rhythmicity in the population of cells was due to desynchroniza-
tion (same number of fluorescent objects in presence and absence
of MYC) or due to an attenuated rhythm, that is, a reduction of
the number of highly rhythmic cells (less fluorescent objects
above threshold). One day after induction of MYC:V5, the
average number of fluorescent objects was B2-fold reduced,
indicating a decrease of the number of highly rhythmic cells
rather than desynchronization of the population of cells (Fig. 2b,
inset). MYC-dependent attenuation of the circadian Rev-VNP
rhythm rather than MYC-induced desynchronization was
also obvious on the level of single cells (Supplementary
Movie 1). The data suggest that induction of MYC:V5 does not
trigger a sustained overexpression of REV-ERBa but rather
reduces its expression level and rhythm. Corresponding results
were obtained with a REVERBa-luc reporter (Supplementary
Fig. 2b).

Altman et al.12 reported induction of REV-ERBa in response to
activation of MYC. However, they quantified REV-ERBa at a

single time point early after induction of MYC (24 h). At this time
REV-ERBa levels may still be slightly elevated due to its transient
induction peaking after 7 h (Fig. 2b).

We thus knocked down REV-ERBa by short interfering RNA
(siRNA) to assess whether the MYC-induced downregulation of
BMAL1 was dependent on REV-ERBa. REV-ERBa was B3-fold
downregulated by specific versus control siRNA (Fig. 2c). When
MYC was overexpressed, REV-ERBa levels were additionally
reduced by 40% in presence of REV-ERBa specific siRNA and by
25% in presence of control siRNA (Fig. 2c). Downregulation of
REV-ERBa by siRNA resulted in elevated expression of BMAL1
(Fig. 2c), indicating that REV-ERBa is a potent repressor of
BMAL1 in U2OS cells. However, overexpressed MYC repressed
BMAL1 in both, REV-ERBa depleted and control cells (62 and
69%, respectively), indicating that MYC acted independent
of REV-ERBa. Corresponding results were obtained with a
Bmal1-luc reporter (Fig. 2d).

Downregulation of the positive limb of the circadian feedback
loop has been shown to be sufficient to disrupt the molecular
clock in U2OS cells17. Accordingly, the MYC-dependent
attenuation of expression level and circadian rhythm of
Bmal1-luc was partially rescued by constitutive overexpression
of BMAL1 together with CLOCK (Supplementary Fig. 2c,d).
Together, these data suggest that overexpression of MYC did not
enhance expression of REV-ERBa in a sustained manner. Rather,
overexpressed MYC compromised the circadian system primarily
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Figure 1 | Overexpression of MYC attenuates the circadian clock. (a) Overlap between native MYC (ref. 14) and BMAL1 (ref. 13) binding sites in U2OS

cells. (b) PER2 and REV-ERBa loci with binding sites (BS) of BMAL1, CLOCK, native MYC and overexpressed MYC in U2OS cells (based on the data from

refs 13,14). (c) MYC and MAX do not substantially induce the BMAL1/CLOCK target genes REV-ERBa, PER2 and SCN5a. HEK293 cells were transfected with

MYC, MAX, BMAL1 and CLOCK encoding plasmids (30 ng) together with the indicated circadian promoter-luc reporter plasmids. GAPDH-luc was transfected

as a negative control (n¼ 3). (d) MYC/MAX restricts stronger induction of 6xEbox-luc by CLOCK/BMAL1. HEK293 cells were transfected with 30 ng of

each BMAL1 and CLOCK plasmids, and with the indicated amounts (in ng) of MYC and MAX vectors (n¼ 3). ChIP-PCR analysis of (e) MYC:V5 and

(f) BMAL1 binding to circadian E-boxes in PER2 and REV-ERBa promoters in synchronized and doxycycline-induced U2OS t-rex tetO-MYC:V5 cells (n¼ 3).

(g) Bioluminescence recorded from synchronized Bmal1-luc and PER2-luc U2OS t-rex tetO-MYC:V5 cells (n¼ 3). (h) Quantitative PCR (qPCR) analysis of

circadian expression profiles of PER2 and BMAL1 transcripts in synchronized U2OS t-rex tetO-MYC:V5 cells (n¼ 3). Data are presented as mean±s.e.m.

*Po0.05; one-way (c,d) and two-way (e,h) analysis of variance (ANOVA) with Bonferroni post-test.
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via downregulation of BMAL1, CLOCK and its homologue
NPAS2 by a pathway independent of REV-ERBa and REV-ERBb.

MYC represses the circadian clock via interaction with MIZ1.
MYC is not only a transcription activator. When expressed at
high level, MYC has the potential to form a repressive complex
with MIZ1 (ZBTB17) and downregulate in E-box-independent
fashion expression of MIZ1 target genes such as the cyclin-
dependent kinase inhibitor genes p15 and p21 (refs 14,18,19).

We followed the MYC-dependent temporal expression profiles of
luciferase reporter constructs of established and putative MIZ1
target genes. After induction of MYC:V5 with doxycycline,
Bmal1-luc was repressed with similar kinetics as p15-luc and
p21-luc, while 6xEbox-luc was, as expected, induced when MYC
was overexpressed (Fig. 3a). Examining a published ChIP-seq
analysis of MIZ1 in U2OS cells14, we realized that MIZ1 binds to
the promoters of BMAL1, CLOCK and NPAS2 (Fig. 3b, left panel).
We therefore performed a ChIP-PCR analysis and found that
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overexpressed MYC:V5 was recruited to the MIZ1 sites in
BMAL1, CLOCK and NPAS2 (Fig. 3b, right panel), suggesting
that MYC binds to and represses these genes via MIZ1.

When MYC is not overexpressed MIZ1 acts as a transcription
activator20. To assess whether MIZ1 supports expression of
BMAL1, CLOCK and NPAS2 in U2OS cells, we depleted
MIZ1 with siRNA (Fig. 3c). Expression of BMAL1, CLOCK and
NPAS2 was reduced indicating that MIZ1 contributes to the
transcriptional activation of these clock genes. When MIZ1
was depleted by siRNAs, the circadian expression rhythm of
Bmal1-luc was weakened in comparison to a treatment with
control siRNA (Fig. 3d, black curves) and the circadian period
was lengthened (Supplementary Fig. 3a). To assess whether
the MYC-dependent disruption of the clock requires MIZ1,
we induced MYC:V5 in MIZ1-depleted and control-treated cells
(Fig. 3d, red curves). As expected, the circadian expression
rhythm of Bmal1-luc was abolished when MYC:V5 was
overexpressed in control-treated cells (Fig. 3d, red curve left
panel). Concomitant downregulation of MIZ1, however, partially
restored the expression level and circadian rhythms of Bmal1-luc
despite overexpression of MYC:V5 (Fig. 3d, red curves middle
and right panels). Correspondingly, the rhythm of 6xEbox-luc was
severely attenuated by induced MYC:V5 and fully rescued by
siRNA depletion of MIZ1 (Supplementary Fig 3b). Together the
data indicate that overexpressed MYC represses BMAL1 directly
via MIZ1-dependent recruitment of MYC to MIZ1 binding sites.

MYC-mediated attenuation of the clock requires MIZ1.
To challenge this hypothesis, we generated the V5-tagged MYC
V394D mutant, which is impaired in its interaction with
MIZ1 (ref. 21) and in addition the variant V393D. ChIP-PCR
analysis demonstrated that, as was shown for V394D21, the
newly generated V393D variant binds with similar affinity to
E-boxes as WT MYC (Supplementary Fig. 4a). Both mutant
versions of MYC:V5 induced expression of 6xEbox-luc in
HEK293 cells and interfered in dominant negative fashion with

CLOCK/BMAL1-dependent activation of 6xEbox-luc to the same
extent as wild-type MYC:V5 (Fig. 4a). Theses data suggest that
the E-box-dependent functionality of MYC:V5 V394D and
MYC:V5 V393D was not affected. Both mutant versions
interacted with MAX with similar efficiency as MYC:V5
(Fig. 4b, upper panel; and Supplementary Fig. 4b). In contrast,
the V394D and V393D variants showed markedly reduced
association with MIZ1 (Fig. 4b, lower panel; and Supplementary
Fig. 4b). Next, we produced stable U2OS cell lines harbouring
doxycycline-inducible MYC:V5 V394D and MYC:V5 V393D
genes. Both inducible transcripts accumulated to similar levels
as MYC:V5 (Supplementary Fig. 4c). However, repression of
p15-luc, p21-luc as well as Bmal1-luc reporters was alleviated in
the cell lines expressing the V393D and V394D versions of
MYC:V5 (Fig. 4c). The levels of CLOCK and BMAL1 proteins
were strongly reduced by overexpression of MYC:V5, but
remained essentially unaffected by induction of MYC:V5
V393D (Fig. 4d). Circadian expression rhythms of Bmal1-luc
and 6xEbox-luc reporters were strongly attenuated by
overexpression of wild-type MYC:V5, but only mildly affected
by overexpression of V394D and essentially unaffected by the
V393D version (Fig. 4e and Supplementary Fig. 4d). Similarly,
Rev-VNP (ref. 16) expression levels and rhythms were strongly
attenuated by overexpressed MYC:V5 but unaffected by
induction of MYC:V5 V393D (Fig. 4f and Supplementary
Movies 1 and 2). The data demonstrate that overexpressed
MYC attenuates the circadian clock via MIZ1-mediated E-box-
independent repression.

MYC-dependent cell cycle stimulation requires MIZ1. Elevated
MYC expression is considered to drive cell growth and
proliferation through genome-wide interference with physio-
logical regulation of E-box-dependent transcription22. Since the
E-box-dependent activation properties are preserved in the
V393D version of MYC:V5 (Fig. 4a), we asked how it affects
cell growth and proliferation. Consistent with previous studies21,
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induction of MYC:V5 reduced the fraction of cells in G1 phase
and increased the proportion of cells in S, G2 and M phases
(Fig. 5a,b). In contrast, overexpression of MYC:V5 V393D did
not support proliferation to a substantial extent. These data
suggest that stimulation of proliferation of U2OS cells by MYC is
crucially dependent on gene repression via MIZ1. Together the
data suggest that overexpression of MYC supports proliferation
and attenuates the circadian clock predominantly via MIZ1.

Knockdown of MYC induces circadian amplitude. Next,
we analysed effects of MYC depletion. Knockdown of MYC
by siRNA resulted in decreased proliferation of U2OS cells
(Fig. 5c,d). Concomitantly, expression levels of BMAL1 and
CLOCK increased (Fig. 5e). Furthermore, the relative amplitudes
(the oscillation amplitude divided by the mean expression) of the
circadian expression rhythms of Bmal1-luc and other circadian
reporters significantly improved in cells transfected with MYC
siRNA (Fig. 5f and Supplementary Fig. 5a). Corresponding effects

were observed in U2OS cells expressing Rev-VNP (Supplementary
Fig. 5b, Supplementary Movie 3). Thus, downregulation of MYC
with siRNA increased the relative amplitude of the Rev-VNP
rhythm. In summary, the data indicate that downregulation of
MYC attenuates proliferation and strengthens the circadian clock.

Inverse correlation of MYC and clock genes in lymphoma.
MYC is overexpressed in many tumours and depletion of MYC is
known to detain tumour growth22. Encouraged by the inverse
correlation of MYC with BMAL1 and CLOCK expression in
U2OS cells, we assessed expression of these genes in human
lymphoma by analysing RNA-seq data of 102 patient samples.
Lymphoma was chosen since this type of malignancy requires
interaction of MYC and MIZ1 (ref. 23). Consistent with our
observation in U2OS cells, expression of both clock genes
correlated inversely with MYC levels in human lymphoma
(Pearson coefficient � 0.61 and � 0.37 for BMAL1 and
CLOCK, respectively; n¼ 102), whereas MYC-activated genes
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Figure 4 | MYC mutants compromised in MIZ1 interaction do not disrupt the circadian clock. (a) Transactivation assay in HEK293 cells showing

that MYC:V5 WT, V394D and V393D equally induce 6xEbox-luc expression and compete with CLOCK/BMAL1 in a dominant negative manner (n¼ 3).

(b) Anti-V5 immunoprecipitation of MYC:V5 versions in HEK293 lysates showing that MYC:V5 V394D and V393D interact with MAX (upper panel) but

not with MIZ1 (lower panel). Co-immunoprecipitation (Co-IP) of FLAG-tagged MAX and MIZ1 was detected with anti-FLAG antibodies. Refer to

Supplementary Fig. 4a for inputs and reciprocal anti-FLAG co-IP’s. (c) Overexpressed MYC:V5 V394D and V393D are inefficient in repression of MIZ1

target genes. Expression of transiently transfected p15-luc, p21-luc and Bmal1-luc reporters in U2OS t-rex tetO-MYC:V5 cells expressing the indicated versions

of MYC. Bioluminescence was quantified 18 h after MYC induction with doxycycline and normalized to PBS-treated samples (n¼ 3). (d) Western blot

analysis (left) and densitometric protein quantification (right) of CLOCK and BMAL1 in U2OS cells overexpressing MYC and MYC V393D 24 h after

doxycycline induction (n¼ 3). (e) Baseline-subtracted bioluminescent traces from U2OS t-rex tetO-MYC:V5 WT, V394D and V393D cells transiently

transfected with Bmal1-luc (n¼ 3). For the raw data refer to Supplementary Fig. 4d. (f) Total fluorescence and fluorescent objects quantified from

synchronized U2OS t-rex Rev-VNP cells stably transfected with inducible MYC:V5 WT and V393D (n¼ 1). Data are presented as mean±s.e.m. *Po0.05;

one-way analysis of variance (ANOVA) with Bonferroni post-test.
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such as NCL and NCLN showed a positive correlation (Fig. 6a,b
and Supplementary Fig. 6). MYC levels did not correlate
positively with expression of circadian genes regulated via
E-boxes. Particularly, REV-ERBa and b did not significantly
correlate with MYC.

The circadian clock and cell cycle/proliferation are major
programs controlling expression of specific, potentially over-
lapping sets of genes24–27. Since the simultaneous regulatory
activity of both programs in the same cell may create conflicting
signals, it seems conceivable that their activity is coordinated
under physiological conditions. It has been shown that in
regenerating mouse liver, the circadian clock gates the cell

cycle28 and that in NIH3T3 cells the cell cycle resets the circadian
clock29,30. The circadian clock in the liver of a living animal
oscillates with high amplitude, while the circadian clock in
isolated cells appears to be substantially weaker13,31. Hence,
the dominance of one cycling programme over the other may
depend on their relative strength or rhythmic momentum. Our
observations suggest that MYC is a master regulator coordinating
both programs. Expression levels of MYC determine the relative
strength of the circadian clock versus cell cycle/proliferation and
hence, their impact on gene expression and cellular physiology.
MYC attenuates the circadian system and promotes proliferation.
Both functions are critically dependent on complexes of MYC

MYC:V5 WT

MYC:V5 V393D

20

10

–20

–10

0

M
Y

C
-in

du
ce

d 
ch

an
ge

in
 c

el
l c

yc
le

 s
ta

ge
 (

%
)

G0-G1 S G2-M

*

*

0

200

400

600

800

1,000

0 1 2 3 4 5

Time (days)

R
el

at
iv

e 
ce

ll 
nu

m
be

r 
(%

)

Neg siRNA
MYC siRNA

U2OS
*

αBMAL1

αCLOCK

αTUB

Neg si
RNA 

MYC si
RNA 

αMYC

WB:

95
kDa

72
72

55

M
Y

C
:V

5 
V

39
3D

M
Y

C
:V

5 
W

T

Ctrl MYC ox

0

1,000

2,000

3,000

4,000

5,000

G
0-

G
1 

ce
lls

 p
er

 w
el

l

MYC oxCtrl

*

MYC:V5 WT MYC:V5 V393D

M
Y

C
 s

iR
N

A
-in

du
ce

d 
ch

an
ge

in
 c

el
l c

yc
le

 s
ta

ge
 (

%
)

–20

–10

0

10

20

30
U2OS

G0-G1 S G2-M

*

*

*

a b

c ed

f

0.00

0.05

0.10

0.15

0.20

0.25
*

0.0

0.5

1.0

1.5

R
el

at
iv

e 
am

pl
itu

de
 (

a.
u.

) *

0.00

0.05

0.10

0.15

0.20 *

0.00

0.05

0.10

0.15

0.20

0.25
*

0.0

0.1

0.2

0.3

0.4
*

0.0

0.5

1.0

1.5
*

SCN5�-lucBmal1-luc

Neg siRNA MYC siRNA

PER2-luc ATG3-luc EIF5A2-luc PLD6-luc

Cells in G0-G1 phase (FUCCI-Red expressing cells) 

0

1

2
*

0

2

4

6 *

BMAL1

CLOCK

R
el

at
iv

e 
pr

ot
ei

n 
ab

un
da

nc
e 

(a
.u

.)

Neg siRNA
MYC siRNA

Figure 5 | MYC inversely regulates the circadian clock and proliferation. (a) MYC:V5 WT and V393D U2OS cells were stained with propidium iodide 48 h

after induction and DNA content was quantified by FACS (n¼ 3). Values indicate difference (in %) to PBS-treated cells in the respective cell cycle phase.

(b) Left panel: fluorescence microscopy of U2OS t-rex tetO-MYC:V5 cells stably expressing mCherry-Cdt1 (FUCCI-Red G1 marker) 48 h after treatment with

doxycycline to induce MYC:V5 (MYC ox) or PBS (Ctrl). Scale bar, 300mm. Right panel: quantification of cells in G0 or G1 phase by mCherry-Cdt1

expression (n¼ 3) (c) FACS analysis of U2OS cells stained with propidium iodide 48 h after transfection with MYC siRNA (n¼ 3). Values indicate

difference to cells transfected with negative siRNA. (d) Growth curve of U2OS cells transfected with MYC siRNA and negative siRNA (n¼ 3). (e) Western

blot analysis (left) and densitometric protein quantification (right) showing that MYC depletion by siRNA supports increased BMAL1 and CLOCK

expression in U2OS cells (n¼ 3). (f) Relative amplitudes (ChronoStar software) of circadian luciferase rhythms of indicated U2OS reporter cell lines

(n¼ 3). The cells were transfected with MYC siRNA and negative siRNA as indicated. Data are presented as mean±s.e.m. *Po0.05; Student’s t-test (e,f),

one-way (b,c) and two-way (a,d) analysis of variance (ANOVA) with Bonferroni post-test.
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with MIZ1. Such repressive complexes form preferentially at high
MYC levels32. The inverse correlation of BMAL1 versus MYC
expression levels in human lymphomas and the absence of a
positive correlation of MYC with circadian E-box genes
support this hypothesis. The correlation suggests that circadian
physiology might be compromised in tumours with amplified
MYC. Strategies targeting the interaction of MYC with MIZ1
could help to recover circadian control over cellular physiology in
malignant cells and potentially inhibit uncontrolled growth
without major effects on differentiated post-mitotic cells with
low MYC expression.

It seems conceivable that rhythmic downregulation of
metabolic and biosynthetic functions by the circadian clock
may be in conflict with rapid cell growth and proliferation.
Hence, aside from malignant conditions, MYC may also
coordinate the relative impact on gene expression of the circadian
clock versus cell cycle/proliferation under physiological condi-
tions such as in the developing and differentiating embryo.

Methods
Cell culture and transfections. U2OS t-rex (T-Rex, Life Technologies) and
HEK293T (ATCC) cells were maintained in DMEM supplemented with 10% fetal

bovine serum (FBS) and 1xPenStrep. Cell culture reagents were obtained from Life
Technologies unless indicated differently. U2OStx were transfected with AhdI-
linearized pcDNA4/TO vectors containing different alleles of human MYC using
Xfect (Clontech) and stable transfectants were selected using growth medium
supplemented with 50mg ml� 1 hygromycin and 100 mg ml� 1 zeocin (InvivoGen).
Positive clones were subsequently, transiently or stably transfected with circadian
reporter constructs using Xfect reagent and, if applicable, selected with 1 mg ml� 1

puromycin (InvivoGen). U2OS stable cell lines expressing the promoter-luciferase
constructs were described previously13. For RNAi experiments, U2OS cells were
transfected with the indicated siRNA (sequences are given in Supplementary
Table 1) using lipofectamine RNAiMAX reagent according to manufacturer’s
protocols. For luciferase reporter assays, HEK293T cells were transfected with the
indicated constructs using Lipofectamine2000 and 24 h later luciferase expression
was assayed using Dual-luciferase Reporter Assay (Promega) and an EnSpire
Reader (Perkin Elmer).

Plasmid constructs. Bmal1-luc and 6xEbox-luc vectors were kindly provided by
Dr Steven A Brown and Dr Achim Kramer33,34. p15-luc, p21-luc and MIZ1 open
reading frame (ORF) vectors were kindly provided by Dr Elmar Wolf. Rev-VNP
fluorescent reporter containing 13 kb of murine Rev-erba promoter coupled to
Venus-NLS-PEST was kindly provided by Dr Ueli Schibler. Promoter sequences
(1 kb) of PER2, REV-ERBa, SCN5a and GAPDH genes cloned in pGL4.20puro
vector were described previously13. BMAL1, CLOCK and MAX ORFs were
amplified from U2OS complementary DNA (cDNA) and cloned in pcDNA4/TO
vector. The MYC and FLAG:REV-ERBa ORFs were obtained from Addgene and
subcloned in pcDNA4/TO. MYC V394D and V393D mutations were performed
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using DF-Pfu polymerase (Bioron). Cloning and mutagenesis primers are available
on request.

Real-time bioluminescence monitoring. For RNAi or transfection experiments,
cells were seeded into a 96-well plate (20,000–30,000 cells per well) and next day
transfected with the indicated siRNAs. 24 h later the transfection medium was
removed and cells were synchronized with 1 mM dexamethasone for 20 min and
washed with PBS. After addition of warm luminescene medium (DMEM w/o
Phenolred (PAA) supplemented with 10% FBS, 25 mM Hepes, 1xPenStrep, and
0.125 mM luciferin (BioSynth), 10ng ml� 1 doxycycline) the plate was sealed and
bioluminescence was recorded for 30 min intervals at 37 �C with an EnSpire Reader
(Perkin Elmer). Circadian period and amplitude analysis was performed using
ChronoStar software35.

Gene expression analysis. Transfected or synchronized cells were lysed with
TriFaster (GeneON) and total RNA was extracted according to manufacturer’s
protocol. cDNA was synthesized with Maxima First Strand cDNA Synthesis
Kit (Thermo Scientific). Quantitative PCR was performed using GoTaq Master
Mix (Promega) and LightCycler 480 (Roche) and relative gene expression was
quantified using a DDCt method with GAPDH as a reference gene. Primer
sequences are listed in Supplementary Table 1.

Chromatin immunoprecipitation (ChIP). U2OS t-rex cells were collected 24 and
36 h after synchronization (10 ng ml� 1 doxycycline added at time point 0) and
immediately cross-linked in 1% formaldehyde for 10 min. ChIP was performed as
described previously with minor modifications36. In brief, pelleted nuclei were
suspended in 300ml IP buffer (150 mM NaCl, 5 mM EDTA, NP-40 (0.5%), Triton
X100 (1.0%), 50 mM Tris-HCl, pH 7.5) supplemented with 0.1% SDS and
sonicated (30 s on/30 s off cycles for 20 min) using a Bioruptor (Diagenode Inc.).
Sheared chromatin (equivalent of 106 cells) was incubated overnight at 4 �C with
3 ml of anti-BMAL1 (ref. 13; 0.1 mg ml� 1) and 0.5 ml anti-V5 antibodies
(1 mg ml� 1, 46-0705, Life Technologies), and obtained immune complexes were
precipitated with salmon sperm DNA blocked protein A-agarose beads (Millipore)
equilibrated five times with IP buffer. Precipitated DNA was recovered by boiling
for 10 min in 10% Chelex slurry (Bio-Rad) followed by Proteinase K (150mg ml� 1,
New England Biolabs) treatment at 55 �C for 30 min. Proteinase K was
subsequently inhibited by boiling at 95 �C for 10 min and beads were removed by
centrifugation at 12,000g at 4 �C. DNA-containing supernatants were analysed by
quantitative PCR, and values were normalized to percentage of input. Primer
sequences are listed in Supplementary Table 1.

Cell proliferation assays. Prior to siRNA transfection, U2OS t-rex cells were
seeded on 96-well plates (5,000 cells per well) in 100 ml DMEM (10% FBS,
1xPenStrep). Twenty four hours after transfection (day 0), medium was replaced
with 100 ml DMEM (10% FBS, 1xPenStrep). Cell number was measured daily by
incubating cells for 1.5 h with DMEM containing 1/10 diluted WST-8 reagent at
37 �C (Cell Counting Kit-8, Sigma-Aldrich) and absorbance was read at 450 nm
using an EnSpire Reader (Perkin Elmer).

Fluorescent microscopy. U2OS t-rex Rev-VNP (tetO-MYC WT/V393D or siRNA
transfected) cells were seeded (10,000 cells per well) on ImageLock 96-well plates
(Essen Bioscience) in 100 ml DMEM (10% FBS, 1xPenStrep). Next day, after
dexamethasone synchronization and PBS wash, cells were incubated in 100 ml
PBS- or Doxycycline-containing DMEM (10% FBS, 1xPenStrep) and monitored
with IncuCyte ZOOM reader (Essen Bioscience). To detect cells in G0–G1 phase,
U2OS overexpressing MYC alleles were stably transfected with FUCCI-Red
construct and puromycin-resistant clones were selected. Then 7,000 cells were
seeded on ImageLock 96-well plates (Essen Bioscience) and next day, after addition
of doxycycline, cells were monitored with an IncuCyte ZOOM reader (Essen
Bioscience) and red-fluorescent objects were counted using in-built software. Total
fluorescence and number of fluorescent objects were measured using in-built software.

FACS. After 3 days of doxycycline induction, trypsinized and PBS-washed cells
(B106 cells) were fixed in 70% ethanol for 1 h at 4 �C. After centrifugation for
5 min at 300g, cells were washed once with PBS and incubated for 10 min at room
temperature in 1 ml propidium iodide-staining solution (PBS, 0.1% TritonX-100,
10mg ml� 1 freshly added propidium iodide, 100mg ml� 1 freshly added RNaseA).
Cellular DNA content was measured with a FACSCanto analyzer (BD).

Co-immunoprecipitation (Co-IP) and western blotting. For protein analysis,
synchronized U2OS cells were lysed in ice-cold lysis buffer (25 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 0.5% Triton X100, 2 mM EDTA, 1 mM NaF and protease
inhibitor cocktail (Roche, 04693159001)) for 10 min on ice and sonicated in ice
water in an ultrasonic bath (Merck) for 10 min. Then lysates were pre-cleared
from cell debris by centrifugation at 16,000g for 15 min at 4 �C and the protein
concentration in the supernatant was determined with Roti-Quant (Carl Roth).
Samples (200 mg of total protein) were boiled with the appropriate amount of

4x Laemmli buffer (250 mM Tris-HCl pH 6.8, 6% SDS, 40% Glycerol, 0.04%
Bromphenolblue and 20% Mercaptoethanol) for 3 min at 95 �C and separated
using 12% SDS-PAGE. After semi-dry transfer (PEQLAB) on nitrocellulose
membranes (GE Healthcare), protein extracts were decorated with anti-BMAL1
(ref. 13; 1:750), anti-CLOCK (ref. 13; 1:500), anti-MYC (1:400, N-262, SantaCruz),
anti-V5 (1:5,000, 46-0705, Life Technologies) and anti-FLAG (1:5,000, M2,
Sigma-Aldrich) antibodies in 5% milk TBS at 4 �C overnight. Next day,
membrane was washed three times in TBS and incubated with the appropriate
HRP-conjugated secondary antibody in 5% milk TBS for 1 h at room temperature.
After 4 TBS washes, the membrane was exposed to X-ray films (Super RX,
FUJIFILM) and developed using an AGFA automatic processor developer. For
co-IP, lysates from transfected HEK293T cells were prepared as described above.
Lysates (500 mg total protein) were incubated with anti-V5 (0.5 ml) antibodies or
40 ml of PBS-washed anti-FLAG M2 Affinity Gel (Sigma-Aldrich) agitating at 4 �C
overnight. Next day, 40 ml of PBS-washed protein A sepharose beads (GE
Healthcare) were added to bind anti-V5 immune complexes and incubated for 2 h.
Then beads were washed three times with PBS and protein was eluted by boiling in 4x
Laemmli buffer. Precipitated proteins were analysed by western blotting as described
above. Uncropped blots are shown in Supplementary Fig. 7.
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