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ABSTRACT

Accurate estimations of the seroprevalence of antibodies to severe acute respiratory syndrome coronavirus 2

need to properly consider the specificity and sensitivity of the antibody tests. In addition, prior knowledge of the

extent of viral infection in a population may also be important for adjusting the estimation of seroprevalence.

For this purpose, we have developed a Bayesian approach that can incorporate the variabilities of specificity

and sensitivity of the antibody tests, as well as the prior probability distribution of seroprevalence. We have

demonstrated the utility of our approach by applying it to a recently published large-scale dataset from the US

CDC, with our results providing entire probability distributions of seroprevalence instead of single-point esti-

mates. Our Bayesian code is freely available at https://github.com/qunfengdong/AntibodyTest.
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INTRODUCTION

Antibody tests for COVID-19 have been increasingly deployed to es-

timate the seroprevalence of antibodies to severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2).1 Although antibody tests

can provide important estimations on the prevalence of the viral in-

fection in populations, the test results must be interpreted with cau-

tion due to the presence of false positives and false negatives.2

Therefore, a critical statistical challenge is how to accurately esti-

mate the prevalence of the viral infection in populations while ac-

counting for the false positive and false negative rates of the

antibody tests.

Recently, the US Centers for Disease Control and Prevention

(CDC) published a large-scale study on antibody tests from 10 sites

in the US administered between March 23 and May 12, 2020.3 The

CDC antibody tests employed an enzyme-linked immunosorbent as-

say with a specificity (ie, 1 – false positive rate) of 99.3% (95% CI,

98.3%–99.9%) and sensitivity (ie, true positive rate) of 96.0%

(95% CI, 90.0%–98.9%).3 In order to take the test accuracy into

the consideration, the CDC study applied the following simple cor-
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rection: Robs ¼ P�Sensitivity þ (1-P) � (1-Specificity), where Robs

is the observed seroprevalence in the study samples and P is the un-

known seroprevalence in populations. Using the point estimates of

the sensitivity (96.0%) and specificity (99.3%) of the antibody tests,

they obtained the point estimate of the population prevalence P ¼
(Robs – 0.007)/0.953.

There are two main limitations with such an approach. First,

only the point estimate of population prevalence P was obtained. Al-

though the CDC study also generated confidence intervals for the

point estimate based on a non-parametric bootstrap procedure, the

confidence interval does not provide a probabilistic measurement of

the uncertainty associated with all possible values of the unknown

prevalence. Second, the above CDC approach could not account for

any prior knowledge of the population prevalence P, which can lead

to inaccurate estimation especially when the true rate of viral infec-

tion is low, even with high specificity and sensitivity of the tests.4,5

To overcome the above limitations, we have developed a Bayes-

ian approach. Our approach is not a simple application of Bayes’

theorem by plugging in the point estimates of sensitivity and specif-

icity into the formula and computing a posterior probability. In-

stead, our approach is a full Bayesian procedure that models the

known variability in the sensitivity (95% CI, 90.0%–98.9%) and

specificity (95% CI, 98.3%–99.9%) of the antibody test, and we

can incorporate any prior knowledge of the viral infection rate to es-

timate the entire posterior probability distribution of the unknown

population prevalence.

MATERIALS AND METHODS

Bayesian modeling
Let Nt and Np denote the number of people tested in total and the

number of people tested as positive, respectively. Let p denote the

unknown seroprevalence of antibodies to SARS-CoV-2. Let h denote

the true positive rate of the antibody test (ie, sensitivity). Let j de-

note the false positive rate of the test (ie, 1 – specificity). Then, we

can define the following likelihood function:

LðNt;Npjp;k;qÞ¼ðpqþð1�pÞkÞNpþðpð1�qÞþð1�pÞð1�kÞÞðNt�NpÞ

(1)

In Eq. (1), the term (ph þ (1 � p)j)Np corresponds to the proba-

bility of observing Np people that have tested positive, since a person

with a positive test result can either be infected (with the probability

of p) and correctly test positive (with the probability of h), or not

infected (with the probability of 1 � p) and falsely test positive (with

the probability of j). Similarly, the term (p(1-h) þ (1 � p)j)(Nt–Np)

corresponds to the probability of observing (Nt–Np) people whose

test results were negative.

To estimate the posterior probability of p, we need to sample

from the following posterior distribution:

Probðp;k;qj Nt;NpÞ LðNt;Npjp;k;qÞ PriorðpÞ PriorðkÞ PriorðqÞ
(2)

To specify the prior distribution for p, j, and h, we chose beta

distributions as they are commonly used to model probabilities.6

p � Beta ðap; bpÞ (3)

k � Beta ðak; bkÞ (4)

q � Beta ðaq; bqÞ (5)

where ap, bp, aj, bj, ah, and bh denote shape parameters of the corre-

sponding beta distributions.

For the unknown parameter p, we chose to use a non-

informative flat prior probability distribution for this study (ie, ap ¼
bp ¼ 1), although it can be adjusted if prior knowledge of the pro-

portion of infected people for a particular region is known (see more

in the Discussion section). For j and h, we chose informative priors

to reflect the known specificity and sensitivity of a particular anti-

body test. Specifically, the shape parameters of aj, bj, ah, and bh can

be estimated using the method of moments5 as follows:

ak ¼ mkðmkð1�mkÞ=sk
2 � 1Þ (6)

bk ¼ ð1�mkÞðmkð1�mkÞ=sk
2 � 1Þ (7)

aq ¼ mqðmqð1�mqÞ=sq
2 � 1Þ (8)

bq ¼ ð1�mqÞðmqð1�mqÞ=sq
2 � 1Þ (9)

where mj and rj
2, and mh and rh

2 represent the mean and variance of

the test specificity and sensitivity, respectively. For this study, the

mean of specificity and sensitivity is 99.3% and 96.0%, respectively.

The variances of specificity and sensitivity were approximated7 as

s(1-s)/n, where s is the mean value of specificity or sensitivity, and

n¼618 according to the CDC validation study on the antibody test

accuracy.8

We used WinBUGS9 (version 1.4.3) to implement the above

models. In particular, the likelihood function was implemented us-

ing the “ones trick”10 of WinBUGS (see the GitHub repository

https://github.com/qunfengdong/AntibodyTest for the implementa-

tion details). The posterior distributions were estimated with the

Markov Chain Monte Carlo (MCMC) sampling in WinBUGS using

the following parameters: the number of chains of 4, the number of

total iterations of 100 000, burn-in of 10 000, and thinning of 4.

Convergence and autocorrelations were evaluated with trace/his-

tory/autocorrelation plots and the Gelman–Rubin diagnostic.11

Multiple initial values were applied for MCMC sampling. The

above Bayesian procedure was validated with simulated datasets

generated by our customized R12 script (available in the above

GitHub repository).

Seroprevalence data
The seroprevalence data was taken from the aforementioned CDC

publication.3 Our approach requires two inputs: (i) the total number

of tested samples and (ii) the number of positive samples. For this

project, we only focused on gender-specific data in the CDC study.

We extracted the total number of male and female samples from the

original Table 1 in the CDC publication. However, the number of

Table 1. Number of positive samples calculated from the CDC pub-

lication3

Sites Number of positive samples (number of total

samples)

Female Male

Western Washington State 31 (1930) 27 (1334)

New York City metro area 73 (1333) 65 (1149)

Louisiana 45 (677) 36 (507)

South Florida 20 (964) 22 (778)

Philadelphia metro area 8 (422) 14 (402)

Missouri 25 (1018) 32 (864)

Utah 16 (673) 13 (465)

San Francisco Bay area 4 (653) 11 (571)

Connecticut 28 (729) 43 (702)

Minneapolis metro area 12 (454) 6 (406)
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positive samples was not reported in the CDC publication. To infer

those numbers for both genders, we extracted the CDC esti-

mated seroprevalence, P, for both genders from the original Table 2

in the CDC publication. Using the equation P ¼ (Robs – 0.007)/

0.953 mentioned above, we obtained the observed seroprevalence

Robs for both genders, which were used for calculating the number

of observed positive male and female samples by multiplying Robs to

the total number of samples in each respective gender. Table 1 lists

the calculated number of test positive samples, rounded to the near-

est integer in each site.

Table 2. Estimated seroprevalence of antibodies to SARS-CoV-2 in populations

Sites CDC estimate3 (95% confidence interval), % Posterior median (95% credible interval), %

Female Male Female Male

Western Washington State 1.7 (0.7–1.9) 1.4 (0.8–2.4) 1.0 (0.2–1.9) 1.5 (0.4–2.5)

New York City metro area 5.7 (4.2–7.0) 5.9 (4.5–7.6) 5.0 (3.6–6.5) 5.3 (3.8–6.9)

Louisiana 7.0 (4.7–9.4) 6.8 (4.2–9.3) 6.3 (4.4–8.6) 6.8 (4.6–9.5)

South Florida 2.2 (1.2–3.4) 2.2 (1.1–3.6) 1.5 (0.4–2.8) 2.3 (1.0–3.8)

Philadelphia metro area 1.9 (0.7–3.7) 3.0 (1.3–5.2) 1.5 (0.2–3.2) 3.1 (1.3–5.4)

Missouri 2.6 (1.5–3.7) 3.1 (1.8–4.6) 1.9 (0.7–3.2) 3.2 (1.8–4.8)

Utah 2.5 (1.2–4.1) 2.2 (0.9–3.6) 1.9 (0.6–3.4) 2.4 (0.8–4.3)

San Francisco Bay area 0.7 (0.2–1.9) 1.2 (0.4–2.7) 0.3 (0.02–1.2) 1.4 (0.3–3.0)

Connecticut 4.1 (2.6–5.9) 5.7 (3.8–7.6) 3.4 (1.9–5.1) 5.8 (3.9–7.9)

Minneapolis metro area 2.7 (1.2–4.8) 0.7 (0–2.3) 2.2 (0.7–4.2) 1.1 (0.1–2.7)

Figure 1. The posterior probability density of the prevalence of female (red) and male (blue) infected by SARS-CoV-2 virus in 10 US sites: (A) Western Washington

State, (B) New York City metro area, (C) Louisiana, (D) South Florida, (E) Philadelphia metro area, (F) Missouri, (G) Utah, (H) San Francisco Bay area, (I) Connecti-

cut, and (J) Minneapolis metro area.
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RESULTS

We applied our Bayesian approach to the data listed in Table 1. It is

important to emphasize that Bayesian approaches produce entire

probability distributions instead point estimates.6Figure 1 depicts

the posterior distributions of the seroprevalence of antibodies to

SARS-CoV-2 virus in 10 US sites. Table 2 lists both the original

CDC point estimates with the accompanying 95% confidence

intervals, and our Bayesian estimates, which were presented as the

medians and 95% credible intervals of the posterior distributions.

It is worth noting that confidence intervals and Bayesian credible

intervals are two different concepts,13 thus they are not technically

comparable despite being listed together in Table 2 for conve-

nience.

DISCUSSION

Antibody tests have been increasingly applied to estimate the prev-

alence of people who have been infected by the SARS-CoV-2 virus.

For example, New York City recently released data of more than

1.46 million coronavirus antibody test results on August 18, 2020.

Accurately analyzing such data is critical for developing important

public health policies.14 Our Bayesian approach can explicitly

model the variabilities in the sensitivity and specificity of the anti-

body tests instead of treating them as fixed values. Some subtle

differences did exist between our Bayesian estimates and the origi-

nal CDC estimates; additional simulation studies in the future are

required to investigate exact causes of those discrepancies. None-

theless, the entire posterior distributions (Figure 1) inferred by our

Bayesian approach capture the uncertainties associated with sero-

prevalence. Specifically, the Bayesian approach provided a precise

probability associated with every possible value of seroprevalence.

Since many of those values may have non-negligible likelihoods,

they should not be ignored when public health policy decisions are

made on the basis of the seroprevalence. In addition, the Bayesian

approach can easily incorporate prior knowledge of the propor-

tion of infected people for a particular region. This is particularly

important for accurate estimation if the true prevalence is low.5

Moreover, the Bayesian approach also provides a natural frame-

work for updating the estimation based on new data, which is par-

ticularly relevant to the continuous monitoring of the

seroprevalence of coronavirus antibodies. For example, New York

City is still releasing coronavirus antibody test results on a weekly

basis.15 By turning the estimated posterior distribution from previ-

ous weeks into a prior distribution for the next week, the sero-

prevalence of coronavirus antibody can be quickly updated within

a solid Bayesian probabilistic inference framework.
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