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Background: Ovarian cancer (OC) is one of the most common types of

gynecologic tumor over the world. The Glutathione S-transferase Mu (GSTM)

has five members, including GSTM1-5. These GSTMs is involved in cell

metabolism and detoxification, but their role in OC remains unknown.

Methods: Data from multiple public databases associated with OC and GSTMs

were collected. Expression, prognosis, function enrichment, immune

infiltration, stemness index, and drug sensitivity analysis was utilized to

identify the roles of GSTMs in OC progression. RT-qPCR analysis confirmed

the effect of AICAR, AT-7519, PHA-793887 and PI-103 on the mRNA levels of

GSTM3/4.

Results: GSTM1-5 were decreased in OC samples compared to normal ovary

samples. GSTM1/5 were positively correlated with OC prognosis, but GSTM3

was negatively correlated with OC prognosis. Function enrichment analysis

indicated GSTMs were involved in glutathione metabolism, drug metabolism,

and drug resistance. Immune infiltration analysis indicated GSTM2/3/4

promoted immune escape in OC. GSTM5 was significantly correlated with

OC stemness index. GSTM3/4 were remarkedly associated with OC

chemoresistance, especially in AICAR, AT-7519, PHA-793887 and PI-103.

Conclusion: GSTM3 was negatively correlated with OC prognosis, and

associated with OC chemoresistance and immune escape. This gene may

serve as potential prognostic biomarkers and therapeutic target for OC patients.
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Introduction

Ovarian cancer (OC), a serious obstetrical and gynecological

malignant disease, ranks eighth in terms of morbidity and

mortality overall, resulting in huge economic and health

problems (1). About 70 percent of OC patients diagnosed at

an advanced stage develop metastases that result in a loss of

surgery, due to the absence of early detection strategies and

symptoms (2). For most OC patients, traditional chemotherapy

has extremely high side effects and poor efficacy (3). Therefore, it

is urgent to find effective diagnostic markers and therapeutic

targets for ovarian cancer.

Glutathione S-transferase Mu (GSTM) gene family is group

of 5 proteins, GSTM1-5, that play a key role in the detoxification

of electrophilic compounds, such as cancer-causing toxins,

anticarcinogens and products of oxidative stress via

conjugating with glutathione (4). The catalytic activities of

these GSTMs can repress pKa of the sulfhydryl group of

reduced glutathione (GSH) from 9.0 in aqueous solution to

about 6.5 when GSH is bound in the active site (5). These GSTM

proteins are increased during drug treatment, resulting in

chemotherapy resistance (6). Moreover, the highly

polymorphic, and allele mutations or genetic deletions of a

certain base of GSTMs enhance the predisposition for multiple

cancer, such as colon cancer (7), cervical cancer (8), esophageal

cancer (9), lung cancer (10), and acute myeloid leukaemia (11).

For example, GSTM1 was a high-polymorphically expressed

gene, which was confirmed three alleles, including GSTM1-0,

GSTM1a, and GSTM1b. The inactivation of GSTM by

homozygous delegation was unable to efficiently estimate these

electrophilic compounds. Nevertheless, there has no

epidemiologic studies to find the correlation between GSTM1

and OC (12). Therefore, more evidence is needed on the

biological functions, prognostic and diagnostic significance of

the GSTMs for OC development and progression.
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For clearly elucidate GSTM gene family in OC, especially in

prognostic and expression significance. we utilized multiple

public databases to elucidate the role of GSTMs in OC

progression, including the DNA alteration, mRNA and protein

expression, epigenetic regulations, biological functions,

molecular interactions, and signaling pathways enrichments.

The research strategy is showed in Figure 1.

Methods

Bioinformatic expression analysis

Oncomine database (https://www.oncomine.org) (13) and

the cancer genome atlas (TCGA) (https://www.cancer.gov/tcga)

(14) were used to prepare the expression data for GSTM1-5

mRNA expression level in OC patients. Clinical Proteomic

Tumor Analysis Consortium (CPTAC) database (https://

proteomics.cancer.gov/programs/cptac) (15) was utilized to

confirm the GSTM1-5 protein expression level in OC patients.

Human protein atlas (HPA) database (https://www.proteinatlas.

org/) (16) was used to confirm the protein level of GSTMs in OC.

The patient’s information based on HPA database was illustrated

in Supplementary Table 1. The expression of GSTM1-5 in

multiple OC cell lines was used Cancer Cell Line Encyclopedia

(CCLE) database (https://sites.broadinstitute.org/ccle) (17).

GTEX database (https://www.gtexportal.org/) was used to

prepare the expression data for GSTM1-5 mRNA expression

level in normal ovarian tissue samples (18).
DNA alteration analysis

The cBioPortal database (http://www.cbioportal.org/) (19)

was used to confirm GSTM1-5 alteration and survival outcome

for OC patients.
FIGURE 1

Work flow of the study.
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Protein structure analysis of GSTMs

Protein Data Bank (PDB) (https://www.rcsb.org/) (20) was

used to analyze secondary structure of GSTM1-5.
Survival analysis

We analyzed these five GSTM family genes, GSTM1,

GSTM2, GSTM3, GSTM4 and GSTM5 by Kaplan Meier

plotter (KM-plot) database (http://kmplot.com/) (21) in OC

patients. We used the best threshold be a cutoff, which were

based the all feasible cutoff between the upper and

lower quartiles.
Protein-protein interaction (PPI) network
construction

GeneMANIA 3.6.0 (http://www.genemania.org) (22) was

utilized to constructed the PPI network associated with

GSTM1, GSTM2, GSTM3, GSTM4 and GSTM5.
Gene ontology and Kyoto encyclopedia
of genes and genomes enrichment
analysis

Database for Annotation, Visualization and Integrated

Discovery (DAVID) database (https://david.ncifcrf.gov/) (23)

was used for GO and KEGG enrichment analysis for these

correlated GSTM1-5 genes based on the PPI network.
Immune infiltration analysis

RNA-sequencing profiles and corresponding clinical

information for OC were extracted from the TCGA database.

We utilized immuneeconv, an R software package that integrates

six latest algorithms (TIMER, xCell , MCP-counter,

CIBERSORT, EPIC and quanTIseq), to analysis the reliable

results of immune score. SIGLEC15, TIGIT, CD274,

HAVCR2, PDCD1, CTLA4, LAG3 and PDCD1LG2 were

selected to be immune-checkpoint-relevant transcripts and the

expression values of these eight genes were extracted. Immune

infiltration analysis for Copy number variations (CNV) of

GSTMs was used by Tumor Immune Estimation Resource

(TIMER) database (https://cistrome.shinyapps.io/timer/) (24).
Stemness index analysis

Use the one-class logistic regression machine learning

(OCLR) algorithm to calculate mRNAsi which constructed by

Malta et al (25). We utilized the same Spearman correlation

(RNA expression data). The minimum value was subtracted, and

the result was divided by the maximum maps the dryness index

to the range [0,1] based on TCGA database.
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Drug sensitivity analysis

Gene Set Cancer Analysis (GSCA) database (http://bioinfo.

life.hust.edu.cn/GSCA/#/) (26), an friendly interacted and

integrated public database, was used to make the drug

sensitivity analysis for GSTM1-5.
Cell culture

OC cell lines, Hey-A8 (purchased from ATCC), was cultured

in RPMI−1640 medium (Thermo Fisher Scientific,Inc.) with

10% (v/v) fetal bovine serum (FBS; Gibco; Invitrogen; Thermo

Fisher Scientific, Inc.) and 1% Penicillin-Streptomycin mixture

(Thermo Fisher Scientific, Inc.). The Hey-A8 was treatment with

AICAR (2 mM), AT-7519 (40 nM), PHA-793887 (1 mM) and

PI-103 (50 nM) for 48 h at 37˚C, respectively. These chemical

compounds were purchased from Abmole Bioscience Inc.
RT-qPCR analysis

The RT-qPCR assay was executed as illustrated previously

(27). Primers used were listed as followed: GAPDH forward:

GTCTCCTCTGACTTCAACAGCG, GAPDH reverse:

ACCACCCTGTTGCTGTAGCCAA; GSTM3 forward:

CGAAGCCAATGGCTGGATGTGA, GSTM3 reverse:

GTTGTGCTTGCGAGCGATGTAG; GSTM4 forward:

TGGAGAACCAGGCTATGGACGT, GSTM4 reverse:

CCAGGAACTGTGAGAAGTGCTG;
Statistical analysis

All statistical analyses were based on the R Programming

Language (version 3.6). For immune infiltration, immune score,

drug sensitivity, and stemness index analysis, the statistical

difference of two groups was compared through the Wilcox

test, significance difference of three groups was tested with

Kruskal-Wallis test. The KM-plot survival analysis with log-

rank test were also used to compare the survival difference

between above two groups. The Student’s t-tests analysis was

used to compare the GSTM3/4 mRNA level difference in RT-

qPCR analysis. P-values <0.05 were considered significant.

Results

The mRNA and protein expression of
GSTMs in OC

Firstly, we used the Oncomine database to confirm GSTMs

mRNA level in multiple cancer types compared to the

corresponding para-carcinoma samples (Figure 2), which

showed that GSTM1/2/3/4/5 were significantly decreased in
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many cancers, especially in OC. In the total unique analyses,

GSTM1 was 393 datasets; GSTM2 was 399 datasets; GSTM3 was

453 datasets; GSTM4 was 451 datasets; GSTM5 was 445 datasets.

Moreover, GSTM3/4/5 were significantly decreased in 30, 13 and

52 datasets, respectively. We further confirmed the level of

GSTMs in OC compared to normal ovarian tissue samples

based on TCGA database (Figure 3A), indicating that GSTMs

mRNA were both significantly decreased in OC tissue samples.

However, the level of these GSTMs mRNA were not present

statistic difference among different stages (Figure 3B). We

further detected the GSTM1-5 proteins in OC samples and

normal ovarian samples, which showed that both GSTM1-5

were decreased in OC patients comparted to normal women

(Figure 3C). Moreover, the result of GSTMs protein expression

in OC based on HPA database was consistent with CPTAC

database (Figure 3D). These results indicated that the

transcription and post-transcription levels of GSTMs were

both decreased in OC patients.
The potential regulatory mechanisms of
GSTMs in OC

In order to further clarify the cause of ectopic expression of

GSTMs in OC, we analyzed the m5C methylation level of GSTMs

in CpG island of DNA promoter, as shown in Supplementary

Figure 1A. The DNA methylation of GSTM1/5 was significantly

increased in OC compared to normal samples, but the DNA

methylation of GSTM3 and GSTM4 was significantly decreased in

OC compared to normal samples. Not only that, the miRNA

network showed that GSTM2/3/4/5 was markedly regulated by

multiple miRNAs, such as hsa-miR-455-5p, hsa-miR-142-5p, hsa-
Frontiers in Oncology 04
miR-377-3p, hsa-miR-939-5p and so on (Supplementary

Figure 1B). These results indicated that epigenetic regulation

play a key role in the ectopic expression of GSTMs.
The correlation between GSTMs
and clinicopathological parameter
for OC patients

Subsequently, we also confirmed the correlation between

GSTMs and clinicopathological parameter in OC patients based

on TCGA database, as shown in Table 1–5. GSTM1 was

significantly associated with histologic grade and race. GSTM2

was obviously correlated with race, age and venous invasion.

GSTM4 levels associated with race and venous invasion. But the

expression of GSTM3 and GSTM5 were not remarkedly correlated

with any clinicopathological parameters in OC patients. Taken

together, these results indicated that these clinicopathological

parameters might be involved in the ectopic expression of

GSTMs in OC development, especially in age and race.
The possible molecular functions of
GSTMs in OC patients

To further explore the possible molecular functions of the

GSTM proteins in OC development and progression, we

constructed the PPI network for GSTM1-5 and relevant

proteins based on GeneMANIA database, these relevant

proteins included GSS, HPGDS, GDAP1L1, GSTT2B, GSTA2,

GSTA1, EEF1G, GSTA3, GSTA4, GSTZ1, GSTP1, GSTO1,

GSTA5, GSTT1, GSTT2, GSTT4, ZFP36L2, AP000351.7,
FIGURE 2

The GSTMs mRNA level in multiple cancer types. The red color cell indicates that GSTMs is enhanced in tumor samples compared to
correspond normal samples, whereas blue color cell presents GSTMs is reduced in tumor samples compared to correspond normal samples.
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HSD17B10 (Figure 4A). Moreover, we make a correlation

analysis among these genes based on TCGA database OC

dataset (Figure 4B). We also analyzed the GO enrichment for

these genes. These genes were enriched in transferase activity,

transferring alkyl or aryl (other than methyl) groups, glutathione

transferase activity, oligopeptide binding, glutathione binding,

intercellular bridge, cellular modified amino acid metabolic

process, glutathione metabolic process, glutathione derivative
Frontiers in Oncology 05
biosynthetic process, and glutathione derivative metabolic

process (Figure 4C). KEGG enrichment analysis showed that

these genes were enriched in glutathione metabolism, chemical

carcinogenesis, metabolism of xenobiotics by cytochrome P450,

drug metabolism - cytochrome P450, and platinum drug

resistance (Figure 4D). Furthermore, we detected the

secondary structure of GSTM1-5 proteins, which indicated

that both GSTMs had same domains, such as GST_N and
B

C

D

A

FIGURE 3

The GSTMs expression in OC. (A) The mRNA level of GSTMs in OC samples and normal ovary samples based on TCGA and GETx database. (B)
The mRNA level of GSTMs in different FIGO stage OC samples. (C) The protein level of GSTMs in OC samples and normal ovary samples based
on CPTAC database. (D) The GSTM protein expression in OC samples and normal ovary samples based on HPA database. ***p < 0.001 ns,
means No statistical significance.
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GST_C domain. The secondary structure of GSTM proteins also

suggested that phosphorylation and ubiquitination were the two

main chemical modifications (Supplementary Figure 2).
Prognostic value of GSTM family
members for OC patients

Moreover, we extracted GSTM1-5 mRNA level data and

prognostic data based on KM-plot database. The overall survival
Frontiers in Oncology 06
(OS) analysis showed that GSTM3 was negatively correlated

with the prognosis of OC patients, but GSTM5 was positively

correlated with the prognosis of OC patients (Figure 5A). The

progression free survival (PFS) analysis showed that GSTM3/4

were negatively correlated with the prognosis of OC patients, but

GSTM1 was positively correlated with the prognosis of OC

patients (Figure 5B). The post progression survival (PPS)

analysis showed that GSTM3 was negatively correlated with

the prognosis of OC patients (Figure 5C). These results indicated
TABLE 1 The correlation between pathological parameters and GSTM1 expression.

Characteristic Low expression of GSTM1 High expression of GSTM1 p

n 189 190

FIGO stage, n (%) 0.353

Stage I 1 (0.3%) 0 (0%)

Stage II 10 (2.7%) 13 (3.5%)

Stage III 153 (40.7%) 142 (37.8%)

Stage IV 24 (6.4%) 33 (8.8%)

Primary therapy outcome, n (%) 0.482

PD 13 (4.2%) 14 (4.5%)

SD 13 (4.2%) 9 (2.9%)

PR 17 (5.5%) 26 (8.4%)

CR 107 (34.7%) 109 (35.4%)

Race, n (%) 0.004

Asian 3 (0.8%) 9 (2.5%)

Black or African American 6 (1.6%) 19 (5.2%)

White 174 (47.7%) 154 (42.2%)

Age, n (%) 0.873

<=60 105 (27.7%) 103 (27.2%)

>60 84 (22.2%) 87 (23%)

Histologic grade, n (%) 0.039

G1 0 (0%) 1 (0.3%)

G2 29 (7.9%) 16 (4.3%)

G3 154 (41.7%) 168 (45.5%)

G4 1 (0.3%) 0 (0%)

Anatomic neoplasm subdivision, n (%) 0.277

Unilateral 56 (15.7%) 46 (12.9%)

Bilateral 122 (34.2%) 133 (37.3%)

Venous invasion, n (%) 0.177

No 18 (17.1%) 23 (21.9%)

Yes 38 (36.2%) 26 (24.8%)

Lymphatic invasion, n (%) 0.730

No 23 (15.4%) 25 (16.8%)

Yes 53 (35.6%) 48 (32.2%)

Tumor residual, n (%) 0.935

NRD 34 (10.1%) 33 (9.9%)

RD 132 (39.4%) 136 (40.6%)

Tumor status, n (%) 0.711

Tumor free 38 (11.3%) 34 (10.1%)

With tumor 131 (38.9%) 134 (39.8%)

Age, meidan (IQR) 58 (50, 67) 59 (52, 68) 0.357
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that GSTM3 might be a significant prognostic marker for

OC patients.
The association between GSTMs and
immune infiltration

Recently, immune infiltration is another hot point for OC

treatment (28). Firstly, we extracted the DNA alteration
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profiles based on cBioProtal database OC dataset. The DNA

alteration of GSTMs were 2.7%, 2.6%, 2.4%, 2.6% and 2.9%,

respectively (Figure 6A). However, the DNA alteration of these

GSTMs were not significantly correlated with prognosis or

immune infiltration in patients with OC (Figures 6B, C). We

further confirmed the correlation between GSTMs mRNA level

and immune cell infiltration level. The result showed that

GSTM2-5 were significantly and negatively associated with

Endothelial cell; GSTM3 was positively correlated with
TABLE 2 The correlation between pathological parameters and GSTM2 expression.

Characteristic Low expression of GSTM2 High expression of GSTM2 p

n 189 190

FIGO stage, n (%) 0.285

Stage I 1 (0.3%) 0 (0%)

Stage II 8 (2.1%) 15 (4%)

Stage III 152 (40.4%) 143 (38%)

Stage IV 27 (7.2%) 30 (8%)

Primary therapy outcome, n (%) 0.123

PD 14 (4.5%) 13 (4.2%)

SD 6 (1.9%) 16 (5.2%)

PR 25 (8.1%) 18 (5.8%)

CR 110 (35.7%) 106 (34.4%)

Race, n (%) 0.044

Asian 4 (1.1%) 8 (2.2%)

Black or African American 7 (1.9%) 18 (4.9%)

White 168 (46%) 160 (43.8%)

Age, n (%) 0.015

<=60 116 (30.6%) 92 (24.3%)

>60 73 (19.3%) 98 (25.9%)

Histologic grade, n (%) 0.873

G1 0 (0%) 1 (0.3%)

G2 22 (6%) 23 (6.2%)

G3 164 (44.4%) 158 (42.8%)

G4 1 (0.3%) 0 (0%)

Anatomic neoplasm subdivision, n (%) 0.933

Unilateral 52 (14.6%) 50 (14%)

Bilateral 127 (35.6%) 128 (35.9%)

Venous invasion, n (%) 0.035

No 13 (12.4%) 28 (26.7%)

Yes 35 (33.3%) 29 (27.6%)

Lymphatic invasion, n (%) 0.471

No 20 (13.4%) 28 (18.8%)

Yes 50 (33.6%) 51 (34.2%)

Tumor residual, n (%) 0.096

NRD 27 (8.1%) 40 (11.9%)

RD 141 (42.1%) 127 (37.9%)

Tumor status, n (%) 1.000

Tumor free 36 (10.7%) 36 (10.7%)

With tumor 131 (38.9%) 134 (39.8%)

Age, meidan (IQR) 57 (48, 66) 61 (53, 71) 0.001
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macrophage; GSTM2-4 were significantly correlated with NK

cells; the expression of GSTM2 was negatively associated with

CD4+ T cell; GSTM2-4 were negatively associated with CD8+

T cell (Figure 7A). Furthermore, we also elucidate the effect of

GSTMs on the components of cellular immunity, including

aDC, B cells, CD8 T cells, Cytotoxic cells, DC, Eosinophils,

iDC, Macrophages, Mast cells, Neutrophils, NK CD56bright

cells, NK CD56dim cells, NK cells, pDC, T cells, T helper cells,

Tcm, Tem, TFH, Tgd, Th1 cells, Th17 cells, Th2 cells and
Frontiers in Oncology 08
Treg by ssGSEA analysis (Figure 7B), which indicated that

these GSTMs could regulate immune infiltration via inducing

dysregulation of immune cell profiles. We further used

CIBERSORT analysis to confirm the T cell features for high

expression of GSTMs compared to corresponding low

expres s ion of GSTMs . The resu l t sugges ted tha t

GSTM1 regulated the level of B cell naive significantly

(Supplementary Figures 3A, B); GSTM2 was obviously

correlated with CD8 T cell (Supplementary Figures 3C, D);
TABLE 3 The correlation between pathological parameters and GSTM3 expression.

Characteristic Low expression of GSTM3 High expression of GSTM3 p

n 189 190

FIGO stage, n (%) 1.000

Stage I 1 (0.3%) 0 (0%)

Stage II 12 (3.2%) 11 (2.9%)

Stage III 147 (39.1%) 148 (39.4%)

Stage IV 28 (7.4%) 29 (7.7%)

Primary therapy outcome, n (%) 0.182

PD 16 (5.2%) 11 (3.6%)

SD 7 (2.3%) 15 (4.9%)

PR 19 (6.2%) 24 (7.8%)

CR 113 (36.7%) 103 (33.4%)

Race, n (%) 0.699

Asian 7 (1.9%) 5 (1.4%)

Black or African American 11 (3%) 14 (3.8%)

White 166 (45.5%) 162 (44.4%)

Age, n (%) 0.324

<=60 109 (28.8%) 99 (26.1%)

>60 80 (21.1%) 91 (24%)

Histologic grade, n (%) 0.285

G1 0 (0%) 1 (0.3%)

G2 19 (5.1%) 26 (7%)

G3 164 (44.4%) 158 (42.8%)

G4 0 (0%) 1 (0.3%)

Anatomic neoplasm subdivision, n (%) 1.000

Unilateral 52 (14.6%) 50 (14%)

Bilateral 129 (36.1%) 126 (35.3%)

Venous invasion, n (%) 0.177

No 18 (17.1%) 23 (21.9%)

Yes 38 (36.2%) 26 (24.8%)

Lymphatic invasion, n (%) 0.133

No 21 (14.1%) 27 (18.1%)

Yes 59 (39.6%) 42 (28.2%)

Tumor residual, n (%) 0.495

NRD 30 (9%) 37 (11%)

RD 135 (40.3%) 133 (39.7%)

Tumor status, n (%) 0.641

Tumor free 33 (9.8%) 39 (11.6%)

With tumor 132 (39.2%) 133 (39.5%)

Age, meidan (IQR) 58 (49, 67) 60 (51, 71) 0.086
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GSTM3 was associated with macrophoage M2, macrophoage

M1, and T cell qamma delta (Supplementary Figures 3E, F);

GSTM4 was correlated with macrophoage M2, CD8 T cell, and

memory activated CD4 T cell (Supplementary Figures 3G, H).

GSTM5 was correlated with macrophoage M0, and Mast cell

activated (Supplementary Figures 3I, J). Moreover, we

confirmed the expression level of immune checkpoints

between high GSTMs mRNA level group and low GSTMs

mRNA level group, as shown in Figure 7C. The result
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indicated that CTLA4, HAVCR3, PDCD1LG2 and TIGIT

level were significantly decreased in high GSTM2 mRNA

level group compared to low GSTM2 mRNA level group; the

expression of TIGIT, CD274, HAVCR2, PDCD1, CTLA4,

LAG3 and PDCD1LG2 were both markedly reduced in high

GSTM3 mRNA level group compared to low GSTM3 mRNA

level group; CTLA4, PDCD1LG2 and TIGIT expressions were

obviously down-regulated in high GSTM4 mRNA level group

compared to low GSTM4 mRNA level group.
TABLE 4 The correlation between pathological parameters and GSTM4 expression.

Characteristic Low expression of GSTM4 High expression of GSTM4 p

n 189 190

FIGO stage, n (%) 0.092

Stage I 1 (0.3%) 0 (0%)

Stage II 12 (3.2%) 11 (2.9%)

Stage III 155 (41.2%) 140 (37.2%)

Stage IV 21 (5.6%) 36 (9.6%)

Primary therapy outcome, n (%) 0.998

PD 14 (4.5%) 13 (4.2%)

SD 11 (3.6%) 11 (3.6%)

PR 22 (7.1%) 21 (6.8%)

CR 112 (36.4%) 104 (33.8%)

Race, n (%) 0.020

Asian 7 (1.9%) 5 (1.4%)

Black or African American 6 (1.6%) 19 (5.2%)

White 172 (47.1%) 156 (42.7%)

Age, n (%) 0.714

<=60 106 (28%) 102 (26.9%)

>60 83 (21.9%) 88 (23.2%)

Histologic grade, n (%) 0.056

G1 0 (0%) 1 (0.3%)

G2 29 (7.9%) 16 (4.3%)

G3 157 (42.5%) 165 (44.7%)

G4 0 (0%) 1 (0.3%)

Anatomic neoplasm subdivision, n (%) 0.750

Unilateral 53 (14.8%) 49 (13.7%)

Bilateral 126 (35.3%) 129 (36.1%)

Venous invasion, n (%) 0.046

No 16 (15.2%) 25 (23.8%)

Yes 39 (37.1%) 25 (23.8%)

Lymphatic invasion, n (%) 0.351

No 21 (14.1%) 27 (18.1%)

Yes 54 (36.2%) 47 (31.5%)

Tumor residual, n (%) 0.461

NRD 31 (9.3%) 36 (10.7%)

RD 140 (41.8%) 128 (38.2%)

Tumor status, n (%) 0.284

Tumor free 32 (9.5%) 40 (11.9%)

With tumor 139 (41.2%) 126 (37.4%)

Age, meidan (IQR) 58 (50, 68) 59 (52, 68) 0.345
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The effect of GSTM proteins on stemness
in OC cell

Since stemness features are the main causes of aberrant

survival capacity and evasion of apoptosis during OC

progression, we ranked the OC samples according to stemness

index (from low to high) and tested whether any demographic/

GSTMs expression level/clinical feature was associated with

either a low or high stemness index (Figure 8A). Correlation
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analysis suggested that the total GSTMs mRNA level was not

significantly correlated with stemness index in both OC patients

(Figure 8B). Therefore, we further detected the difference of

stemness index in high GSTMs level OC patients compared to

low GSTMs level OC patients or normal women. The results

indicated that the stemness index was only decreased in high

GSTM5 level OC patients compared to low GSTM5 level OC

patients. Moreover, the stemness index was significantly

decreased in both normal ovary samples compared to OC
TABLE 5 The correlation between pathological parameters and GSTM5 expression.

Characteristic Low expression of GSTM5 High expression of GSTM5 p

n 189 190

FIGO stage, n (%) 0.489

Stage I 1 (0.3%) 0 (0%)

Stage II 10 (2.7%) 13 (3.5%)

Stage III 151 (40.2%) 144 (38.3%)

Stage IV 25 (6.6%) 32 (8.5%)

Primary therapy outcome, n (%) 0.268

PD 12 (3.9%) 15 (4.9%)

SD 9 (2.9%) 13 (4.2%)

PR 18 (5.8%) 25 (8.1%)

CR 118 (38.3%) 98 (31.8%)

Race, n (%) 0.406

Asian 8 (2.2%) 4 (1.1%)

Black or African American 14 (3.8%) 11 (3%)

White 161 (44.1%) 167 (45.8%)

Age, n (%) 0.233

<=60 110 (29%) 98 (25.9%)

>60 79 (20.8%) 92 (24.3%)

Histologic grade, n (%) 0.322

G1 0 (0%) 1 (0.3%)

G2 19 (5.1%) 26 (7%)

G3 164 (44.4%) 158 (42.8%)

G4 1 (0.3%) 0 (0%)

Anatomic neoplasm subdivision, n (%) 0.750

Unilateral 49 (13.7%) 53 (14.8%)

Bilateral 129 (36.1%) 126 (35.3%)

Venous invasion, n (%) 0.618

No 17 (16.2%) 24 (22.9%)

Yes 31 (29.5%) 33 (31.4%)

Lymphatic invasion, n (%) 1.000

No 23 (15.4%) 25 (16.8%)

Yes 48 (32.2%) 53 (35.6%)

Tumor residual, n (%) 1.000

NRD 33 (9.9%) 34 (10.1%)

RD 133 (39.7%) 135 (40.3%)

Tumor status, n (%) 0.669

Tumor free 38 (11.3%) 34 (10.1%)

With tumor 130 (38.6%) 135 (40.1%)

Age, meidan (IQR) 58 (51, 68) 60 (51, 67.75) 0.782
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tissues (Figure 8C). These results indicated that high expression

of GSTM5 might possessed lower stemness features than OC

patients with low expression of GSTM5.
Determination of the drug sensitivity of
the GSTMs

Finally, we confirmed the drug sensitivity of these GSTMs

based on GSCA database (http://bioinfo.life.hust.edu.cn/GSCA/

#/drug). The result showed that GSTM3/4 was upregulated in

the treatment of multiple drugs, especially in AICAR, AT-7519,

PHA-793887 and PI-103 (Figure 9A). For further select suitable

cell lines for verification, we analyzed the GSTM3/4 level in OC

cell lines based on CCLE database, as shown in Figure 9B. We

chose Hey-A8 cell lines to detect the effect of AICAR (2 mM),

AT-7519 (40 nM), PHA-793887 (1 mM) and PI-103 (50 nM)

on GSTM3/4 level. The result showed that these drugs could
Frontiers in Oncology 11
significantly upregulate the level of both GSTM3 and

GSTM4 (Figure 9C).
Discussion

In our study, we firstly confirmed the transcription and post-

transcription level of GSTM1-5 in OC patients based on

Oncomine, TCGA, HPA and CPTAC database. We found

levels of GSTM1-5 were significantly reduced in OC tissue

samples. A previous study indicated that GSTM1-3 were

significantly decreased in colon cancer tissue samples compared

to normal tissues samples (29). Dysregulation of these GSTMs

has been reported in multiple cancer types, such as head and neck

cancer (30), colon cancer (31), leiomyoma (32), lung cancer (33),

liver cancer (34), and prostate cancer (35). These results indicated

that the ectopic expression of GSTMs might play key roles in OC

occurrence, development and progression.
B

C D

A

FIGURE 4

The potential molecular function of GSTMs in OC. (A) The PPI network associated with GSTM1-5 based on GeneMANIA database. (B)
Correlation heat map of PPI network based on TCGA database. (C) The GO enrichment of PPI network genes. (D) The KEGG enrichment of PPI
network genes.
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For further confirming the roles of GSTMs for OC

progression, Clinical data correlation analysis indicated that

GSTM1/2/4 were both markedly associated with age and race.

In many previous study, GSTM1/2/4 has been drawn attention

upon the correlation with the genetic risk for many types of

cancers among multiple different races, such as Asian (36, 37),

African (38), Northeast India (39), and European (40), which

also partially explained why different ethnic groups have

different cancer risk rates. The correlation between age and

GSTM1/2/4 expression also suggested that the these GSTMs

might be epigenetically regulated by environmental stimuli,

including air, toxic chemicals, water, and radioactive rays. In

previous studies, many researchers found that age was

significantly correlated with GSTM1/2 in multiple diseases,

including cataract (41), macular degeneration (42), essential

hypertension (43), breast cancer (44), Parkinson’s disease (45),

and ovarian damage (46). Moreover, we found GSTM2/4 were

associated with venous invasion in OC patients, which indicated

that GSTM2/4 might regulate the occurrence and development

of venous invasion. Han et al. found that GSTM2 was involved

in the regulation of other survival genes to promote proliferation

and angiogenesis progression in ovarian teratoma (47). Noni

Extract could regulate GSTM2 expression to impeded

angiogenesis and proliferation in prostate cancer patients (48).

In order to further explore the molecular functions of

GSTMs, GO and KEGG enrichment analysis based on PPI
Frontiers in Oncology 12
network showed that GSTM1-5 has a significantly effect on

glutathione transferase activity, glutathione metabolism,

chemical carcinogenesis, drug metabolism-cytochrome P450,

and platinum drug resistance. These results indicated GSTM1-

5 might be a performer to promote detoxification and the

catabolism of electrophilic compounds via conjugating with

glutathione. Sarhanis P et al. found that GSTM1 played a key

role in the detoxification of the products of oxidative stress

produced which induced the continued expression of the mutant

protein during the repair of the ovarian epithelium, such as p53

mutation (49). GSTM1 also promoted cancer chemotherapy

drugs or apoptos i s e scap ing pa thways to induce

chemoresistance in liver cancer (34). Butyrate could

significantly enhance GSTM2 level to act chemo-protectively

by increasing detoxification capabilities in the colon mucosa (7).

Peng et al. found that GSTM2 could upregulate chemotherapy

resistance for gemcitabine in pancreatic cancer (50). GSTM3

polymorphism was a significant risk factor, and its expression

was negatively correlated with disease free survival in esophageal

squamous cell carcinoma (9, 51). Zhuo et al found that GSTM4

could repress etoposide-induced JNK activation and apoptosis

(52). Luo and his colleagues also found that EWS/FLI bind to the

promoter directly, which resulted in the increased expression of

GSTM4 by GGAA-microsatellite in its promoter. GSTM4

deficiency inhibited the progression of Ewing’s sarcoma and

chemotherapy resistance (53). Liu et al. indicated that
B

C

A

FIGURE 5

The prognosis significance of GSTM1-5 in OC. (A) The OS analysis of GSTM1/2/3/4/5 in OC dataset based on the Kaplan–Meier Plotter database.
(B) The PFS analysis of GSTM1/2/3/4/5 in OC dataset based on the Kaplan–Meier Plotter database. (C) The PPS analysis of GSTM1/2/3/4/5 in OC
dataset based on the Kaplan–Meier Plotter database.
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CircRNA_0084927 sponged miRNA-20b-3p to increase the

GSTM5 mRNA level, resulting in the transformation,

development and progression of colorectal cancer (54). Taken

together, these results indicated that GSTM proteins were

promote cancer progression and chemoresistance via

increasing detoxification capabilities and drug metabolism.

Moreover, we found GSTM3/4 expression were correlated

with the poor prognosis, but GSTM3/4 mRNA and protein level

were decreased in OC samples compared to normal ovary

samples. The contradictory results might attribute to that the

functions of GSTMs, especially in GSTM3/4, was induce

detoxification of electrophilic compounds, such as cancer-

causing toxins, anticarcinogens and products of oxidative

stress via conjugating with glutathione (4). In the cancer

initiation phase, the normal physiological functions of the

normal cells were disturbed with the expression of GSTMs

decreased, resulting in lower detoxification, which induce the

development of cancer (55, 56). Then, the molecular function of

GSTMs was protect cell from external stimuli in the
Frontiers in Oncology 13
development and progression of cancer , including

anticarcinogens (57), which induced the development of drug

resistance and the poor prognosis in cancer patients (58).

Moreover, we found GSTMs was significantly correlated

with immune cell infiltration, GSTM2-4 were negatively

associated with CD8 T cell. Li Y et al. found that GSTM2

could inhibit oxidative stress-induced renal cell apoptosis and

inflammation in anti-glomerular basement membrane antibody-

induced glomerulonephritis (59). Ren and his colleagues also

found that GSTM3, as an antioxidant gene signature, to regulate

immune cell infiltration and to predict the prognosis in patients

with kidney renal clear cell carcinoma (60). Low expression of

GSTM2/4 decrease ROS metabolism to induce Immunologic

dysfunction in type 1 diabetes (61). This is probably due to the

fact that GSTMs can mediate the dysfunction of immune cell

function and composition by regulating the oxidative balance in

the cell microenvironment.

OC stemness is a crucial role in metastasis and

chemotherapy resistance (62). In this study, we found GSTM5
B C

A

FIGURE 6

The correlation of immune infiltration and GSTMs alteration in OC. (A) The DNA alteration rate of GSTM1, GSTM2, GSTM3, GSTM4 and GSTM5
was more than 2% in OC. (B) The overall survival rate based on OC patients with and without these genes alteration based on the cBioPortal
dabtase. (C) The effect of GSTM1-5 CNV on the immune cell distribution based on the TIMER database. *p < 0.05.
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play a key role in OC cell stemness, which indicated GSTM5

might reduce ROS level to ameliorate oxidative stress, and

ultimately, regulate OC stemness maintenance. The properties

of stem cell mediate OC cells to avoid clinical standard

chemotherapy, resulting in recurrent disease (63). Strong

oxidative stress in OC cancer cells plays a hub role in

mediating stemness maintenance, abnormal DNA replication,
Frontiers in Oncology 14
angiogenesis, lymphoangiogenesis, tumor microenvironment

and metabolic reprogramming, all of which have been

confirmed in chemotherapy resistance of OC (64). However,

the correlation between OC stemness and GSTMs induced anti-

oxidative stress remains unclarity.

Finally, we found GSTM3/4 expression were significantly

correlated with multiple anti-cancer drugs, especially in AICAR,
B

C

A

FIGURE 7

The correlation of immune infiltration and GSTMs expression in OC. (A) The expression profiles of GSTM1, GSTM2, GSTM3, GSTM4 and GSTM5
in multiple immune cell types based on TCGA database. (B) The effect of GSTMs on the components of cellular immunity. (C) The correlation
analysis between GSTMs expression and immune checkpoints gene expression in TCGA database via the Wilcox test. (G1 is the group of the OC
patients with high expression of GSTMs. G2 is the group of the OC patients with low expression of GSTMs.) *p < 0.05; **p < 0.01; ***p < 0.001.
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AT7519, PHA-793887 and PI-103. AICAR treatment inhibited

the cell proliferation ability and spheroid formation of OC cells

by activating AMPKa pathway, leading to downregulation of

proliferation, stemness, and metastasis (65). AT7519, a cyclin-
Frontiers in Oncology 15
dependent kinase inhibitor, could significantly augments the

efficacy of cisplatin via CDK, EMT, and apoptosis signaling (66).

PHA-793887, as a potent CDK inhibitor, has an antiproliferative

activity on OC cell in vivo and in vitro (67). The inhibitor of class
B

C

A

FIGURE 8

The association of stemness features and GSTMs in OC. (A) The stemness score heatmap of GSTM expression and clinical information. The top
figure is the stemness score from low to high, and the bottom figure is the distribution of GSTMs expression and clinical information features
after sorting. (B) Correlation analysis of stemness score and GSTMs gene expression. (C) The distribution of stemness scores in high expression
of GSTMs OC groups, low expression of GSTMs OC groups, and normal ovary groups. (G1 is the group of the OC patients with high expression
of GSTMs. G2 is the group of the OC patients with low expression of GSTMs.) ****p < 0.0001.
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I phosphatidylinositide 3-kinases, PI-103, could decrease the

chemotherapy resistance of the SKOV3/DDP OC cell line to

cisplatin in vitro with pronounced antitumor efficacy (68). In

our study, we found these anti-cancer drugs could significantly

enhance the level of GSTM3/4 by a negative feedback way,

resulting in promoting drug metabolism, especially in AICAR,

AT-7519, PHA-793887 and PI-103. Combined with the results

of multiple survival analysis, such as overall survival and meta-

survival, GSTM3/4 could augment drug metabolism to blunt the

effects of chemotherapy drugs, leading to poor prognosis for

OC patients.
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Conclusion

In this study, we found both GSTM1-5 expressions were

significantly downregulated in OC tissues compared to normal

ovary tissues. GSTM3 was correlated with the OC poor

prognosis, including OS, PFS and PPS. GSTM5 was positively

correlated with the OC favorable prognosis, especially in OS.

GSTM1 was associated with favorable prognosis in PFS. GSTM4

was associated with poor PFS in OC patients. Moreover, these

GSTMs played key roles in immune infiltration of OC. GSTM5

might be involved in OC stemness features for OC cell. Drug
B C

A

FIGURE 9

The Drug Sensitivity of GSTMs in OC. (A) The effect of multiple drugs on mRNA expression of GSTMs. (B) The mRNA expression of GSTM3/4 in
multiple OC cell lines based on CCLE database. (C) The effects of AICAR, AT-7519, PHA-793887 and PI-103 on GSTM3/4 expression level in
Hey-A8 cell lines. **p < 0.01; ***p < 0.001.
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sensitivity analysis indicated that AICAR, AT-7519, PHA-

793887 and PI-103 increased GSTM3/4 expression to induce

chemotherapy resistance. Therefore, our results can be a

preliminary evidence for GSTM3 as a possible therapeutic

target and prognostic marker for OC. Nevertheless, further

work would be required to verify these candidates.
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SUPPLEMENTARY FIGURE 1

The regulatory mechanisms of GSTM members. (A) The DNA m5C

methylation level of GSTM1-5 in OC patients and normal women. (B)
The miRNA network of GSTMs based on GSCALite database.

SUPPLEMENTARY FIGURE 2

The protein structure of GSTM members.

SUPPLEMENTARY FIGURE 3

The expression distribution of GSTM1-5 immune score in OC samples and
normal ovary samples. Immune cell score heatmap for GSTM1 (A), GSTM2

(C), GSTM3 (E), GSTM4 (G) and GSTM5 (I) based on TCGA database via the

Wilcox test. The percentage abundance of OC infiltrating immune cells in
GSTM1 (B), GSTM2 (D), GSTM3 (F), GSTM4 (H) and GSTM5 (J) group.

Different colors indicated different immune cells types. The abscissa
represents the OC sample, and the ordinate represents the percentage

of immune cell content in each OC sample. *p < 0.05; **p < 0.01; ***p
< 0.001.
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