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Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various
important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and
antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular
diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac
hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy,
apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to
redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism
suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM.
This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing
potential underlying molecular mechanisms.

1. Introduction

Diabetic cardiomyopathy (DCM) is one of the major com-
plications of type 1 and type 2 diabetes [1, 2], accompanied
by altered cardiac energetics, impaired mitochondrial func-
tion, and oxidative stress, manifested as heart failure in the
absence of coronary artery disease, hypertension, and valvu-
lar heart disease [1, 3–6]. So far, the mechanism is not clear,
and there is no direct and effective treatment for DCM [1, 7,
8]. Studies have shown that copper regulation defects are
related to the pathogenesis of DCM [9–11]. Copper is an
essential trace element in human body. It exists in reduced
form (Cu+) in cells and in higher oxidation state (Cu2+) in
extracellular [12, 13]. Copper ions are widely distributed in
human muscle, bone, liver, and blood and participate in bio-
logical processes such as energy metabolism, electrolyte bal-
ance, cell apoptosis and autophagy [14], and protein
redox [13].

It has been demonstrated in animals and humans that,
regardless of the presence or severity of diabetic complica-
tions, diabetic patients have higher levels of copper in
plasma and urine compared with nondiabetic controls [10,
15, 16]. Imbalance between intracellular and extracellular
copper pools may elevate plasma copper in diabetes and
decrease copper content in cardiomyocytes [17–19]. And
consistent with that increases in circulating copper concen-
trations and 2~3-fold increases in extracellular myocardial
Cu2+levels, but decreases in intracellular myocardial Cu+

levels, were reported in humans and rodents with DCM
[18]. The reduced myocardial copper content and elevated
systemic and total cardiac copper content in DCM reflect
defective excretion and uptake of copper [10, 20, 21]. Differ
from those in Wilson’s disease which is caused by mutations
in copper-transporting ATPase (ATP7B) [22], the copper
metabolism defect in diabetes leads to a significant increase
in the level of copper in blood and a decrease in the content
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of copper in the liver [23], resulting in changes in the pro-
cessing of copper in the liver and a decrease in the clearance
rate of copper in circulation.

Copper deficiency in myocardial cells can lead to impair-
ment of energy use by the heart, reduced ability of the heart
to contract, and induce cardiomyopathy [24], while high
levels of Cu have been positively correlated with reactive
oxygen species (ROS) generation [16]. At the same time,
accumulation of catalytically active Cu2+ in the cardiac
extracellular myocardial induces copper toxicity, which is
proposed as an important catalyst of cardiovascular damage
in diabetes [11, 17]. Copper toxicity leads to protein oxida-
tion, glutathione (GSH) depletion, lipid damage, and redox
imbalance [13, 25], which could cause acute impairment of
cardiac function, exacerbating chronic underlying damage.
Therefore, copper metabolism defect is closely related to
the pathogenesis of DCM, which is expected to become
another unique angle to explore the pathogenesis of DCM.

2. Copper-Relating Proteins and Pathological
Processes in DCM

In physiological state, copper ions are absorbed through diet
and reduced to Cu+ under the action of cell surface reductase
in the small intestine and then absorbed by copper trans-
porter 1 (CTR1) into cells to realize the transmembrane
transport of copper ions [26]. Once inside the cell, free cop-
per ions are immediately isolated by chaperone proteins and
then transported to copper enzymes in the different cytosolic
compartment by metal ligands (ATOX1, CCS) or alternative
ligands (CuL, GSH) [27]. In the liver, it is oxidized by ceru-
loplasmin (CP) [28] and binds with related proteins, which
is released into the blood and transported to relevant tissues
and organs to participate in the regulation of life processes
[13, 29] (Figure 1).

The activity of the copper transporters and Cu-
transporting ATPases [18] is implicated in DCM, regulating
mitochondrial respiration, antioxidant defense, iron metab-
olism, and connective tissue crosslinking [33]. The functions
of copper heavily rely on intact mitochondrial respiration
[34–37]. The regulatory mechanisms of copper are complex,
involving a range of signal transduction and molecular and
metabolic pathways. Therefore, we summarized the physio-
logical role of related copper chaperone protein and its
mediated cardiac disease (Table 1), as well as the role of cop-
per chaperones and copper transporters in pathological pro-
cesses in DCM.

2.1. Copper Chaperones and Pathological Processes in DCM

2.1.1. CCO. Copper-dependent CCO is the mitochondrial
respiratory chain complex IV, which contains copper and
heme as required cofactors in mitochondria-encoded DNA
subunits (I, II, and III), playing a critical role in oxidative
phosphorylation as the catalytic core of the oxidase complex.
Several copper chaperones deliver copper to CCO, including
CCO copper chaperone 11 (COX11), COX17, COX19, and
COX23 and synthesis of CCO 1 (SCO1) and SCO2. There-
fore, when CCO activity decreases, mitochondrial function

is inhibited. Some early studies found that copper deficiency
can reduce CCO activity in the heart [35–37, 55]. Thus, cop-
per deficiency in cardiomyocytes significantly reduces the
expression of copper chaperones and enzymatic activity of
CCO, halving the level of copper in the left ventricle and
decreasing the systolic function of the left ventricle in
DCM [9].

2.1.2. The SOD Family. The SOD family, another copper
transporter, including SOD1, SOD2, and SOD3, promotes
the progression of DCM to heart failure disease through oxi-
dative stress pathway. Copper zinc superoxide dismutase
(SOD1) is a critical enzyme against ROS by catalyzing dis-
mutation of the deleterious superoxide radical (O2-) to
molecular oxygen or hydrogen peroxide, which is in turn
reduced to water by other [56]. Cytosolic SOD1 transmit sig-
nals from oxygen and glucose to affect respiration rates via
an interaction with casein kinase 1-γ [57]. SOD1 also is
required for prevent protein misfolding, aggregation, and
inactivation after copper enters mitochondria [58], for
which delivery of copper to SOD1 by the Cu-CCS complex
permits formation of disulfide bonds in SOD1 [58]. The lat-
est findings that high-fat decreased the levels of copper
chaperone for SOD1 (CCS) in cells, which decreased the
activity of SOD1 and antioxidant capacity, manifested as
an increase in ROS in the vivo [59]. Moreover, diabetic rats
had low SOD1 activity that was reduced even further when
diabetic rats were fed with low-copper diets [60].

Therefore, SOD1 activity was significantly inhibited in
the presence of copper deficiency in DCM. In the high-fat
and high-sugar environment of DCM, the downregulation
of SOD1 activity may lead to the destruction of mitochon-
drial biological functions, such as abnormal biological activ-
ity of mitochondrial proteins, the decreased ability of
scavenging free radicals, decreased mitochondrial respira-
tion rate, and increased ROS level. In DCM, although the
body is in a high glucose state, the glycolysis metabolism is
impaired and cardiomyocytes rely on mitochondrial oxi-
dized fatty acids as the main energy source [61]. When mito-
chondrial function is impaired, oxidative utilization of fatty
acids in cardiomyocytes is reduced, resulting in excessive
accumulation of free fatty acids, which aggravates lipotoxic
injury.

Manganese-containing SOD2 (MnSOD) localizes to
mitochondria and serves as the first line of defense against
mitochondrial respiration-generated oxidative stress.
Although SOD2 does not bind to copper, it indirectly regu-
lates the activity of copper-containing SOD1. SOD2-
deficient mice show increased release of superoxide anion
radical derivatives and impaired SOD1 activity, which causes
heart failure (HF) [45]. These mice exhibit myocardial dam-
age, with enlarged mitochondria, loss of cristae, and fewer
myofilaments, as well as lipid peroxidation and activation
of apoptosis. In addition, NAD+ redox imbalance promoted
SOD2 acetylation, protein oxidation, and impaired energet-
ics in DCM [62].

Copper-bound SOD3, which is primarily expressed in
blood vessels and is extracellularly localized, has also been
linked to heart disease. Activity and/or expression of
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copper-bound SOD3 was reported to be decreased in animal
models and humans with hypertension, HF, and coronary
heart disease [63–65], decreasing the antioxidant capacity
of the body. SOD3 can catalyze the dismutation of superox-
ide radical to hydrogen peroxide and molecular oxygen, pro-
tecting the heart from oxidant-induced fibrosis, apoptosis,
and loss of function [47]. As a sensitive indicator of copper
status [66], serum SOD3 activity decreased in DCM [67],
and the reduction of its antioxidant defense ability aggra-
vated the toxic damage caused by Cu2+.

2.1.3. MT. MTs are cysteine-rich, low molecular weight pro-
teins that bind to copper and serve as intracellular copper
scavengers. Liver and kidney MT and plasma CP levels were
elevated in diabetic rats [60], suggesting that there may be
elevated intracellular copper levels in the liver and kidney
in diabetes mellitus. When cytosolic copper reaches excess,
it is bound by MT, then ATP7A relocalizes to the plasma
membrane where it acts as a copper exporter, thus achieving
intracellular copper equilibrium.

The formation of copper-thiolate clusters in MTs
sequesters excess copper in cells and thereby minimizes cop-
per toxicity [68]. In addition to isolating excess copper, T
also has a variety of regulatory effects in DCM. It has been
confirmed that MT can modulate various stress-induced sig-
naling pathways such as Wnt, NF-κB, and PI3K, to alleviate
diabetes and diabetic complications [69]. MT prevents DCM
by inhibiting ROS production [70], attenuating oxidative
stress, and increasing expression of proteins associated with
glucose metabolism [71] as well as suppressing NOX-
dependent nitrosative damage and cell death [72].

2.1.4. LOX. The copper-dependent LOX enzyme is critical to
catalyze lysine-derived crosslinking of collagen and elastin

fibrils in the extracellular matrix [73]. Myocardial fibrosis,
mostly characterized by the excessive interstitial and perivas-
cular deposition of collagen types I and III fibers [74], is a
biological process involving inflammatory response and
reactive ROS accumulation leading to fibroblast activa-
tion [75].

LOX-mediated cross-linking of collagen types I and III
fibrils leads to the formation of stiff collagen types I and III
fibers, as well as their subsequent tissue deposition in
patients with enhanced myocardial stiffness and HF
[76–78]. It is thus conceivable that when Cu2+ increases,
LOX is activated and its expression is up-regulated, which
accelerates the process of collagen fiber cross-linking and
promotes myocardial fibrosis [79]. Inhibition of collagen
and elastin crosslinking reduces the tensile strength and elas-
tic properties of connective tissues, which results in a failure
to maintain normal cardiac contraction and the develop-
ment of concentric cardiac hypertrophy [53, 54].

2.1.5. Glutathione (GSH). Glutathione acts as a copper chap-
erone to protect cells from copper toxicity, and in turn,
excessive copper also destroys glutathione levels [80]. In
malnutrition [81], cell differentiation [82], even aging cells
[83], or a certain stage of development, the overall content
of glutathione will be hit a second time, aggravating the toxic
damage of copper, thus triggering or worsening the ongoing
body lesions, such as DCM [18], heart failure [84], and can-
cer [85].

2.2. Copper Transporters and Pathology in DCM

2.2.1. CTR. CTR1 is the only known plasma membrane cop-
per importer with high affinity in mammalian cells so far
that localizes to the plasma membrane and endosomes [86,
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Figure 1: Metabolic pathway of copper in human body. Transport route of copper in human body: oral intake, in the gastrointestinal tract
absorption into the blood, the blood vessels in the copper blue protein combined with albumin and plasma protein transport via portal vein
circulation to the liver [26, 30]. After the liver processing, the redistribution to the tissues and organs, such as the skeletal muscle, brain, and
heart, widely participates in various life activities [13, 29]. Finally, through metabolism, bile enters the intestine and is excreted in the stool or
through the kidney and is excreted in the urine [31, 32]. ATP7A: adenosine triphosphatase 1; CTR1: copper transporter 1; MT:
metallothionein (storage of cytosol exceeding copper); SOD1: Cu/Zn superoxide dismutase; GSH: glutathione; CP: ceruloplasmin.
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87], whereas CTR2 is a low-affinity copper importer that
localizes to endosomes and lysosomes. Ablation of CTR2
reduces the generation of truncated CTR1 lacking a
copper-binding echo domain and, thus, increases tissue cop-
per contents [88]. Its abundance and location determine the
rate of copper import [89] and regulate the redox state of
Cu+ [90], playing an important role in regulating intracellu-
lar copper homeostasis and copper bioavailability. In the
presence of excess copper, CTR1 can be internalized from
the plasma membrane into the endocytic body [90] to pro-
tect cells from copper poisoning. Endosomal CTR1 can then
be degraded by the proteasome or recycled back to the
plasma membrane [91]. However, the localization of CTR1
in polarized epithelial cells has been controversial [92, 93],

leading to doubts about the universality of this regulatory
mechanism.

A copper-deficient diet reduces heart CTR2 protein
expression by 46% compared with a copper-adequate diet
in rats, demonstrating a potential association of a reduction
in CTR2 in cardiac copper deficiency and heart disease [94].
However, the specific mechanism remains unclear and needs
further study. Unlike the hypertrophy of myocardium
caused by insufficient copper levels throughout the body in
the pressure load type, copper levels in the DCM are high
in the blood throughout the body but low in the myocar-
dium cells [18] that may be related to the deficiency of cop-
per uptake by cells due to the decreased expression activity
of CTR1. Just as Zhang et al. reported that the expression

Table 1: Mammalian copper-dependent enzymes.

Location Function Disease consequence References

CRT1
Plasma membrane
and endosomes

High-affinity plasma membrane copper importer;
determine the rate of copper import; regulate the

REDOX state of Cu+

Cardiomyopathy with cardiac
hypertrophy and endocardial
fibrosis; cardiac hypertrophy

[38, 39]

ATPase

ATP7A

Trans-Golgi
network (TGN)

ATP7A: ubiquitously expressed, with the
exception of the liver in normal states; regulate the

rate of hydrolysis of ATP; regulate copper
transport High frequency of congenital

heart disease
[40]

ATP7B

ATP7B: expressed in the liver and some regions of
the brain, placenta, kidney, and mammary tissue;
regulate the rate of hydrolysis of ATP; regulate

copper transport

CCS
Copper chaperone for SOD; regulation of SOD1

activity
[41]

CCO Mitochondria
Electron transfer protein; catalyzes the ultimate

step of cellular respiration
Hypertrophic cardiomyopathy,

lactic acidosis
[34]

MT Intracellular

Intracellular copper scavengers; prevention of the
deterioration of mitochondrial morphology and
reduction in creatine phosphokinase levels;
decrease oxidative stress, and apoptosis

Cardiac dysfunction and fibrosis [42, 43]

SOD

SOD1 Cytosolic

Oxidoreductase; catalyzes the disproportionation
of superoxide to molecular oxygen and hydrogen
peroxide; restrain oxidative stress, autophagy and

apoptosis

Early onset cardiac hypertrophy;
cardiac injury (apoptosis and

inflammation)
[44]

SOD2 Mitochondria
The first line of defense against mitochondrial
respiration-generated oxidative stress; regulates

the activity of SOD1

Lipid peroxidation and activation
of apoptosis; myocardial damage;

heart failure
[45]

SOD3

Located
extracellularly and
expressed in blood

vessels

Decreases myocardial apoptosis, fibrosis, and
inflammation

Cardiac hypertrophy, left
ventricular dilation, fibrosis,

IHD, myocardial infarction, and
HF

[46–48]

CP Plasma
An oxidase for NO; converts NO to nitrite in vivo;
catalyzes; major Cu carrier in serum; negatively

associated with NO

DM, obesity, dyslipidemia,
atherosclerosis, IHD, and

mortality
[49–52]

LOX
Extracellular

matrix

Oxidase; converts lysine into aminoadipic
semialdehyde; required for crosslinking of collagen

and elastin

Myocardial fibrosis; systolic
dysfunction; concentric cardiac

hypertrophy
[53, 54]

CTR1: copper transporter 1; ATP7A: copper transporter ATPase 1; ATP7B: copper transporter ATPase 2; CCO: cytochrome c oxidase; ATOX1: antioxidant 1
copper chaperon; MT: metallothionein; SOD: superoxide dismutase; SOD1: Cu Zn superoxide dismutase; SOD2: Mn superoxide dismutase; CP:
ceruloplasmin; LOX: Lysyl oxidase.
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of the CTR1 gene was downregulated in hearts of rats with
DM, which is consistent with impaired cardiac copper
uptake in DM [18]. Therefore, the activity and expression
of CTR1 play a key role in copper metabolism defects and
cardiac hypertrophy in DCM.

2.2.2. ATP7A and ATP7B. ATP7A and ATP7B are copper
exporters belonging to the P-type ATPase family and con-
tain an ATP hydrolysis domain to provide energy for copper
trafficking. ATP7A is ubiquitously expressed, with the
exception of the liver in normal states. In specific cell types,
ATP7B replaces ATP7A and relocates to vesicles to facilitate
their excretion through bile [95, 96]. When cytosolic copper
level rises, ATP7A or ATP7B traffics to the plasma mem-
brane, pumping excess copper into the extracellular space,
or into bile in the case of the liver, to reduce the intracellular
copper level [97]. By contrast, when the intracellular copper
level is low, ATP7A or ATP7B recycles to TGN and trans-
ports copper from the cytoplasm into the Golgi. Genetic
studies have shown that copper export is the main way to
reduce copper toxicity, because ATP7A-deficient cells are
much more sensitive to excessive copper than lack MT [98].

2.2.3. CP. CP carries more than 90% copper in plasma that is
critical for maintaining activities of copper-dependent
enzymes, including SOD1 and SOD3, and thus the removal
of oxygen radicals [99]. Hyperglycemia may increase free
Cu2+ in the extracellular space by impairing the Cu-
binding properties of ceruloplasmin and albumin, possibly
via nonenzymatic glycation [100–102], causing increased
levels of Cu2+ bound at molecular sites other than those in
physiological Cu proteins, so that it is catalytically active.
CP also is an oxidase for NO that converts NO to nitrite
in vivo [103, 104]. Circulating CP is negatively associated
with NO bioavailability, presumably due to increased con-
versions of NO, and enhanced oxidative stress which in turn
adversely impacts heart function [105].

CP can be used as a redox marker of heart failure sever-
ity [106]. Previous studies have shown that increased levels
of CP are associated with increased risk of developing heart
failure. Serum CP levels are significantly raised in patients
with diabetes [107] that exacerbates the progression of
DCM to heart failure. CP is an independent predictor of
all-cause mortality in patients with heart failure [108], but
the specific pathogenesis is still unclear.

3. Defective Copper Metabolism and DCM

DCM is characterized by myocardial remodeling, including
cell death, myocardial fibrosis, and hypertrophy, leading to
diastolic dysfunction with or without systolic dysfunction.
It has been reported that changes in endothelial cells [109]
and cardiomyocytes [110] caused by diabetes are one of
the main reasons for the occurrence and development of
DCM. Biopsy showed that the apoptosis of a diabetic heart
was 85 times higher than that of the nondiabetic heart, indi-
cating that cardiomyocytes in diabetes were sensitive to suf-
fer cell death [111]. Essentially, cell death is considered to be
the terminal pathway of DCM cardiomyocytes [112].

Defective copper metabolism produces cytotoxicity, also
known as copper toxicity, that damages mitochondrial struc-
ture and function [45], lipid metabolism, cellular autophagy,
and cell death through excessive oxidative stress and inflam-
matory response [113–116]. As the contractile unit of myo-
cardial tissue, myocardial cells’ apoptosis triggers a series of
reactions such as cell hypertrophy and fibrosis, leading to
myocardial diastolic and contractile dysfunction and exacer-
bating heart failure [117–119]. Altered myocardial copper-
trafficking is a key pathogenic process in diabetes-evoked
heart failure [9]. Therefore, this chapter mainly introduces
the influence of copper metabolism deficiency on DCM
from three aspects: cell death, myocardial hypertrophy, and
myocardial fibrosis.

3.1. Cell Death. Apoptosis and mitochondrial autophagy are
common phenomena in the occurrence and development of
diabetic cardiomyopathy [112]. Copper can induce multiple
forms of cell death (Figure 2), including apoptosis and
autophagy, through various mechanisms, including reactive
oxygen species accumulation, proteasome inhibition, and
antiangiogenesis [120].

3.1.1. Autophagy. Elevated copper in senescent mouse
embryonic fibroblasts (MEF) was accompanied by elevated
levels of high-affinity CTR1, diminished levels of ATP7A,
and enhanced antioxidant defense reflected by elevated
levels of GSH, SOD1, and glutaredoxin 1 (Grx1) [126].
Mitochondria is sensitive to changes in the environment in
the cell, and the internal environment of the upheaval
caused the change of mitochondrial membrane potential
and the integrity of the structure damage. Recent studies
have found that the chelation of autophagosomes to relevant
targets has high specificity, which is the main way to selec-
tively remove abnormal mitochondria. The lysosomal degra-
dation of damaged mitochondria, called mitophagy, is an
important cellular self-protective. Autophagy is a process
that removes abnormal proteins and organelles [127] and
maintains cell homeostasis by removing misfolded proteins
and damaged organelles and invading microorganisms
through lysosomes [128]. Autophagy plays an important
role in cellular copper clearance. The means by which the
copper metabolism and autophagy pathways interact mech-
anistically is vastly unexplored.

Metabolomics analysis reveals that metabolites were
overall downregulated in cardiomyocytes after copper treat-
ment [129], with a principal impact on the metabolic path-
ways including glycerophospholipid metabolism, fatty acid
elongation, and fatty acid degradation, which were related
to autophagy. Copper can mediate increased autophagy
and metabolic pathway disturbance to induce myocardial
injury. Copper is required for the activity of the autophagic
kinases ULK1 and ULK2 (ULK1/2) through a direct Cu-
ULK1/2 interaction [130]. Genetic loss of the copper trans-
porter CTR1 or mutations in ULK1 that disrupt the binding
of copper reduced ULK1/2-dependent signaling and the for-
mation of autophagosome complexes. Increased levels of
intracellular copper are associated with starvation-induced
autophagy and are sufficient to enhance ULK1 kinase
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activity and, in turn, autophagic flux [130]. Activation of
autophagy, observed in liver tissues from patients with Wil-
son disease and from ATP7B-deficient animals, protects
hepatocytes from copper-induced apoptosis [131]. ATP7B
contains a number of potential binding sites for LC3, a cen-
tral protein in the autophagy pathway, the so-called LC3
interaction regions (LIRs) [132]. The conserved LIR3,
located at the C-terminal end of ATP7B, was found to
directly interact with LC3B in vitro [132].

MTOR is a protein kinase that negatively regulates
autophagy. Excess copper inhibited the activity of mTOR
through suppressing mRNA and protein expressions in
mTOR, which in turn upregulated expression levels of
ULK1 and initiated autophagy [122]. The toxic effects of
copper induced a clear impairment of autophagy [133],
through the absence of phagosomes and the significant
downregulation mRNA transcript levels of microtubule-
associated protein LC3, which is often associated to an
increase of apoptotic activation. Simultaneously, copper ion
could inhibit the activity of ATG4B that plays a vital role
in autophagy process via undertaking priming and delipida-
tion of LC3, followed by autophagy suppression [134].
Autophagy has been linked to Cu-induced toxicity. Loss of
LC3B resulted in aggravated lung injury induced by copper
oxide nanoparticles (CuONPs) [135], which was probably

due to the blockade of mitophagy and consequently the
accumulation of aberrant mitochondria with overloaded
copper ions. CuSO4 induced autophagy through Akt/
AMPK/mTOR pathway and significantly induced the pro-
duction of mitochondrial reactive oxygen species (mtROS)
[136]. MtROS is the original cause in CuSO4-induced apo-
ptosis and autophagy [136]. After copper accumulation, it
activates excessive autophagy, disturbs mitochondrial
dynamics, and aggravates REDOX imbalance, forming a
vicious cycle [137].

3.1.2. Cuproptosis. In mitochondria, excessive copper
directly binds to lipoylated components of TCA that results
in aggregation of lipoylated protein and subsequent iron-
sulfur cluster protein loss, leading to proteotoxic stress and
ultimately cell death, also known as cuproptosis [113, 115].
Unlike known mechanisms of cell death, such as apoptosis
[138], necroptosis [139], pyroptosis [140], and ferroptosis
[141], cuproptosis does not involve either the cleavage or
activation of caspase 3 activity, the hallmark of apoptosis
[113, 142], which is a mechanism distinct from known cell
death pathways.

FDX1 and protein lipoylation are the key regulators of
copper ionophore–induced cell death [113]. Elesclomol, as
one of the common copper ion carriers, is an effective tool
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Figure 2: Copper ion-mediated cell death in DCM. Copper can mediate various types of cell death in vivo, mainly including apoptosis,
autophagy, pyroptosis, and cuproptosis recently discovered via copper-mediated. The different apoptosis pathways are triggered by
copper at different time points of the exposure period, as the increase in transcripts was sequential [121]. Apoptosis mainly occurs in
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[123, 124]. Cuproptosis mainly occurs in cells with high energy demand and abundant mitochondria. Excessive copper ions participate
in TCA process under the action of FDX1, which can induce DLAT aggregation and lead to abnormal mitochondrial protein folding,
followed by the loss of Fe-S protein, resulting in cell death due to energy metabolism defects [125]. Besides, copper ions can lead to
redox imbalance, and the antioxidant defense of GSH and SOD is insufficient to resist the damaging effect of ROS [13].
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to study copper toxicity [143]. Elesclomol directly binds to
the mitochondrial reductase FDX1, resulting in the biosyn-
thesis of Fe-S clusters inhibited [116]. Fe-S cluster–depen-
dent processes include the energy transformation and
metabolite conversion via mitochondrial respiration (com-
plexes I–III), the TCA cycle, and numerous anabolic and
catabolic reactions [144]. As is common for mitochondrial
disorders, the clinical phenotypes of Fe-S diseases are associ-
ated with respiratory deficiencies and severe metabolic dys-
functions [145, 146]. Elesclomol-Cu2+ complex, as a new
substrate for FDX1 reduction [116], reduces Cu2+ in mito-
chondria to Cu+ to promote the production of higher levels
of ROS, ultimately leading to cell death [147–150]. FDX1
activity and increased mitochondrial-dependent energy
metabolism are strong inducers of the cytotoxic effects of
elesclomol-mediated cuproptosis [116]. In addition, cuprop-
tosis caused by depletion of intracellular natural copper
companion GSH is associated with decreased lipoylation
and increased DLAT oligomerization [113].

Cuproptosis, as a mechanism proposed in the latest
studies, mainly focuses on the intervention of cancer treat-
ment [113, 115]. It is a new research hotspot to kill cancer
cells [120] by targeting excessive copper delivery to cancer
cells to destroy mitochondrial respiration and cut off energy
supply, thus mediating cancer cell death. Current studies
show that the effects of excessive copper on the heart mainly
focus on oxidative stress or inflammation-mediated cell
death, but there is no relevant study on the mechanism of
cuproptosis. It is known that in DCM, there is an excess of
copper in systemic plasma and a deficiency in cardiomyo-
cytes and that coronary capillaries in the heart penetrate
deep into myocardial tissue to provide energy to the myocar-
dium, while cuproptosis often occurs in cells with high
energy metabolism, such as rich mitochondria. Therefore,
we can speculate that the excess copper in plasma may dam-
age mitochondria in vascular endothelial cells through
cuproptosis or oxidative stress pathway and then affect the
function of cardiomyocytes. Of course, further experimental
studies are needed to confirm this idea. However, cupropto-
sis may provide a new direction for the pathological change
mechanism of DCM.

3.1.3. Pyroptosis. In various diseases, including diabetes, due
to the lack of a resolution phase of the inflammatory state,
myocardial inflammation contributes to pathological hyper-
trophic growth and leukocyte-mediated death of cardiomyo-
cytes [151]. Inflammasome stimulation is a two-step process
requiring priming by inflammatory stimuli. The first step is
NF-κB transcriptional upregulation of NLRP3 and pro-IL-
1β. The second step involves DAMP-mediated inflamma-
some assembly, causing oxidative stress and inflammation-
induced programmed cell death, also known as pyropto-
sis [124].

Inflammasome expression is markedly increased in
rodent diabetic hearts via oxidative stress-dependent thiore-
doxin-interacting/inhibiting protein (TXNIP) activation,
showing elevated caspase-1 and IL-1β activation [152].
Moreover, excessive cytokines, in turn, exacerbate mito-
chondrial dysfunction in a positive feedback loop [153,

154]. In diabetes, mitochondrial damage has been detected
as an important contributor to inflammasome assembly
through the release of mitochondrial DNA and ROS. Excess
Cu induced pyroptosis by generating ROS in hepatocytes,
and the inhibition of Caspase-1-dependent pyroptosis might
attenuate Cu-induced apoptosis [155]. In addition, there are
research findings that ER stress also participated in regulat-
ing Cu-induced pyroptosis in jejunal epithelial cells via the
IRE1α-XBP1 pathway [156], which provided a novel view
into the toxicology of copper.

3.1.4. Apoptosis. Apoptosis, also known as programmed cell
death, is a modulated, noninflammatory cell death pathway.
The different apoptosis pathways are triggered by copper at
different time points of the exposure period, as the increase
in transcripts was sequential [121], instead of simultaneous.
The higher incidence of TUNEL-positive cells, in gill epithe-
lia of the exposed fish, proved that copper induced apoptosis
[121]. Recent animal experiments indicated that the copper
exposure promotes apoptosis and autophagy through oxida-
tive stress in pig testicular [157] and rat kidneys [158]. In
humans, copper can also induce apoptosis and autophagy
through oxidative stress-mediated mitochondrial dysfunc-
tion in male germ cells [159].

Apoptosis seems to be initiated via intrinsic pathway
(caspase-9), through p53 activation and then followed by
the extrinsic pathway (caspase-8) and finally by the
caspase-independent pathway (AIF) [121]. Furthermore,
excessive copper not only can destroy the stability of iron-
sulfur clusters [113, 160] but also enhance the production
of extremely destructive free radicals [114, 161]. Disruption
of the superoxide anions-mitophagy regulation axis medi-
ates copper oxide nanoparticle-induced vascular endothelial
cell death [162]. Another study showed that copper oxide
nanoparticles can induce oxidative DNA damage and cell
death via copper ion-mediated P38 MAPK activation in vas-
cular endothelial cells [163]. The mitochondrial membrane
potential decreased, while the number of apoptotic cells
increased, as a result of oxidative stress [157].

Nishikawa et al.’s group provided strong evidence that
under hyperglycemic conditions, ROS in vascular endothe-
lial cells are derived from the mitochondrial ETC, as evi-
denced by an inhibition of increased ROS production by
treatment with an uncoupling agent or a complex II inhibi-
tor [164]. Elevated catalytically active Cu2+ in the extracellu-
lar myocardial could overwhelm antioxidant defenses, such
as those catalyzed by extracellular SOD3 [165], causing
enhanced ROS production through Fenton or Haber-Weiss
chemistry, thus elevating oxidative stress [10, 19, 166].
ROS have been proposed to contribute to fibrosis, ventricu-
lar remodeling, or direct damage to cardiomyocyte [70].
However, given that direct comparison of cytosolic versus
mitochondrial sources of ROS production in the diabetic
heart are limited, it is difficult to evaluate the relative contri-
butions of each ROS-producing enzyme.

3.2. Cardiac Hypertrophy. Copper deficiency causes cardiac
hypertrophy by impairing mitochondrial function and
energy production, evidenced by increases in mitochondrial
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compensatory biogenesis and size and mitochondrial ultra-
structural deteriorations, as well as a decrease in the number
or loss of cristae [167, 168]. Consistently, Oster et al. showed
that cardiac copper levels positively correlated with the car-
diac ejection fraction in 27 patients with coronary heart dis-
ease who underwent coronary artery bypass surgery [169].
Copper deficiency resulted in increases in the size and
reduction in the number of cardiomyocytes in the heart. A
study suggests that a direct reduction in the size of some
hypertrophic cardiomyocytes and a replication of other
hypertrophic cardiomyocytes with reduced size make a sig-
nificant contribution to the regression of copper-deficient
heart hypertrophy, leading to normalization of the size and
the number of cardiomyocytes in the heart [170]. Early stud-
ies have found that copper deficiency can lead to increased
mitochondrial volume density, crest disorder, nonaligned
myofibrils with disturbances at Z-bands in cardiomyocytes
[171]. Additionally, all copper-depleted rats demonstrated
fragmented basal laminae at capillary-myocyte interface.
Increased QRS amplitude and notching and greater QT
intervals were displayed. These results suggest that
capillary-myocyte interface changes may play an important
role in the developing pathology of copper depletion.

Decreases in the delta subunit protein and beta mRNA
transcript have been reported for ATP synthase as a function
of copper deficiency. Oxidative phosphorylation appears to
occur unaltered in the copper-deficient state, but the limited
data available suggest that copper, either indirectly or
directly, alters ATP synthase function [172]. When glycoly-
sis is inhibited and ATP production cannot meet the energy
requirements of the cell, that activates AMPK and increases
the oxidation requirements of fatty acids rather than fat pro-
duction [173]. The lipid environment has a significant steric
effect on the Cu2+ binding conformation that Cu2+ binding
to lipid membrane surfaces lead to lipid oxidation [174].
However, higher copper levels did not contribute to fatty
acid oxidation and fat decomposition. A repeated measure-
ment study shows that high copper exposure may elevate
blood lipid levels as well as disturb processes related to oxi-
dative stress and inflammation responses [175]. This phe-
nomenon is not only reflected in adults but also in
children. Children with higher plasma levels of copper
tended to have a higher regional and overall body fat depo-
sition [176].

The shift in cellular metabolism from glycolysis to oxida-
tive phosphorylation may promote protein toxicity [116].
Changes in cell metabolism can affect the cell’s ability to
inhibit proteasome function, and disturbances in protea-
some function can lead to changes in cell energy metabo-
lism. The feedback loop may result from the energy
requirements of protein synthesis [177] and decomposition
[178], as well as the recovery of amino acids produced by
damaged, oxidized, and dysfunctional proteins [179], which
are the building blocks of protein synthesis, metabolism, and
redox pathways [180, 181]. In conclusion, both copper defi-
ciency and excessive copper can induce cardiac hypertrophy,
which can lead to redox imbalance through its effects on
mitochondrial respiration, protein metabolism, and lipid
metabolism, and eventually induce cell hypertrophy or loss.

3.3. Myocardial Fibrosis. The ratio of type III/type I collagen
had significantly increased [182] of rat heart in copper
deficiency-induced cardiac hypertrophy. In hearts of rats
with DM, increased extracellular Cu2+ increases gene expres-
sion of TGF-β, Smad4, and collagens, which results in colla-
gen deposition and increases the formation of AGEs of
collagens [166]. The advanced glycation end products
(AGEs), whose production is enhanced in diabetes, can forge
cross-links between long-lived fibrous proteins [183] and act
as localized endogenous chelators to increase tissue-Cu
binding in extracellular matrix [184–186]. Cu2+ thus dem-
onstrated can be designated as “chelatable” and is considered
as a surrogate measure for catalytically active “free” Cu2+.
Cu2+ bound to pathogenic sites, such as those in AGE-
modified proteins [185], is thought to undergo instanta-
neous reduction to Cu+ by reducing agents in the extracellu-
lar fluid, such as ascorbate ions, triggering reactions with
ROS [19, 187, 188]. Besides, inflammatory cytokines also
activate cardiac fibroblasts, inducing excessive interstitial
fibrosis formation, leading to cardiac dysfunction [189].

Heart failure in diabetes may thus be explained in part
by defective distribution of the two copper valence states
and the myocardial damage that ensues [190]. A meta-
analysis including 1504 subjects indicated that serum copper
levels were significantly increased in patients with heart fail-
ure [191]. It identified a significant association between high
serum copper and HF which was further confirmed in
another experimental observational study. Serum copper
was increased both in acute and chronic heart failure [192]
and correlated with LV systolic and diastolic function [193,
194], also correlating with higher one-year mortality and
morbidity [192].

4. Interventions for Cuproptosis
Associated with DCM

Many studies have shown that cardiac hypertrophy caused
by pressure overload can be promoted by supplementing
copper to promote the regression of cardiac hypertrophy
[195–197]. However, for patients with diabetes and DCM,
copper deficiency in cardiomyocytes is not due to insuffi-
cient dietary intake, but the inability of excess copper ions
in blood to enter cells. Therefore, regulation of copper chap-
erone and transporter bioactivity may be an effective target
for regulating the intracellular and intracellular balance of
copper ions in DCM, on the one hand, promoting the
uptake of copper ions required by cardiomyocytes to main-
tain normal cellular respiration and, on the other hand, pro-
moting the excretion of excess copper ions from plasma to
reduce copper toxic damage.

Triethylenetetramine (also known as trientine, or TETA)
is approved for the treatment of Wilson’s disease [198] that
also is employed as an experimental therapeutic molecule in
diabetes where it improves cardiac structure in patients with
DCM [199] and left ventricular hypertrophy [200]. TETA
can prevent excessive cardiac collagen deposition, improve
cardiac structure and function, and restore antioxidant
defense by promoting copper excretion [196]. Consequently,
it is now undergoing phase II clinical trials to assess its safety
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and efficacy as a therapy for heart failure in diabetes [20].
However, direct in vivo evidence that TETA can improve
cardiac function in heart failure has hitherto been lacking.
More recently, study confirmed that it also induces autoph-
agy and reduces weight gain in mice fed a high-fat diet
(HFD) by the activation of an AcCoA-depleting enzyme
[201], thus making it a candidate pharmacotherapeutic for
the cardiovascular complications of diabetes.

TETA is metabolized by acetylation and has been found in
plasma and urine of healthy and diabetic patients treated with
TETA [202], and theymay play a role in TETA-mediated cop-
per chelation and restoration of physiological copper regula-
tion in diabetic patients. The uptake of Cu2+-TETA by
cardiomyocytes was ATP-dependent. It is thus concluded that
the formation of Cu2+-TETA facilitates copper accumulation
in cardiomyocytes through an active CTR1-independent
transportation process [203]. Low-dose TETA functions as a
copper chaperone, selectively delivering copper to the
copper-deprived heart through an active transportation; in
higher doses, TETA simply retains its chelator function,
removing copper from the body by urinary excretion [196].
Although the highly selective Cu2+ chelator TETA efficiently
treats DCM, long-term clinical studies are necessary to deter-
mine whether the improvement of cardiac function by TETA
is associated with long-term benefits for mortality.

Long-term use of copper binding compounds including
copper ionophores will disturb the homeostasis of base
metals and cause serious side effects. Lack of selectivity is a
major challenge in this field, and novel copper-binding com-
pounds that selectively target cancer cells are highly sought
after. New disulfiram derivatives, an FDA-approved drug
to treat chronic alcoholism, as monoacylglycerol lipase-
selective inhibitors [204] and aldehyde dehydrogenase1a1-
selective inhibitors [205], are beneficial for the treatment of
a wide range of diseases, such as inflammation [206, 207],
metabolic disorders [208], and cancer [209]. Disulfiram
treatments augmented hepatic copper in mice, markedly
moderated body weight, and abolished the deleterious sys-
temic changes associated with a high-fat diet [210]. Disulfi-
ram specifically altered systemic copper in mice and
altered hepatic copper metabolism, perturbing the incorpo-
ration of copper into ceruloplasmin and subsequently reduc-
ing serum copper concentrations [211, 212]. Serum
ceruloplasmin represents a biomarker for disulfiram activity.
These results indicate that copper ion carrier can not only
reduce the high copper level in DCM and improve copper
metabolism defects but also have a potential therapeutic
effect on obesity caused by lipid metabolism disorder
[211]. Moreover, recent studies have shown that cell lines
with high levels of lipoylated proteins are sensitive to
copper-induced cell death, suggesting that cupric treatment
should target diseases with this metabolic signature [113].
Future clinical trials of copper ionophores using a
biomarker-driven approach should therefore be considered.

5. Conclusions and Perspectives

Studies on copper metabolism defects in DCM have
attracted extensive attention. Copper metabolism disorder

leads to copper deficiency in cardiomyocytes and excessive
copper in plasma, which will damage cardiac structure and
function to varying degrees in DCM. Copper deficiency
mainly mediates cardiac hypertrophy and induces or aggra-
vates cardiomyopathy. Copper excess mediates many types
of cell death, including apoptosis, autophagy, pyroptosis,
and, more recently, cuproptosis, which also induces and
aggravates myocardial fibrosis. Redox imbalance and inflam-
matory response play an important role in bridging these
lesions, linking various mechanisms inside and outside the
cell. In addition to heart damage caused by abnormal copper
distribution in heart tissue, changes in the biological activity
of copper chaperone and copper transporter also promote
the occurrence and development of DCM to varying degrees.

Defective copper metabolism is closely related to a vari-
ety of biological processes, such as protein metabolism, lipid
peroxidation, and copper metabolism in mitochondria. Cop-
per chaperone is an important carrier of copper input and
output in cells and tissues, and its transport obstacle worsens
the metabolic disorder and oxidative stress of cuproptosis
and accelerates the occurrence and development of cuprop-
tosis. Many studies have shown that pathological changes
caused by cuproptosis are mediated by a number of adverse
factors. These pathological changes are closely related to the
fatal ROS overproduction, changes in copper transporter
activity, copper accumulation by glycation induced, and
transformation of mitochondrial energy metabolism.

Fortunately, it has been confirmed the effective protective
effect of copper ion carrier in the treatment of copper metab-
olism defects in DCM, such as TETA. Disulfiram can not only
target copper ion delivery to cardiomyocytes to improve the
copper deficiency in cardiomyocytes but also combine with
CP in plasma to reduce the high copper levels in blood to
achieve the overall regulation of copper metabolism. What is
noticeable is that some copper ion carriers also have the poten-
tial role of promoting lipid metabolism, reducing body weight,
and treating metabolic diseases, which provides a new treat-
ment direction for DCM in the latest studies.

However, the research on the pathogenesis of defective
copper metabolism needs to be further improved, and more
measures for different pathways and eight points need to be
explored. In addition, many current studies are based on ani-
mal or molecular levels, and there are few clinical studies.
Therefore, the following problems need to be faced in future
research: (1) it is known that glycolysis is inhibited and oxida-
tive phosphorylation is greatly activated in DCM, whether
copper supplementation promotes lipid breakdown and exac-
erbates oxidative stress. (2) Whether we can intervene the reg-
ulator FDX1 upstream to achieve the stated goal In protein
lipoacylation-mediated cell death，such as killing cancer cells
or protecting heart muscle cells. (3) Furthermore, in addition
to richer and more mature laboratory studies, more clinical
studies should be appropriately carried out.
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