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ABSTRACT

Background: Nicotinamide (NAM) metabolism fulfills crucial functions in tumor
progression. The present study aims to establish a NAM metabolism-correlated gene
(NMRG) signature to assess the immunotherapy response and prognosis of lung
adenocarcinoma (LUAD).

Methods: The training set and validation set (the GSE31210 dataset) were collected
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO),
respectively. Molecular subtypes of LUAD were classified by consensus clustering.
Mutation landscape of the top 20 somatic genes was visualized by maftools package.
Subsequently, differential expression analysis was conducted using the limma
package, and univariate, multivariate and LASSO regression analyses were performed
on the screened genes to construct a risk model for LUAD. Next, the MCP-counter,
TIMER and ESTIMATE algorithms were utilized to comprehensively assess the
immune microenvironmental profile of LUAD patients in different risk groups. The
efficacy of immunotherapy and chemotherapy drugs was evaluated by TIDE score
and pRRophetic package. A nomogram was created by integrating RiskScore and
clinical features. The mRNA expressions of independent prognostic NMRGs and the
migration and invasion of LUAD cells were measured by carrying out cellular assays.
Results: Two subtypes (C1 and C2) of LUAD were classified, with C1 subtype
showing a worse prognosis than C2. The top three genes with a high mutation
frequency in C1 and C2 subtypes were TTN (45.25%), FLG (25.25%), and ZNF536
(19.8%). Four independent prognostic NMRGs (GJB3, CPA3, DKK1, KRT6A) were
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screened and used to construct a RiskScore model, which exhibited a strong
predictive performance. High-risk group showed low immune cell infiltration, high
TIDE score, and worse prognosis, and the patients in this group exhibited a high drug
sensitivity to Cisplatin, Erlotinib, Paclitaxel, Saracatini, and CGP_082996. A
nomogram was established with an accurate predictive and diagnostic performance.
GJB3, DKK1, CPA3, and KRT6A were all high- expressed in LUAD cells, and
silencing GJB3 inhibited the migration and invasion of LUAD cells.

Conclusion: A novel NMRG signature was developed, contributing to the prognostic
evaluation and personalized treatment for LUAD patients.
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INTRODUCTION

Lung cancer is a frequent and lethal epithelial malignant tumor (Tang et al., 2023; Zhang
et al., 2023). In 2020, China reported approximately 820,000 new cases of lung cancer,
constituting 17.9% of all new cancer diagnoses (4.57 million), with 710,000 fatalities, which
accounted for 23.7% of all cancer-related deaths (3 million) (Cao et al., 2023). Lung
adenocarcinoma (LUAD), the predominant subtype of lung cancer, comprises more than
40% of all lung cancer cases and is characterized by its aggressive nature and high mortality
rate (Cao et al., 2024; Xia et al., 2024). Despite advancements including chemotherapy,
surgical resection, radiotherapy, immunotherapy, and targeted molecular therapies, the
prognosis of lung cancer remains grim (Meng et al., 2024; Zhou et al., 2022; Ding, Lv &
Hua, 2022). This is largely due to the challenges in early detection, rapid progression of the
cancer as well as the development of treatment resistance (Zhang et al., 2022; Zheng et al.,
2023). Immunotherapy is a promising strategy for treating LUAD, and studies have shown
the crucial role of immune system in LUAD progression (Guo et al., 2022). Specifically,
immune checkpoint inhibitors (ICIs) have become a pivotal therapeutic modality LUAD
for and are widely applied in clinical setting (Xu et al, 2023). In China, the currently
approved ICIs for LUAD treatment are mainly PD-1 and PD-L1 inhibitors, including
agents such as tislelizumab, pembrolizumab, and durvalumab (Feng et al., 2023; Hu et al.,
2022). However, due to tumor heterogeneity of tumors and patient-specific differences,
only about 15% of patients could benefit from ICIs (Nguyen et al., 2022; He et al., 2024).
Studies confirmed that developing risk models and analyzing immune infiltration analysis
in both low- and high-risk groups can assists in predicting the immune therapeutic
response in LUAD (Li et al., 2023; Yi et al., 2021; Wu et al., 2021). Hence, establishing risk
model for LUAD prognosis is imperative, as they can inform treatment strategies and
improve patient outcomes.

Metabolic reprogramming is a hallmark of malignant tumors, primarily involving
alterations in glutamine metabolism, glucose metabolism, and lipid metabolism (Li et al.,
2022; Zhang, Zou & Fang, 2023). This reprogramming allows tumors to evade cell
apoptosis, a prerequisite for promoting rapid proliferation, invasion, and metastasis of
tumor cells (Shum et al., 2023). It has been reported that metabolic reprogramming not
only enables cancer cells to escape immune surveillance, but also induces treatment
resistance and interacts with the tumor microenvironment via the metabolites produced
(Faubert, Solmonson & DeBerardinis, 2020). Inhibition of metabolic reprogramming could
reduce tumor aggressiveness (Liu et al., 2023), thus identifying it as a possible target for
cancer therapies (Nong et al., 2023). Nicotinamide (NAM), the amide pattern of vitamin
B3, serves as a precursor to nicotinamide-adenine dinucleotide (NAD+), a key mediator in
cellular energy metabolism (Song et al., 2019). During cell senescence, the reduction of
NAD+ levels will increase the production of reactive oxygen species (ROS), contributing to
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metabolic reprogramming (Cui et al., 2023). Increasing evidence demonstrated the pivotal
role of NAM in the prevention and therapies of cancers (Nikas, Paschou & Ryu, 2020). For
example, NAM could suppress breast cancer cell proliferation via mitochondrial
dysfunction and ROS accumulation by regulating lipid metabolism pathway (Jung et al.,
2022). As a crucial enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyl
transferase (NAMPT) could convert NAM to nicotinamide mononucleotide (NMN),
contributing significantly to immunosuppressive microenvironment (Burgos, 2011;
Travelli et al., 2019). In certain tumors, NAMPT has been found to promote the expression
of PD-L1, which allows tumors to evade immune response, particularly in a CD8" T cell-
dependent manner (Li et al., 2020; Lv et al., 2021). These findings highlighted the
significance and potential prognostic value of NAM metabolism in relation to tumor
outcomes and immune responses.

Given that the research on the correlation between NAM metabolism and
immunotherapy response and prognosis of LUAD is limited, the present research set out
to examine the significant role of NAM metabolism in LUAD progression and to develop a
new predictive model for immunotherapeutic response and prognosis based on NAM
metabolism-related genes (NMRGs). Firstly, molecular subtypes of LUAD were delineated
using NMRGs, and comparisons were made regarding clinical features, somatic gene
mutation profiles, and differentially expressed genes (DEGs) across the subtypes.
Subsequently, independent prognostic NMRGs were screened to create a RiskScore model
for patients suffering from LUAD, the reliability of which was validated using GSE31210
dataset. The analysis extended to assessing immune infiltration, immunotherapy response,
and drugs sensitivity across different risk groups. Furthermore, a nomogram integrating
RiskScore with clinical features was established. Finally, the mRNA expressions of
independent prognostic NMRGs, and cell migration and invasion capabilities of LUAD
cells were experimentally verified. This study offers a promising method for evaluating the
prognostic outcomes and treatment effectiveness for LUAD patients, potentially
improving clinical decision-making.

MATERIALS AND METHODS

Data collection and preprocessing

The somatic mutation information and clinical phenotype data of LUAD were collected
from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). The
RNA-seq expression profile was converted to FPKM format and log2-converted. The
somatic gene mutation information was processed by mutect2 (Saba et al., 2020). After
removing samples that lacked survival time or survival status, a total of 500 tumor samples
with a survival time longer than 0 day were obtained.

The chip data of GSE31210 (Shahrajabian ¢ Sun, 2023) was acquired from Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE31210) (Song et al., 2023). The probes were transformed to genes symbol based on
the annotation information. A total of 226 tumor samples from GSE31210 were recruited
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for subsequent study after removing normal samples and those without clinical follow-up
or overall survival (OS) data.

TCGA-LUAD and GSE31210 datasets served as the training dataset and independent
validation dataset, respectively.

Consensus clustering analysis

Firstly, 42 NMRGs obtained from a previous study (Cui et al., 2023) were subjected to
univariate Cox regression analysis (p < 0.05) to filter prognostically significant NMRGs in
LUAD. Then, consensus clustering was performed to delineate molecular subtypes of
TCGA-LUAD using ConsensusClusterPlus R package (the parameters were set as
clusterAlg = “hc¢” and distance = “Spearman”) (Li et al., 2020). Sampling was repeated 500
times with 80% samples involved each time. The optimal cluster number (between 2 to 10)
was determined according to the CDF. Finally, the prognosis between different subtypes in
TCGA-LUAD cohort was evaluated and validated in GSE31210 dataset.

Somatic gene mutation landscape analysis

Somatic genes with mutation frequencies higher than 2 were selected. Then, genes with
significantly high mutation frequencies within each molecular subtype were further
identified using Fisher’s exact test, setting a threshold of p < 0.05. Next, the mutation
landscape of the top 20 somatic genes in each molecular subtype was visually displayed
using a waterfall diagram, generated with the maftools R package (Jia et al., 2024).

Identification of DEGs and GSEA

DEGs among different subtypes of TCGA-LUAD were selected using limma R package,
with a screening threshold of |log2FoldChange (FC)|>log2(1.5) and p < 0.05. Following
this, pathway enrichment analysis was conducted via GSEA R package to pinpoint
significantly enriched pathways, using a threshold of p < 0.05 (Innis et al., 2021). The gene
set “h.all.v2023.1.Hs.entrez.gmt” from the MsigDB (https://www.gsea-msigdb.org/gsea/
msigdb/) served as the background gene sets (Li ef al., 2023), encompassing the
HALLMARK series of pathways.

Development and verification of a RiskScore model

Using univariate Cox regression analysis (p < 0.05), the prognostic genes were selected
from the DEGs between the molecular subtypes in TCGA-LUAD. Subsequently, the model
was refined by performing LASSO Cox regression analysis in the glmnet R package and
10-fold cross validation (Li et al., 2024). Then, the independent prognostic NMRGs were
screened via stepwise multivariate regression analysis and applied to develop the RiskScore
model as follow (Fan et al., 2024):

RiskScore = Z Bi * ExPi

Bi indicates the coefficient of gene in Cox regression model, and ExPi represents gene
expression value.
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The RiskScore for all the samples in TCGA-LUAD and GSE31210 datasets was
calculated, and LUAD patients were separated by the median RiskScore value into high-
and low-risk groups. The ROC curve was constructed using timeROC R package (Zhang,
2022). The model robustness was validated using the GSE31210 dataset.

Evaluation of the TME

To investigate the association between the TME in LUAD and different risk groups, the
scores of a total of 28 types of tumor infiltration immune cells (TIICs) were computed for
each sample (Wang et al., 2020). Also, the scores of 10 types of immune cells were
calculated by MCP-counter (Zhang et al., 2022). The TIMER online tool (http://cistrome.
org/TIMER) was employed to calculate the scores of six immune cells (Cao et al., 2022).
Moreover, ESTIMATE algorithm was utilized to output the ESTIMATEScore,
StromalScore, ImmuneScore using estimated R package (Ke et al., 2021).

Immunotherapy response and drug sensitivity assessment

Firstly, the TIDE score was calculated based on the standardized transcriptome data in
TIDE website (http://tide.dfci.harvard.edu/) (Zheng et al., 2024) to evaluate the
immunotherapy response of LUAD patients, with higher TIDE scores indicating greater
immune escape possibility and less immunotherapy benefit. Furthermore, the sensitivity of
LUAD patients in TCGA-LUAD to 10 common chemotherapy drugs was compared based
on the IC5, value using pRRopetic R package.

Development and verification of a NAM metabolism-related nomogram
Firstly, independent prognostic factors were identified by subjecting clinical traits and
RiskScore model to univariate and multivariate Cox regression analysis. Then, a
nomogram integrating RiskScore with other clinicopathologic features was created to
evaluate the 1-, 3-, and 5- year survival rate of patients with LUAD (Liu et al., 2024). The
nomogram’s performance was assessed using a calibration curve and DCA. The predictive
accuracy was further validated by calculating the C-index (Wang et al., 2022). Additionally,
the diagnostic efficacy of the nomogram was evaluated through plotting receiver operating
characteristic (ROC) curves using the timeROC R package (Lin et al., 2023).

Cell culture and transfection

Normal human lung epithelial cell line (BEAS-2B) and the LUAD cell line (A549) were
procured from Wuhan Sunncell Biotechnology Co., Ltd (Wuhan, China). DMEM/F12
medium comprising 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin was
used in all cell culture under the incubation conditions of 37 °C, 5% CO,, and saturated
humidity.

Subsequently, the silencing of G/B3 was conducted by cell transfection. The small
interfering (si) RNA specifically targeting GJB3 (si-GJB3) along with a negative control
(si-NC) was obtained (Shanghai Sangon Biotechnology Co., Ltd., Shanghai, China). The
sequence of si-GJB3 was AAGTTATGCAACTTTCGTTTTGG. Transfection of A549 cells
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was conducted with the use of Lipofectamine® 3000 (Invitrogen, Thermo Fisher
Scientific) for 48 h, according to the instruction.

Quantitative real-time PCR
Firstly, the total RNA of BEAS-2B and A549 cells obtained using TriZol reagent
(Invitrogen, Waltham, MA, USA) was reverse-transcribed into cDNA with SuperScript IV
reverse transcriptase (Invitrogen, Waltham, MA, USA). Next, to measure the mRNA
expressions of independent prognostic NMRGs in BEAS-2B and A549 cells, quantitative
real-time PCR (qRT-PCR) was conducted for amplification using SYBR® Premix Ex
Taq™ 1II (Takara, Shanghai, China). See Table S1 for the primer sequences. The
amplification was performed as follows: pre-denaturation at 95 °C for 1 minute (min), 40
cycles of 95 °C for 30 seconds (s), and annealing at 56 °C for 30 s, elongation at 72 °C for 40
s. The relative expressions of NMRGs were quantified by 2744¢"

GAPDH as the housekeeping gene (Song et al., 2023).

method, applying

Wound-healing assay

The A549 cell migration was measured by wound-healing assay (Zhang et al., 2022). A549
cells at a concentration of 2 x 10° cells/well were cultured in a 24-well plate and scratched
using an aseptic pipette tip. After washing with phosphate buffer, the A549 cells were
cultivated in serum-free medium. The BX53M upright metallographic microscope
(Olympus, Tokyo, Japan) was applied to observe and capture the representative images at
0 and 48 h. Meanwhile, the wound closure (%) of A549 cells was counted.

Transwell assay

Transwell assay was conducted to evaluate the invasion of A549 cells (Zhou et al., 2021).
Firstly, each Transwell chamber was added with 70 pL diluted Matrigel and placed at 37 °C
for 2 h to coagulate the Matrigel. Then, the A549 cells (2 x 10> cells/well) were suspended
in 250 uL non-serum medium contained in the upper chamber and incubated, while
650 uL medium comprising 10% FBS was supplemented to the lower chamber. Following
24-h cultivation, 5% paraformaldehyde was used to fix the A549 cells invading the lower
chamber for 30 min. Then, 0.1% crystal violet was employed to dye the fixed cells for
15 min. Finally, the invaded A549 cells were quantified under the BX53M upright metallic
microscope (Olympus, Tokyo, Japan).

Statistical analysis

Bioinformatic analysis were performed using R software 4.2.1. Two-group differences were
calculated by Wilcoxon rank test. The distribution of clinicopathologic features was
analyzed by Chi-Squared test. Survival differences among different risk groups or subtypes
were compared by Kaplan-Meier curves. Data were shown as mean + standard deviation,
and GraphPad Prism 7.0 was employed to conduct statistical analysis. Student’s ¢-test was
employed to test two-group comparisons. And p < 0.05 was considered statistically
significant.
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Figure 1 Identification on the molecular subtypes of LUAD based on NMRGs. (A) The NMRGs associated with prognosis. (B) Consensus
cumulative distribution function (CDF) and CDF Delta area curves in TCGA-LUAD cohort. (C) Heatmap of consensus matrix in TCGA-LUAD
cohort. (D) Overall survival (OS) difference between two molecular subtypes in TCGA-LUAD cohort. (E) OS curve of two molecular subtypes in
Full-size ] DOL: 10.7717/peerj.18991/fig-1

GSE31210.

RESULTS

Using NMRGs to classify two molecular subtypes of LUAD
Firstly, six NMRGs (ENPP1, NNT, NT5CI1A, NT5C3A, NT5E, and PNP) were significantly
correlated with the prognostic outcomes of LUAD (Fig. 1A). Using these six NMRGs,
consensus clustering analysis was performed on the 500 samples in TCGA-LUAD dataset.
According to the CDF and CDF Delta area curves, the clustering results were stable when
there were two clusters (Fig. 1B). Thus, LUAD patients were divided into two subtypes
when consensus matrix k = 2 (Fig. 1C). In TCGA-LUAD cohort, the OS probability in C2
subtype was more favorable than that in C1 subtype (Fig. 1D), indicating that C2 subtype
patients exhibited a better prognosis than C1 subtype. In addition, 226 samples in
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GSE31210 dataset were similarly clustered into two stable subtypes, which also showed
clear prognostic differences (Fig. 1E).

Clinical features and somatic gene mutation landscape between the
two subtypes

Comparison on the distribution difference of clinicopathologic features between C1 and
C2 in TCGA-LUAD cohort showed that compared to C2 subtype, more patients in C1
subtype were in the pathologic_MI, pathologic_T3, T4, pathologic_N1, N2, and
pathologic_stage II, III (Figs. 2A-2D). In addition, 369 somatic mutation genes with
significantly high mutation frequency between C1 and C2 subtypes were obtained and the
mutation distribution of the top 20 genes was visually displayed. The top three somatic
genes with the highest mutation frequencies were TTN (45.25%), FLG (25.25%), and
ZNF536 (19.8%) (Fig. 2E).

DEGs were identified and GSEA was performed between two subtypes
Firstly, DEG analysis between C1 and C2 in TCGA-LUAD cohort screened 178
upregulated DEGs and 61 downregulated DEGs (Fig. 3A). Furthermore, GSEA showed
that C1 subtype was specifically enriched in multiple pathways, including the
P53_PATHWAY, GLYCOLYSIS, TGF_BETA_SIGNALING, KRAS_SIGNALING_UP,
HYPOXIA, which are associated with the progression and deterioration of tumors
(Fig. 3B). However, C2 subtype was enriched in the pathways such as
MTORCI_SIGNALING, FATTY_ACID_METABOLISM, MYC_TARGETS_V2, and
REACTIVE_OXYGEN_SPECIES_PATHWAY (Fig. 3B). These results showed that C1
subtype was more associated with glycolytic metabolism-related pathways, while C2
subtype was more related to fatty acid metabolism pathway.

RiskScore model with a high prediction performance was constructed
Univariate Cox regression analysis screened 88 genes significantly related to LUAD
prognosis between C1 and C2 (p < 0.05). To refine the risk model, LASSO Cox regression
analysis with 10-fold cross validation was performed to reduce gene number (Figs. 4A and
4B). Subsequently, four independent prognostic NMRGs, including 1 protective gene
(CPA3) and three risk genes (DKK1, G/B3, KRT6A), were screened by multivariate Cox
regression analysis (Fig. 4C) and used to establish a RiskScore model:

RiskScore = (0.095%GJB3) + (—0.141%xCPA3) + (0.155xDKK1) + (0.046xKRT6A).

A total of 500 samples in TCGA-LUAD were divided by the median RiskScore value
into low-risk and high-risk groups (Fig. 4D). Furthermore, the AUC displayed that the
RiskScore model was credible with 1-, 3-, and 5- year AUC of 0.74, 0.68, and 0.62,
respectively (Fig. 4E). In TCGA-LUAD cohort, Kaplan-Meier curves demonstrated that
low-risk group had better survivals in terms of progression-free interval (PFI), OS,
disease-specific survival (DSS), and disease-free interval (DFI) (Figs. 4F-4I), which
suggested that patients with a high RiskScore had a worse prognosis.
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Figure 2 Clinical features and somatic gene mutation landscape between two molecular subtypes. (A-D) The distribution difference of clinical
features between two molecular subtypes in TCGA-LUAD cohort, including M Stage, T Stage, N Stage, and Stage. * means p < 0.05. (E) The somatic
gene mutation landscape between two molecular subtypes in TCGA-LUAD cohort. Full-size &) DOT: 10.7717/peerj.18991/fig-2

The RiskScore model was validated in GSE31210 dataset

To confirm the stability and reliability of RiskScore model, the GSE31210 dataset
containing 226 tumor samples served as an independent validation set. Similarly, the
results in validation cohort were in line with those in TCGA-LUAD training set. In detail,
226 tumor samples in GSE31210 dataset were divided into low- and high-risk groups
(Fig. 5A), with low-risk patients having a higher OS probability (Fig. 5C). This suggested
that the prognostic outcomes of low-risk patients were more favorable than the high-risk
patients. The ROC curve also validated the reliability of the RiskScore model, with 1-, 3-,
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and 5-year AUC of 0.74, 0.69, and 0.59, respectively (Fig. 5B). Moreover, to further
investigate the roles of the four model genes (G/B3, CPA3, DKK1, KRT6A) in LUAD
prognosis, 226 patients in GSE31210 dataset were divided by the median expression of
these genes into high- and low- expression groups. Except for DKK1, the expressions of
GJB3, CPA3, and KRT6A were closely linked to the OS of LUAD patients. The low
expression groups of G/B3 and KRT6A exhibited better OS than high expression groups,
while the high expression group of CPA3 had higher OS rate than low expression group
(Fig. 5D), indicating that the expressions of these model genes could affect LUAD
prognosis.

Immune cell infiltration analysis and GSEA between low- and high-risk
groups

ESTIMATE, TIMER, ssGSEA, and MCP-counter methods were utilized to compare the
degree of immune infiltration between the two risk groups in TCGA-LUAD. Firstly,
ESTIMATE analysis revealed that the high-risk group had significantly lower
ImmuneScore, StromalScore, and ESTIMATEScore than low-risk group (Fig. 6A),
indicating lower immune cell infiltration in the TME of LUAD patients with a high risk.
TIMER analysis demonstrated that in comparison to low-risk group, the score of
Macrophage was lower in high-risk group (Fig. 6B), implying that the function of
Macrophage was inhibited in high-risk patients. The infiltration of 28 types of immune
cells was further explored through ssGSEA, and it was observed that compared to low-risk
group, the infiltration of most immune cells (such as plasmacytoid dendritic cell,
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eosinophil, immature dendritic cell, activated CD4 T cell, mast cell, immature B cell,

monocyte, natural killer cell, activated B cell) was remarkably lower in high-risk group

(Fig. 6C), suggesting an immunosuppressive environment in the high-risk group.

Furthermore, MCP-counter analysis demonstrated that the infiltration of neutrophil, T

cell, endothelial cell, myeloid dendritic cell and B lineage were significantly reduced in
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high-risk group (Fig. 6D). The GSEA results showed that the low-risk group was primarily
enriched in allograft rejection and bile acid metabolism, whereas the high-risk group was
more enriched in numerous HALLMARK pathways (Fig. 7).

High-risk group exhibited poor immunotherapy response and drug
sensitivity

With the purpose to further investigate the potential value of the NMRG signature in the
precision treatment of LUAD, the efficacy of immunotherapy and 10 common
chemotherapy drugs for different risk groups of TCGA-LUAD patients was analyzed. It
was found that the TIDE score of high-risk patients was notably higher (Fig. 8A) and the
ratio of responders to immunotherapy in this group was lower (Fig. 8B), showing that
high-risk LUAD patients had greater immune escape capabilities and less active
immunotherapy responses. Additionally, the IC5, values of Erlotinib, Paclitaxel, Cisplatin,
Saracatinib, and CGP_082996 in high-risk group were lower than that in low-risk group
(Fig. 8C), which indicated that these drugs were more effective in treating high-risk LUAD
patients. However, high-risk LUAD patients exhibited low sensitivities to Rapamycin,
PHA_ 665752, Sorafenib, Imatinib, and Crizotinib.
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Figure 6 The difference of tumor microenvironment (TME) between two risk groups in TCGA-LUAD cohort. (A) StromalScore, ImmuneScore,
and ESTIMATEScore evaluated by ESTIMATE method. (B) The scores of six immune cells assessed by TIMER method. (C) The scores of 28
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A nomogram with an excellent prediction performance was
established

The univariate and multivariate Cox regression analysis verified that N.stage, RiskScore,
and T.stage were independent factors for LUAD prognosis (Figs. 9A and 9B). Then, a
nomogram was established, and the RiskScore exhibited the strongest influence on the
prediction of survival probability (Fig. 9C). In addition, calibration curve showed that
1-year, 3-year, and 5-year calibration points were close to the ideal curves (Fig. 9D).
According to DCA, the benefits of the nomogram were significantly higher than the
baseline model (Fig. 9E), emphasizing the potential value of the nomogram in clinical
decision-making. Moreover, the C-index of the nomogram was also higher than that of
clinical features and RiskScore (Fig. 9F), which further confirmed its accurate prediction
ability. The ROC curve of the nomogram was plotted, with an AUC value of 0.924
(Fig. 9G), which reflected a strong diagnostic performance of the nomogram.

Silencing GJB3 inhibited the migration and invasion of LUAD cells
The data from qRT-PCR revealed that the mRNA expressions of G/B3, DKK1, CPA3, and
KRT6A were all notably upregulated in A549 cells than in BEAS-2B cells (Figs.10A-10D).
GJB3 is a member of a group of proteins known as connexins, which fulfill crucial
functions in the formation of channels and connections and in turn support the
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communication between cells (Zeng et al., 2024). However, the role of G/B3 in cancers has
been less studied, particularly LUAD. Here, the wound healing and Transwell assays
demonstrated that the silencing of G/B3 reduced the numbers of migrated and invaded
A549 cells (Figs.10E and 10F).
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DISCUSSION

Increased energy metabolism in cells has been linked to the initiation and progression of
tumors by numerous studies (Park et al., 2012; Ullah et al., 2024). NAM is well-recognized
as a crucial regulator of REDOX processes and mitochondrial function, thereby playing a
key role in managing cellular energy metabolism. An accumulating body of evidence
supports the involvement of NAM in cancer prevention and treatment (Chen et al., 2015).
Recently, there has been a significant focus on the role of NAM in both the diagnosis and
therapeutic strategies for tumors. For example, Yang et al. (2024) identified NAM-related
genes applying bioinformatics analysis to predict the survival of patients with
hepatocellular carcinoma. However, research on the role of NAM in LUAD remains
limited. This studied delineated LUAD subtypes with NAM-related genes. We performed
differential gene analysis and functional characterization to determine key genes and to
develop a risk model that can effectively predict the immunotherapy response and
prognosis of LUAD patients. Subsequently, we also evaluated the prognosis, immune cell
infiltration and immunotherapy response of patients with LUAD categorized into different
risk groups by the RiskScore model.

This study delineated two subtypes (C1 and C2) of LUAD based on the NMRGs, with
C2 subtype exhibiting a better prognosis than C1 subtype. In comparison to C2 subtype,
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more patients in C1 subtype were in the pathologic_M1, pathologic_T3, T4,
pathologic_N1, N2, and pathologic_stage II, III. TTN and FLG were the genes with higher
mutation frequencies in both C1 and C2. Specifically, the frequency of TTN mutation was
higher in C2 than in CI, while that of FLG was higher in C1 than that in C2. TTN is the
largest protein that plays crucial roles in the structure, development, mechanics, and
regulation of cardiac and skeletal muscles (Chauveau, Rowell & Ferreiro, 2014). FLG is a
filaggrin protein critical for the formation of the stratum corneum (Yicheng et al., 2022).
Studies have confirmed that mutations in TTN and FLG are closely involved in the
occurrence of LUAD and its prognosis (Xue et al., 2021; Hasan et al., 2015; Cheng et al.,
2019). Therefore, different mutation frequencies of the two genes may account for

the prognostic differences between C1 and C2, but further in-depth research is

required to validate the hypothesis. In addition, C1 subtype was associated with
glycolytic metabolism-correlated pathways, while C2 subtype was more related to

fatty acid metabolism pathway. These findings may offer a novel insight into the
subtype classification and prognostic evaluation for LUAD patients based on NAM
metabolism.

Furthermore, four independent prognostic NMRGs, including one protective gene
(CPA3) and three risk genes (DKK1, GJB3, KRT6A), were screened to construct a
RiskScore model. CPA3 is a specific zinc metalloproteinase expressed in mast cells and is
involved in the degradation of endogenous proteins (Hdimiildinen et al., 2022; Feng, Fu ¢
Nie, 2023). DKK1, a secretory Wnt antagonist, is upregulated in a variety of human
malignancies (Zheng et al., 2022; Zhu et al., 2021). Previous research showed that
high-expressed DKKI1 is indicative of a worse prognosis in LUAD (Li et al., 2023). G]B3
belongs to the gap junction protein family and encodes junction protein 31 (Chen, Zhao ¢
Hu, 2023). It has been found that high-expressed GJB3 is closely linked to a worse
prognosis in LUAD (Dou et al., 2024). This study also showed that G/B3 was
high-expressed in LUAD patients, and that the silencing of G/B3 can inhibit the migration
and invasion of LUAD cells. In addition, G/B3 knockdown suppressed PI3K/AKT pathway
activation and inhibited the proliferation, migration, and viability of a variety of cancer
cells, including LUAD (Zeng et al., 2024). This suggested that the function of GJB3 in the
TME may be affected by the metabolic regulation of NAM, especially in regulating cell
proliferation, apoptosis and immune cell infiltration. Huo et al. (2022) discovered that
GJB3 promotes liver metastasis of pancreatic cancer by enhancing neutrophil polarization
and survival. Our study also found an upregulated expression of neutrophils in the
high-risk group, indicating that GJB3 facilitated tumor progression and metastasis through
the modulation of neutrophil activity in high-risk LUAD patients. Zhou et al. (2021)
demonstrated that the down-regulation of KRT6A expression mediated by siRNA
inhibited the growth of non-small cell lung cancer (NSCLC) cells in vivo. Furthermore,
high-expressed KRT6A may facilitate the proliferation and metastasis of LUAD via
epithelial mesenchymal transformation (Sun et al., 2023). This indicated that NAM
metabolism was involved in regulating cell proliferation and oxidative stress response,
which may in turn affect the expression and function of KRT6A in cancer cells.
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Additionally, in vitro experiments in this study revealed that the mRNA expressions of
DKK1, GJB3, KRT6A, and CPA3 in LUAD cell line A549 were significantly upregulated.
Taken together, these findings further demonstrated that these four NMRGs were closely
linked to LUAD and could be considered as biomarkers for LUAD.

Cancer cells undergo metabolic reprogramming and consume resources within the
TME, which consequently creates a microenvironment hostile to the survival and
functionality of immune cells (Yang et al., 2020). This metabolic competition offers novel
targets for immunotherapy. By targeting the metabolic processes of cancer cells, it is
possible to indirectly improve the function and survival of immune cells, thereby
potentially enhancing immunotherapy outcomes (Cerezo ¢ Rocchi, 2020). In this study,
immune infiltration analysis demonstrated that the expressions of most immune cell types
in the high-risk group were lower than the low-risk group. This suggested that the
high-risk group may promote tumor cell evasion from immune surveillance by inhibiting
the infiltration and activity of immune cells within the TME. Furthermore, the high-risk
group was enriched in numerous HALLMARK pathways, indicating broad abnormalities
in biological processes. Patients categorized into the low-risk group typically exhibited
lower TIDE scores and were more likely to respond to immunotherapy. Conversely, the
high-risk group showed higher sensitivity to some chemotherapeutic agents such as
Erlotinib, Paclitaxel, Cisplatin, Saracatinib, and CGP_082996. Notably, Cisplatin, which
treats a variety of solid tumors including LUAD (Galanski, 2006), functions by triggering
DNA damage responses and mitochondrial apoptosis (Galluzzi et al., 2012). Erlotinib,
used for NSCLC and pancreatic cancer, inhibits tumor cell division, leading to cell cycle
arrest and programmed cell death in tumor cells (Abdelgalil, Al-Kahtani ¢ Al-Jenoobi,
2020). Saracatinib is a Src kinase inhibitor. Src is a non-receptor tyrosine kinase closely
related to growth factor and cytokine receptors and plays a pivotal role in invasion,
motility, tumor cell adhesion, and angiogenesis (Thomas ¢ Brugge, 1997). Studies have
shown its effectiveness in the treatment of SCLC (Molina et al., 2014). These findings
suggested that the low-risk group was more likely to benefit from immunotherapy, while
high-risk group was more suitable for taking chemotherapeutic drugs, providing valuable
insights for personalized treatment of patients with LUAD.

Despite the insight gained from our research, several limitations must be acknowledged.
Firstly, the sample size of the TCGA-LUAD and GSE31210 datasets used in this study was
relatively small, and future research should prioritize validating our findings in larger
cohorts. Moreover, there is a need for cellular and animal model experiments to analyze
the changes in NAM metabolism under different knockdown conditions, alongside
assessments of the expressions of immune-related molecules on cell surface and the killing
activity of immune cells. Experiments as such will help determine the pathways through
which the genes affect the immune regulation in LUAD. Furthermore, the establishment of
an in vitro co-culture model of LUAD cells and immune cells such as T cells at a specific
ratio could stimulate the TME more accurately. This setup would allow for the observation
of cell interaction and further clarify the association between NAM metabolism and
immune escape.
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CONCLUSION

This study identified four prognostic biomarkers closely associated with LUAD and

examined the correlation between the expressions of these biomarkers and the clinical

features of LUAD patients. Our results highlighted variations in treatment sensitivity

across different risk groups. These findings deepen our understanding of the pathogenesis

and progression of LUAD and provide crucial guidance for the improvement of

personalized treatment of the cancer. By adopting stratified treatment based on risk

groups, we can more accurately select suitable therapeutic interventions, which could

improve the treatment efficacy and the survival of LUAD patients. The current findings

significantly contribute to the precision and personalization of LUAD treatment.

ABBREVIATIONS

oS overall survival

C-index consistency index

NMRGs NAM metabolism-related genes

ROS reactive oxygen species

qRT-PCR quantitative real-time polymerase chain reaction
DCA decision curve analysis

ICIs immune checkpoint inhibitors

TIICs tumor infiltration immune cells

GSEA gene set enrichment analysis

NAD+ nicotinamide-adenine dinucleotide

FC FoldChange

ROC receiver operating characteristic

TME tumor microenvironment

FPKM Fragments Per Kilobase per Million
TIMER tumor immune estimation resource

si small interfering

AUC area under ROC curve

IC50 half maximal inhibitory concentration
TIDE tumor immune dysfunction and exclusion
GIn glutamine

CDF cumulative distribution function

DSS disease-specific survival

ssGSEA single sample gene set enrichment analysis
MsigDB Molecular Signature Database

LUAD lung adenocarcinoma

FBS fetal bovine serum

DEGs differentially expressed genes

AAMRGS amino acid metabolism-related gene signature
NAM Nicotinamide

GEO Gene Expression Omnibus
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MCP-counter microenvironment cell populations-counter

WHO World Health Organization

DFI disease-free interval

PD-L1 programmed cell death ligand 1
PD-1 programmed cell death protein-1

ESTIMATE  Estimation of STromal and Immune cells in MAlignant Tumours using
Expression data

TCGA The Cancer Genome Atlas
NAMPT NAM phosphoribosyltransferase
PFI progression-free interval
NSCLC non-small cell lung cancer
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