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Objective: To develop a non-invasive and clinically practical method for a long-term
monitoring of infant sleep cycling in the intensive care unit.

Methods: Forty three infant polysomnography recordings were performed at 1–
18 weeks of age, including a piezo element bed mattress sensor to record respiratory
and gross-body movements. The hypnogram scored from polysomnography signals
was used as the ground truth in training sleep classifiers based on 20,022 epochs of
movement and/or electrocardiography signals. Three classifier designs were evaluated
in the detection of deep sleep (N3 state): support vector machine (SVM), Long
Short-Term Memory neural network, and convolutional neural network (CNN).

Results: Deep sleep was accurately identified from other states with all
classifier variants. The SVM classifier based on a combination of movement and
electrocardiography features had the highest performance (AUC 97.6%). A SVM
classifier based on only movement features had comparable accuracy (AUC 95.0%).
The feature-independent CNN resulted in roughly comparable accuracy (AUC 93.3%).

Conclusion: Automated non-invasive tracking of sleep state cycling is technically
feasible using measurements from a piezo element situated under a bed mattress.

Significance: An open source infant deep sleep detector of this kind allows
quantitative, continuous bedside assessment of infant’s sleep cycling.

Keywords: infant sleep, non-invasive monitoring, intensive care monitoring, NICU, bed mattress sensor, sleep-
wake cycling

INTRODUCTION

Recent studies on sleep quality in the intensive care units have prompted interest in early sleep
monitoring due to its association with general well-being and distress (van den Hoogen et al.,
2017; Werth et al., 2017a). Compromised sleep in infancy is also considered to increase the risk
of neurodevelopmental delay (Paruthi et al., 2016; van den Hoogen et al., 2017). Several studies
have indicated that infant’s ability to fluctuate between sleep states, a.k.a. sleep-wake cycling
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(SWC) carries important prognostic information. Bedside
tracking of SWC is still based on visual assessment
of a compressed trend display of scalp-recorded
electroencephalograph (Thoresen et al., 2010; Klebermass
et al., 2011), which essentially identifies alternation between deep
sleep (quiet sleep) and other vigilance states.

A wide range of methods have been used for the assessment
of sleep in infants (Werth et al., 2017a,b). The gold standard
in short-term infant sleep studies is polysomnography (PSG), a
non-invasive technique that combines a large set of physiological
signals, recorded overnight, to generate an assessment of
sleep behavior (Grigg-Damberger et al., 2007). For long-term
studies, infant sleep behavior is assessed with sleep diaries and
questionnaires (Sadeh, 2004; Paavonen et al., 2019). Recent work
has also used wrist- or ankle-worn actigraphy (Sadeh, 2011;
Paavonen et al., 2019) to provide rough assessments of sleep-wake
cycles. All of these methods have significant limitations. The use
of PSG is hampered by its relative obtrusiveness and is labor-
intensive in both recording and analysis, questionnaires have only
limited accuracy and reliability, while actigraphy is challenged
in infants due to many factors that confound interpretation
(Sokoloff et al., 2020).

Several alternative solutions have been recently proposed
for infant sleep studies, based on one or more physiological
signals, such as cardiac, respiratory, or body movements. These
works have shown clearly that wake and sleep states exhibit
characteristic changes in respiration variability, body movements,
and heart rate variability (Haddad et al., 1987; Harper et al., 1987).
As a result, rules have been proposed for sleep scoring based
on body movements and changes in the pattern of respiration,
both of which can be reliably recorded with bed mattress sensors
(BMS) (Thoman and Tynan, 1979; Erkinjuntti et al., 1990;
Kirjavainen et al., 1996).

Recent developments in computational analyses have
introduced several sleep state classifiers that are based on
one or more signals in the PSG recording (Held et al., 2006;
Gerla et al., 2009), such as electroencephalography (EEG)
(Dereymaeker et al., 2017; Koolen et al., 2017; Ansari et al.,
2020), electrocardiography (ECG) (Werth et al., 2017b) and
respiratory inductive plethysmography (RIP) (Sazonova et al.,
2006; Terrill et al., 2010; Terrill et al., 2012; Long et al., 2015; Isler
et al., 2016). These classifiers have used heuristics (Haddad et al.,
1987), computational thresholds (Terrill et al., 2012; Isler et al.,
2016), discriminant analyses (Harper et al., 1987) and machine
learning approaches (Sazonova et al., 2006; Koolen et al., 2017;
Werth et al., 2017a; Ansari et al., 2020) to classify sleep states.

Measuring respiration with BMS may allow non-invasive
long-term monitoring in the neonatal intensive care unit
(NICU). In this context, the clinical need is focused on
tracking cycling between deep sleep and wake—rather than
an accurate detection of sleep states as in the clinical sleep
medicine unit. While several BMS-based classifiers have been
developed for adults in both research (Kortelainen et al.,
2010; Mendez et al., 2010; Jansen and Shankar, 1993) and
commercial consumer products (Tal et al., 2017; Ranta et al.,
2019), there is a dearth of BMS based sleep classifiers for infants
(Thoman and Glazier, 1987).

Here, we aimed to develop a BMS-based classifier for
an automated assessment of deep sleep to allow observing
infant’s sleep cycling. We also studied the effects of
classification architecture and augmentation with the ECG
on classification accuracy.

METHODS

This study used a retrospective collection of PSG and BMS
recordings. Study design is outlined in Figure 1 including
examples of BMS data in different vigilance states, and a
schematic diagram of classifier construction. All classifiers were
trained using labels generated by the visual interpretation of
the hypnogram. The signal pre-processing, feature extraction,
and selection, SVM training and testing, in addition to final
analysis were conducted in Matlab [MATLAB 2016. version 9.1.0
(R2016b), The MathWorks Inc., Natick, Massachusetts]. The
neural networks were trained and tested in TensorFlow (Abadi
et al., 2015). The classifiers are publicly available at GitHub
(Ranta, 2020).

Data Acquisition
A data set of 51 infants was collected at the Department
of Children’s Clinical Neurophysiology, Children’s Hospital,
Helsinki University Hospital (see Table 1 and Supplementary
Table S1), including all infants (< 6 months) that were assigned
to a clinical sleep study in 2016. The PSG data was gathered
using Embla N700 equipment and RemLogic 3.2.0 software
(Natus, United States) as per routine clinical protocol. A thin
40 cm × 50 cm × 6.35 mm electromechanical ferroelectric
sleep mattress sensor (model L-4060SLC, Emfit, Finland) was
recorded as an additional channel in the analog input of
the PSG recorder (pass band between 0.07 and 48 Hz). All
signals were sampled at 200 Hz. The thin, cellular, quasi-
piezoelectric film sensor generates a charge when the external
pressure changes (Paajanen et al., 2000, 2001). The data
set was visually reviewed to exclude recordings with poor
signal quality, i.e., no visually detectable respiration, leaving
43 PSG recordings for classifier development. The study was
approved by the Institutional Review Ethics Committee of
Helsinki Hospital.

In addition, we tested the real-life feasibility of this method
by recording two newborn infants during their stay in the
NICU. These infants both represent the key target group
where SWC monitoring is of interest during the early stay
in the NICU (Thoresen et al., 2010; Klebermass et al., 2011):
They were both born at full-term and recorded during days
2–3 after birth. One infant was admitted to NICU due to
a placenta ablation during labor, leading to resuscitation.
The other infant was taken to NICU due to severe birth
asphyxia. No other brain pathology was known by the time
of recording. The recordings included bed mattress as above,
as well as a standard four electrode EEG to be inspected as
the amplitude integrated trend (aEEG), the basis of current
bedside detection of SWC (Thoresen et al., 2010; Klebermass
et al., 2011). The SWC in the aEEG trend was visually
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FIGURE 1 | Study design. (A) Examples of hypnogram and BMS data of two subjects (columns) in different vigilance states. The BMS signals below the
hypnograms show the full length of BMS signal where movement epochs are readily observed. The shorter 1 min epochs show examples of awake (lots of high
amplitude artifacts), REM sleep (variable respiration frequency with relatively stable baseline), light sleep (N1; variable respiration frequency with baseline instability
due to movements), as well as N3 (relatively stationary respiration, i.e., steady respiration frequency and amplitude). (B) A schematic diagram of classifier
construction divided into functional blocks. Abbreviations: Rapid eye movement (REM), non-REM 1–3 (N1–3), bed mattress sensor (BMS), ballistocardiographic
bandpass filtered BMS (BF), respiration frequency bandpass filtered BMS (RF), respiration cycle length series (RCL), heart beat interval series (HBI), non-linear
dynamics feature category (Non-lin. dyn.), heart rate variability (HRV), support vector machine (SVM), Long Short-Term Memory neural network (LSTM), convolutional
neural network (CNN). Asterisks refer to the shortcut of the CNN pipeline from the raw signal (upper asterisk) to the classifier training (lower asterisk).

compared to the output of BMS-based classification to verify the
correspondence.

Clinical review of PSG studies included sleep scoring, i.e.,
generation of hypnogram, followed by analysis of respiratory
events. The hypnogram was scored every 30 s according to
the AASM guidelines by a clinical expert (T.K.) who was
unaware of this study at the time of clinical sleep scoring
(Grigg-Damberger et al., 2007).

We chose to focus on the distinction between deep sleep
(N3) and other states for two reasons: First, the clinical need
for online sleep monitoring is mainly to recognize sleep-wake

cycles (SWC, Kidokoro et al., 2012; van den Hoogen et al.,
2017), so identifying likelihood of N3 sleep would be sufficient to
quantify cyclicity in sleep states (Stevenson et al., 2014). Second,
our clinical experience as well as preliminary analyses showed
that distinction of more superficial sleep states, including REM,
from the respiratory signals may not be as accurate as needed
for SWC quantification (Figure 1A). Therefore, we designed
the study to classify N3 from the BMS signals alone, or by
using additional input from the ECG signal available in PSG
recordings. The full processing pipeline (Figure 1B) consisted of
three main blocks; pre-processing, feature extraction, and sleep
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TABLE 1 | Summary of the participants.

Sleep summary Median Min Max

Age (weeks) 6 1 18

Recording time (h:min) 4:12 2:22 9:05

Total sleep time (h:min) 2:17 0:48 7:51

N3 time (h:min) 0:52 0:18 3:03

Diagnoses # Cases

Obstructive sleep apnoea 18

Central sleep apnoea 4

Increased work of breathing 5

The age indicates postnatal age, or age after term equivalent age.

classifier construction. We trained and evaluated five different
classifiers, four feature-based classifiers, and one classifier with
representation learning capability.

Pre-processing
A notch filter was used to remove mains artifact (50 Hz).
We applied a detection for infant’s presence/absence by using
simple thresholding within 6–16 Hz band power, as infants were
occasionally removed from the bed. Gross-body movements and
disconnects were also identified using simple thresholds applied
to the smoothed root-mean-square value.

Next, we separated respiratory and cardiac activity with
Butterworth bandpass filters using 0.2–1 Hz band (12–60/min
respiratory rate) for respiration frequency range (RF), and
6–16 Hz band was used for identifying ballistocardiography
frequency (BF). An algorithm was developed to derive respiratory
cycle length time series (RCL). Since the infant heart beats were
found to be too weak for robust and reliable detection from BF,
we decided to extract heart beat interval series (HBI) from the
R-peaks of the ECG that was part of PSG. R-peaks were identified
using the Pan Tompkins algorithm (Pan and Tompkins, 1985).

Feature Extraction
All features were computed for each 30 s epochs corresponding to
the visually interpreted hypnograms. The feature set was designed
to cover a wide range of physiologically reasoned features from
four overall categories; waveform, spectral, non-linear dynamics,
and miscellaneous. In addition, we also calculated common heart
rate variability features from the ECG data (Malik, 1996). This
resulted in a total of 71 BMS-derived features and 15 ECG-based
features. See Table 2 for details of the feature set.

Epochs judged to contain excessive movement artifacts
were labeled as missing, and replaced by linear interpolation
of surrounding feature values. Features with a heavy tailed
distribution were log-modulus transformed (John and Draper,
1980) and a subject specific Z-score normalization was applied
to reduce interpatient variability.

Classifiers
We evaluated four feature-based classifiers using support
vector machine (SVM) (Cortes and Vapnik, 1995) and Long
Short-Term Memory recurrent neural network (LSTM)
(Hochreiter and Schmidhuber, 1997), as well as a classifier using

TABLE 2 | Computational features used in the SVM and LSTM classifiers.

# Feature
description

Abbr. Source References

Time-domain

1–4 Mean M RCL, RF†, HBI Jansen and
Shankar, 1993;
Long et al.,
2014

5–6 Median MED RF‡ Long et al.,
2014

7–12 Variance VAR RFa, RF†, BFa Jansen and
Shankar, 1993

13–19 Standard deviation STD RCL, RF‡,
RF∗,a, BF∗,a

20–25 Skewness SKEW RCL, RFa, BFa,
HBI

26–31 Kurtosis KUR RCL, RFa, BFa,
HBI

32–33 Coefficient of
variation

COV RCL, HBI

34–37 Hjorth mobility MOB RFa, BFa Hjorth, 1970

38–41 Hjorth complexity COMP RFa, BFa Hjorth, 1970

42–53 Zero crossings ZC RFd,a, BFd,a Jansen and
Shankar, 1993

54 Power POW BMS

Spectral

55–56 First moment M1 RF, BF

57–58 Second moment M2 RF, BF

59–60 Spectral entropy SE RF, BF

61 Mode MO BMS

62 Mode phase MOF BMS

63 Mode width MOW BMS

64 Mode power MOP BMS

65 Autocorrelation
function lag

ACFL BMS

66 Autocorrelation at
lag

ACF BMS

Non-linear-
dynamics

67–68 Sample entropy SAMPE RF, HBI Richman and
Moorman,
2000

69–70 Fuzzy entropy FUZE RF, HBI Chen et al.,
2007

71–72 Hurst exponent HE RF, HBI Peng et al.,
1994

73–74 Lyapunov exponent LE RF, HBI Rosenstein
et al., 1993

Miscellaneous

75–76 Envelope crossings EC RF, BF

77 Activity duration ACT BMS

78 Activity start
count

ACTC BMS

79 Increased
respiratory
resistance
instances

IR RF Alametsä et al.,
2006

(Continued)
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TABLE 2 | Continued

# Feature
description

Abbr. Source References

Heart rate variability Malik, 1996

80 Standard deviation
of normal to normal
R-R intervals

SDNN HBI

81 Root means square
of successive
differences

RMSSD HBI

82 Low-high frequency
ratio

LF/HF HBI Mendez et al.,
2009

83 Low-very Low
frequency ratio

LF/VLF HBI Mendez et al.,
2009

84 High-very low
frequency ratio

HF/VLF HBI Mendez et al.,
2009

85 High frequency
mode

MODHF HBI Mendez et al.,
2009

86 High frequency
mode phase

PHF HBI Mendez et al.,
2009

The sources; bed mattress sensor signal in 0.07–48 Hz (BMS), respiratory
frequency band 0.2–1 Hz (RF), ballistocardiography band 6–16 Hz (BF), respiratory
cycle length time series (RCL) and ECG derived heart beat interval series (HBI).
Feature abbreviation (Abbr) and literature reference (Ref). †From extrema amplitude
and time differences aAlso derived for activity events. †From peaks and troughs
dAlso from the first and second differential signals ∗ From envelope.

deep convolutional neural network (CNN) on BMS signal with
a representation learning capability. For SVM and LSTM, we
tested two feature sets, one with solely BMS-based features (SVM
BMS, LSTM BMS) and extensions with additional ECG-based
features (SVM BMS + ECG, LSTM BMS + ECG).

We deployed SVMs with radial basis kernels. In addition to
treating epoch level features as discrete inputs, we also decided
to build temporal context into the SVM classifier (Sazonova
et al., 2006). This was reasoned by the presence of significant
natural autocorrelation in hypnograms, as well as our attempt
to emulate the clinical practice where sleep scores are assumed
to inherit conditional inputs from the past epochs (Grigg-
Damberger et al., 2007). We included feature values of 6 epochs
into our classification building, thus, the classification of each 30
s epoch considers the past 3 min.

To investigate the impact of a longer temporal context we
decided to use LSTM with 32 units, that takes preceding feature
time series as an input. Temporally distributed layer with softmax
activation function yields the class output. The network uses the
same features as selected with the SVMs.

We also used an end-to-end CNN classifier, which is
capable of feature representation learning from raw input
data. The architecture of the utilized CNN is presented in
Supplementary Table S2.

Training and Testing
The SVM classifier was trained with a feature selection stage
to understand which features are important for classification
and reduce the number of unhelpful features. We used a two-
stage feature selection algorithm relying on minimal-redundancy
maximal-relevance criterion (mRMR) followed by a forward

selection procedure (Peng et al., 2005). The kernel scale
and box constraint hyperparameters were tuned within each
training iteration using three-fold cross-validation and Bayesian
optimization (Snoek et al., 2012).

The CNN and LSTM were trained with backpropagation using
stochastic gradient descent with the Adam algorithm (Kingma
and Ba, 2014) (learning rate = 10−4, β1 = 0.9, β2 = 0.99,
CNN batch size = 128 epochs, LSTM batch size = 6 sleep
periods) minimizing the sigmoid cross-entropy loss. For CNN,
five recordings of the training set were held out as evaluation data
for the early stopping criterion.

Performance Evaluation
We used area under receiving operating characteristic curve
(AUC) as the primary performance measure. The accuracy
(ACC), sensitivity (Sens), specificity (Spes), positive predictive
values (PPV) as well as confusion matrices were also calculated.

ACC =
TP + TN

TP + TN + FP + FN
(1)

Sens =
TP

TP + FN
(2)

Spes =
TN

TN + FP
(3)

PPV =
TP

TP + FP
(4)

where TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives and false negatives, respectively.
A true positive is when a N3 epoch is correctly identified as
N3. Further methodological description is provided in the online
repository (Ranta, 2020).

RESULTS

Our final training dataset from the 43 infant PSG recordings
included 21,913 epochs. Of these, 1,891 (8.6%) were excluded
due to artifacts or absence periods. The remaining 20,022 epochs
included 4,802 (24.0%) of N3 and 15,220 (76.0%) of other sleep
stages (N1, N2, REM, and awake).

Feature Selection
Individual features of the BMS and ECG signals are insufficient
for the detection of N3 (see Figures 2C,D,G,H). Feature
selection for the SVM BMS yielded 41 features in the first filter
phase; the second wrapper phase resulted in 16 final features
(Figures 2A,B). Feature selection for the SVM BMS + ECG
yielded 31 features in the first phase and 12 features were selected
in the second phase (Figures 2E,F). The selected features are
listed in Table 3.

Classifier Performances
The leave-one-patient-out cross-validation performance of SVM
BMS over all 43 patients yielded a median AUC of 95.0%

Frontiers in Neuroscience | www.frontiersin.org 5 January 2021 | Volume 14 | Article 602852

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-602852 January 6, 2021 Time: 16:58 # 6

Ranta et al. Sleep Classifier for NICU Monitoring

FIGURE 2 | Feature selection of SVM BMS and SVM BMS + ECG classifiers. (A,B) The effect on AUC of adding features in the SVM BMS. The traces show the
median and interquartile range of AUC in the two-step maximum-relevance-minimum-redundancy criteria feature selection (A) filter and (B) wrapper phase. Vertical
lines indicate the consistent performance interval and square shows the selected feature set. (C,D) Examples of the two most important features, as a function of
PSG study as well as comparison of all epochs. (E–H) Corresponding results for SVM BMS + ECG classifier. VAR-BF, variance in 6–16 Hz bed mattress signal band
(BF), was the first selected feature for both SVM BMS and SVM BMS + ECG classifiers. The second selected feature was ZR-BF, the number of zero crossing of
twice differentiated BF band, and COVF-HBI, the coefficient of variation of heart beat intervals (HBI), for SVM BMS and SVM BMS + ECG, respectively. The third
selected feature was M-HBI, the mean of HBI for SVM BMS + ECG.

TABLE 3 | Selected features for BMS and BMS + ECG-based SVMs.

SVM BMS SVM BMS + ECG

1 VAR-BF VAR-BF

2 ZR-BFd COV-HBI

3 SE-BF M-HBI

4 M-RF† FUZE-HBI

5 MOF LF/VLF

6 KURT-RCL M2-BF

7 MOP MOF

8 MO LE-HBI

9 STD-BF*a STD-RF‡

10 STD-BF* HE-HBI

11 COMP-RF MOW

12–16 KURT-BF MOW VAR-RFa KURT-RFa POW KURT-BFa

Each feature is indicated as a feature abbreviation and source signal-pair.
Consensus features bolded. See Table 2 for abbreviations. dSecond difference,
†Extrema amplitude difference, ‡peaks, ∗Envelope, aActivity event.

(IQR 87.7–95.6%). The SVM BMS with ECG derived features,
had slightly increased performance with a median AUC
of 97.6% (94.4–98.2%). Using a LSTM resulted in reduced
performance (BMS features: median AUCs 93.9%, IQR 89.2–
96.4%; BMS + ECG, median AUC 96.4%, IQR 94.2–98.2%. The
CNN applied to the BMS signal resulted in a median AUC of
93.3% (IQR: 90.5–96.1%). However, there were no statistically
significant differences in AUC between BMS classifiers (Friedman
test, p = 0.977). Similarly, the Wilcoxon signed-rank test did
not indicate a significant difference between BMS + ECG
classifiers (p = 0.633). Additional results are in Figure 3 and
Supplementary Table S3.

We also assessed the effect of clinical context on classifier
performance (Figure 4), in particular presence of respiratory
diagnoses (yes/no, N = 26/17) or infant’s age (under/above
10 weeks, N = 31/12). The accuracy of BMS-based classifiers
was slightly affected by the clinical context: The SVM classifier
performed a bit worse in infants with respiratory diagnoses
(Mann-Whitney U test, p = 0.03 median AUC 92.9 vs. 95.3%),
while the LSTM classifier showed somewhat better performance
in younger infants (Mann-Whitney U-Test, p = 0.03; median
AUC 94.6 vs. 89.8%). There was, however, no significant
correlation between AUC and age (Spearman’s rank correlation;
rho =−0.23 p = 0.14).

Analysis of Features Selected for the
Classifier
The most commonly selected features for BMS-based classifiers
represent both cardiac and respiratory parameters. The variance
of the ballistocardiogram pass-band (VAR-BF) reflects: (1) the
reduced cardiac output which manifests the power of BF related
to N3 sleep and (2) reduced gross-body movements during N3
which provides similar information to actigraphy. The number
of zero crossings from the second difference of BF signal (ZR-BF)
and BF spectral entropy (SE-BF) respond similarly. The mean
difference of respiration band-pass peaks and troughs (M-RF†)
measures the maximum momentary pressure changes in the BMS
signal, and as such they are related to the depth of breathing
movements. The respiration frequency is reduced in N3.

Feature selection yielded different feature sets on BMS + ECG
classifiers, and only three features were in common with the list
selected for BMS alone (Table 3). The ECG features selected focus
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FIGURE 3 | Classifier performances. Medians, interquartile ranges and pooled confusion matrices for (A) BMS feature-based Support Vector Machine classifier and
(B) with ECG feature extension. (C,D) Long Short-Term Memory neural networks with same features. (E) Convolutional neural network on bed mattress signal. Area
Under Receiving Operating Character Curve (AUC), accuracy (ACC), Sensitivity (Sens), Specificity (Spes), and positive predictive value (PPV).

FIGURE 4 | Classifier performance vs. clinical context. (A) SVM BMS classifier showed slightly higher performance with infants who did not have a diagnosis related
to respiratory issues, while no significant difference was seen with other classifiers. (B) Only the performance of LSTM BMS was slightly lower with the older age
group (> 10 weeks). †Lower whisker at 58%. The age refers to postnatal age, or age after term equivalent age.
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FIGURE 5 | Pilot 8 h monitoring of sleep cycling in the NICU. The current standard practice is to observe SWC pattern in the aEEG trend (above), which refers to the
alternation between thicker and thinner trends. The thicker aEEG trend comes from the intermittent, trace alternant/discontinue background pattern, which
characterizes quiet (“deep”) sleep state. In contrast, the thinner aEEG trends come from the more continuous EEG pattern that characterizes the active sleep state.
The BMS-based sleep monitoring is shown below. Note the faithful correspondence between thicker epochs in the aEEG trend and the deep sleep output of the
BMS classifier.

on features describing heart rate variability (COV-HBI, FUZE-
HBI, and LF/VLF) and the RR interval (M-HBI) (Figure 2F).

Pilot Test in the NICU
Finally, we performed a recording on two newborn infants in the
NICU to see how the BMS-based classifier would compare with
the state-of-the-art visual inspection of the aEEG trend that is
now routinely available at bedside. As shown in the Figure 5,
there was a high correlation between the time course of BMS
classifier and the “thickening” epochs in the aEEG trend that
are known to correspond to quiet sleep. This correspondence
between the “aEEG thickening” and the N3-detection is the
ultimate aim for the BMS classifier as it will allow detection of
cycling, or SWC. The results from our other pilot recording are
shown in the Supplementary Figure S1, which demonstrated
how the inherent ambiguity between sleep states may be seen in
the dichotomic classifier output before post-processing. Some of
the comparable ambiguity is also seen in Figure 5 (near 5 and
7 h). Much of that could be readily removed by post-processing,
or by replacing the dichotomic classification with a sleep state
probability index as shown before for a comparable EEG-based
classifier (Koolen et al., 2017).

DISCUSSION

We show that an automated detection of deep sleep vs. other sleep
states is feasible using fully non-invasive recording of BMS signal
alone. We extend on previous work by providing an open source
algorithm for infant sleep, which allows automated recognition of
SWC. We show further with a pilot recording that such a method
could be used as a real-time bedside trend of SWC in infants
during intensive care (van den Hoogen et al., 2017) facilitating
further development of clustered care and other procedures to
minimize infants’ stress during care (van den Hoogen et al.,
2017; Knauert et al., 2018). Measuring the amount of deep/quiet
sleep (Shellhaas et al., 2017) or the cycling between sleep states

(Thoresen et al., 2010; Klebermass et al., 2011) have prognostic
value as they are associated with neurodevelopmental outcomes.

The feature selection protocol showed that a reasonable
classification accuracy can be achieved with only a handful of
features, while the majority of the examined 71 computational
features are essentially unhelpful or redundant. This
demonstrates that smaller feature sets could be sufficient if
computational complexity needs to be optimized, e.g., for an
online algorithm or embedded implementation. The addition
of features derived from the ECG heart beat increased classifier
performance; however, it comes at the cost of needing a merger
of BMS and ECG sensor signals.

The two BMS classifier designs, one based on SVM
and the other based on LSTM, demonstrated a comparable
performance in identifying N3 sleep stage at the full cohort
level. However, the SVM-based classifier showed more variability
between subjects, and the LSTM-based classifier showed a
better performance with the younger subjects. A respiratory
diagnosis lowered performance of the classifier. This could
be due to pathophysiological changes in breathing stability.
Comparable performance between CNN and SVM classifiers
indicates that the feature representation can be learned directly
from the BMS signal.

Our findings are in agreement with findings from prior
studies in infants (Thoman and Glazier, 1987; Sazonova et al.,
2006; Terrill et al., 2012; Isler et al., 2016). Thoman and
Glazier (1987) reported the total accuracy of 80.6% (active,
quiet, transition, awake) for their BMS respiration and gross-
body movement-based classifier. However, they used a small
sample size (n = 10) and their in-house behavioral scoring
criteria as a reference (Thoman, 1975). Deploying different source
signals for respiration and gross-body movements has yielded
variable though lower (53–70%) accuracies in distinguishing
active and quiet sleep states from the RIP or actigraphy signals
(N = 26) (Sazonova et al., 2006). Terrill et al. developed a
novel computational measure based on recurrence quantification
analysis of RIP signals, which allowed sleep classification at a
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significantly higher accuracy (80%) (Terrill et al., 2012). Likewise,
the variance of instantaneous breathing rate was shown to yield
over 80% accuracy (Isler et al., 2016). An exact comparison of
classifier algorithms between our study and the earlier works is
challenging because we used an updated sleep scoring reference
(Grigg-Damberger et al., 2007), and there are poorly translatable
differences between the physiological signals used in different
studies. Our fully non-obtrusive BMS signal might be more
sensitive to, e.g., movement artifacts than the body-attached RIP
sensor used in prior studies (e.g., Terrill et al., 2012). However,
our presently introduced classifier is in a general agreement with
the prior works.

The presently introduced BMS-based detector has a limited
focus: It aims to detect quiet sleep only. It is not aimed
to provide a full multiclass classification of all sleep states,
neither does it allow diagnostic measures of specific sleep–related
adversities. Such in-depth sleep analyses would require more
comprehensive measures of physiological parameters which are
routinely available in the existing PSG paradigms. Moreover, it
will be important to validate the use of our BMS-based classifier
in different kinds of user scenarios in the NICU, including,
e.g., infants born preterm, undergoing ventilatory support, or
receiving sedative medication or hypothermia therapy; all these
factors may have different effects on the relationship between
respiration and sleep states. These prospective studies are on-
going, and they will become possible in many independent
centers with the open-access algorithm provided in this work.

The common challenge with sleep classifiers is in detecting
the exact timing of sleep state transition, which lowers the
nominal performance. This is also a challenge in clinicians’ visual
scoring, and it may substantially lower the inter-rater agreement
(Satomaa et al., 2016). Notably, visual scoring of PSG studies
relies heavily on multiple physiological signals, including cortical
activity from the EEG, while our presently developed classifier
relies on respiratory and cardiac activity alone. Adding the
other PSG signals to the classifier would undoubtedly improve
classifier performance, however it would also directly affect the
utility of the classifier as a non-invasive measure for longer term
monitoring. It is crucial in this context to consider the aimed use
of the automated classifier of this kind. The ultimate purpose is
to estimate cycling/fluctuation of vigilance states rather than to
estimate accurate transition times (SWC, Kidokoro et al., 2012;
van den Hoogen et al., 2017). This implies that identifying any
sleep state, such as N3 in this work, with reasonable accuracy
would allow quantification of SWC (Stevenson et al., 2014),
or its fragmentation. This deflates the importance of exact
transition times as long as the overall pattern is detected with a
reasonable accuracy.

CONCLUSION

We introduce an automated signal processing pipeline for
infant deep sleep detection from the BMS signal with or
without ECG signal. The proposed method allows long-term
monitoring of sleep-wake cycling, a key bedside index in the
NICU brain monitoring. We also provide pilot proof of concept

evidence that this closely corresponds to the SWC observed in
the currently available aEEG-based review, hence the method
can be applied in the NICU to allow future development of
treatments and nursing practices with a minimally disturbed
sleep (van den Hoogen et al., 2017).
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