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Abstract: The early diagnosis of Alzheimer’s disease remains an unmet medical need due
to the cost and invasiveness of current methods. Early detection would ensure a higher
quality of life for patients, enabling timely and suitable treatment. We investigate mi-
crowave sensing for low-cost, non-intrusive early detection and assessment of Alzheimer’s
disease. This study is based on the emerging evidence that the electromagnetic properties
of cerebrospinal fluid are affected by abnormal concentrations of proteins recognized as
early-stage biomarkers. We design a conformal six-element antenna array placed on the
upper portion of the head, operating in the 500 MHz to 6.5 GHz band. It measures scattering
response due to changes in the dielectric properties of intracranial cerebrospinal fluid. A
multi-layer perceptron network extracts the diagnostic information. Data classification
consists of two steps: binary classification to identify the disease presence and multi-class
classification to evaluate its stage. The algorithm is trained and validated through con-
trolled experiments mimicking various pathological severities with an anthropomorphic
multi-tissue head phantom. Results support the feasibility of the proposed method using
only amplitude data and lay the foundation for more extensive studies on microwave
sensing for early Alzheimer’s detection.

Keywords: Alzheimer’s disease; classification algorithms; head phantom; machine
learning; microwave antennas; microwave sensing; multilayer perceptron

1. Introduction
Alzheimer’s disease (AD) affects millions of people each year, especially those over 65.

It is marked by a decline in cognitive functions, including memory loss, difficulties with
language, spatial awareness, face recognition, and reasoning [1]. The exact causes of AD
are yet to be clearly understood. Still, there is a correlation with factors such as familiarity,
high blood pressure, smoking, excessive alcohol consumption, physical inactivity, social
isolation, and depression [2].

There is no currently available single test capable of definitively diagnosing Alzheimer’s
disease or other forms of dementia. Instead, physicians rely on a combination of diagnos-
tic tools, including neurological and behavioral examinations, cognitive and functional
tests, genetic testing, brain-imaging techniques such as magnetic resonance imaging (MRI),
computed tomography (CT), and positron emission tomography (PET), and analyses of
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cerebrospinal fluid (CSF) or blood biomarkers. These tools are integrated with the patient’s
medical history and other relevant information to ensure the most accurate diagnosis [3–5].

With the progress of the disease, at the middle- and late stages, amyloid plaques
and neurofibrillary tangles accumulate in the brain, followed by brain atrophy. MRI, PET,
and CT can detect these AD biomarkers [6,7]. However, these techniques are most effective
at the latter stages of the disease. Moreover, they are expensive, require bulky equipment,
and may involve ionizing radiation exposure in the case of PET and CT.

Research shows that AD induces physiological changes up to twenty years before
symptoms become evident [8]. The first indicators of AD are elevated concentrations of
amyloid-beta Aβ1–40, tau, and p-tau, and the increasing amyloid-beta Aβ1–40 /Aβ1–42 ratio
in the CSF [9–11]. Amyloid-beta and tau proteins form amyloid plaques and neurofibrillary
tangles, respectively, which are known to contribute to brain degeneration in AD. Yet,
estimating those biomarkers is not trivial. The standard methodology analyzes a CSF
sampled through a lumbar puncture extraction, a highly invasive procedure that often
causes pain and discomfort. Ongoing research aims to identify these biomarkers in blood
and urine and evaluate their reliability as predictive AD indicators. Alternative early
diagnostics include microbiota-based methods and genetic tests. Machine learning (ML)
can integrate these techniques to improve accuracy. In [12–17], ML algorithms have
been explored to analyze speech data as a potential diagnostic tool. Overall, there is no
established technique for early AD detection, and the interest in non-invasive, low-cost,
portable alternatives is open. These would enable access to medical treatment before the
disease symptoms become evident—i.e., at a stage of the disease when current treatments
are more effective.

In [18,19], a correlation has been shown between the concentration of Aβ1–42 and
Aβ1–40 in the CSF and its electromagnetic properties (i.e., dielectric relative permittivity and
electrical conductivity). This led us to propose identifying these permittivity alterations
due to Aβ1–42 and Aβ1–40 concentration variations through microwave sensing (MWS)
technology and ML algorithms [20–22]. Moreover, the chiral properties of Aβ have been
numerically investigated, exploring the consequent deflection of incident electromagnetic
waves [23]. MWS is a non-invasive, low-cost method that investigates dielectric properties
through interactions with electromagnetic fields [24]. Raw MWS data can be complex,
noisy, and difficult to interpret. Machine learning (ML) enhances MWS capabilities by
improving data processing, pattern recognition, and decision-making [25].

MWS is used in applications where variations in dielectric contrast leave a measur-
able impact on the system’s scattering response. This principle is leveraged in various
fields, including structural damage analysis [26,27], food quality assessment [28,29], stroke
detection [30–32], glucose sensing [33,34], and breast cancer screening [35–38]. Recently,
MWS has also been investigated for neurodegenerative disorders, including AD [39–43].
In [39], a wearable device equipped with electromagnetic sensors was designed to non-
invasively track brain atrophy and the expansion of the lateral ventricles associated with
Alzheimer’s disease, performing numerical and experimental validation. Numerical stud-
ies on MWS have been conducted in [40–42] to detect different stages of Alzheimer’s
disease by analyzing dielectric changes in gray and white matter as well as brain atrophy.
In particular, Refs. [40,41,43] utilize machine learning algorithms to classify data samples
according to disease severity.

To the best of our knowledge, this is the first experimental demonstration of using ML-
based MWS to identify and classify CSF permittivity changes linked to early AD biomarkers.
To this end, starting from numerical feasibility studies and preliminary assessment of the
approach mechanism [20–22], this work recreates realistically different pathological AD
severity scenarios with an ad-hoc anthropomorphic multi-tissue head phantom, and a
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six-antenna-based MWS composed of a multi-port vector network analyzer (VNA) and
custom monopoles featuring a simple design. The antennas are designed to operate
from 500 MHz to 6.5 GHz, considering adequate sensing penetration, system dynamics,
and scattering sensitivity. A multilayer perceptron (MLP) is then optimized to classify CSF
conditions across different severity levels using measured scattering parameters. Multiple
training, validation, and testing schemes support the reliability of the results. The analysis
is carried out using both complex and only amplitude scattering parameters, showing
comparable performance, with over 94% accuracy in detection and an f1-score of up to 87%
in severity classification.

The structure of this paper is as follows: Section 2 describes the implemented MWS
system. Section 3 details the experimental validation, including the phantom creation and
measurement procedure. Section 4 provides a comprehensive description of the machine
learning algorithm used for classification. The results of the testing procedure on the test set
are presented in Section 5, and finally, Section 6 summarizes the conclusions of this study.

2. Microwave Sensing System
The implemented MWS system, depicted in Figure 1, consists of a laptop and an

M9804A PXIe six-port VNA (Keysight Technologies, Santa Rosa, CA, USA) [44], connected
via low-loss coaxial cables to a custom wideband six-antenna array. The antennas are
conformally positioned along the sides of the upper portion of a head phantom. The VNA
acquires the scattering parameters through the antenna array and sends the measured
data to the laptop for processing. The antennas are placed on the lateral sides of the head
phantom rather than the front and back, as the relatively thinner skull in these regions
facilitates deeper field penetration.

Figure 1. Microwave sensing system.

Various antenna designs have been proposed in the literature for human body monitor-
ing using microwave technologies, e.g., [45–47]. In our work, each antenna of the sensing
system is a circular monopole antenna printed on Rogers RO4003C substrate (Rogers
Corporation, Chandler, AZ, USA) by PCB international (Seattle, WA, USA) with a stan-
dard thickness of 1.52 mm, entailing easy manufacturing and compactness. The working
frequency band of the antenna is about 500 MHz–6.5 GHz, in agreement with the device
requirements. The minimum frequency is dictated by the thickness of the CSF layer, which
corresponds to around λCSF/10 where λCSF is the wavelength inside the CSF. The highest
frequency is chosen according to the wave penetration within the head. Considering the
variability of the human head, the antenna is optimized by placing it on a multilayer
block of size 100 × 100 × 63 mm3, a simplified scenario that mimics the head’s multi-layer
structure and dielectric properties. The block is constituted of six stacked slabs, encompass-
ing skin, fat, skull, fat, CSF, and gray matter, with thicknesses of 3, 5, 8, 3, 6, and 38 mm,
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respectively, as portrayed by the contour lines in Figure 2, and dielectric characteristics
taken from [48].

Figure 2. Simulated power density distribution [dBW/m2] within the multi-tissue block at 0.5, 3.5,
and 6.5 GHz. The various tissues are represented by layers, with the striped layer indicating the CSF.

Figure 2 depicts the simulated power density distribution within the multi-tissue block
at the lowest, center, and highest frequencies. A lower power density can be observed at
the lowest frequency, 500 MHz, due to the non-optimal antenna matching and decreased
penetration at the highest, 6.5 GHz, due to higher tissue losses. Nevertheless, the power
density distribution reaches an adequate level at CSF in each case, and so does the sensing
capability. The antenna optimization uses the circular monopole layout displayed in
Figure 3a as a baseline while varying the radius of the circular section (R) and the feeding
line width (WFeed), maintaining constant the gap (WGap) between the ground plane and
the feeding line and the substrate dimension (W × L). The objective of the optimization
is to minimize the reflection coefficients within the desired frequency band. The realized
antenna is shown in Figure 3b, with its repetitively optimized geometrical parameters
reported in Table 1.

(a) (b)

Figure 3. Circular monopole antenna: (a) geometry of the antenna, (b) realized antenna.

Table 1. Antenna design parameters.

Label W L R WFeed WGap LGap LGND

Value † 24 32 10 2.9 0.5 0.6 10
† Dimensions in [mm].

Finally, Figure 4 shows the measured reflection and transmission coefficients, when
placing the optimized antennas on the head phantom. Regarding the reflections, all the
antennas have very good matching, lower than −10 dB, from around 1 GHz up to the end
of the chosen bandwidth. At the lower end of the bandwidth, from 500 MHz to 1 GHz,
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the matching is worse but still lower than −5 dB. For reflections, there are above around
−90 dB in the whole frequency band for all the antenna pairs, which is within the VNA
dynamic range with the chosen setup parameters [44]. The transmission-reported pairs
are grouped into three families based on relative distances for visualization. First, close-by
pairs, S3,2, S2,1, S6,5, S5,4; medium-distance pairs, S3,1, S3,6, S6,4, S4,1; and long-distance
pairs, the remaining ones.

(a) (b)

Figure 4. Measured scattering parameters of the six antennas placed on the head phantom.
(a) Reflection coefficients. Each color represents a different antenna. (b) Transmission parame-
ters. The antenna pairs are grouped based on relative distances: close pairs are indicated by green
dotted lines, medium-distance pairs by blue dashed lines, and long-distance pairs by red dashed
lines. A scheme of the antenna positions on the phantom in shown in the corner.

3. Experimental Validation
3.1. Ad-hoc Anthropomorphic Head Phantom

This section describes the designed multi-tissue phantom representing a human head.
It is used with the MWS system to collect scattering parameters in both healthy and AD
conditions. The phantom aims to emulate a human head with all its different tissues
while allowing the CSF layer to be changed without interfering with the rest of the setup.
The morphology of the different tissues is based on [49]. The phantom includes two
concentric parts separated by a 6 mm liquid-filled gap that models the intracranial CSF.
This gap is maintained by rubber spacers and a 3D-printed brain support. The external
part includes skin, external fat, bone, and internal fat. The internal part represents the brain
domain, i.e., white and gray matter, cerebellum, and ventricles. A hole in the bottom of the
external part allows draining through a tube, which is clamped when the phantom is filled.
Figure 5a shows the assembled phantom, an upside-down human head cut sideways at
the “middle nose plane”, that joins the external and internal parts, respectively, shown in
Figure 5b,c.

(a) Whole Phantom (b) External part (c) Internal part

Figure 5. Anthropomorphic multi-tissue head phantom.

The internal and external fat-mimicking tissues are 3D-printed using carbon-loaded
Polylactic Acid (cPLA), which has permittivity and conductivity properties similar to those
of human fat. The other tissues, except CSF, are made of platinum-catalyzed silicone rubber
mixed with 20µm diameter graphite powder as detailed in [50]. This approach ensures
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a simpler and safer manufacturing process, using only two materials. It also avoids toxic
substances like carbon black powder, which is used in other phantoms [51], though at the
cost of some customization. The weight percentages of graphite for the corresponding
mimicked tissues are presented in Table 2, while Figure 6 shows their respective relative
permittivities and conductivities. Reference values are from [48]. Measured values are
obtained using a Keysigth N1501A dielectric probe (Keysight Technologies, Santa Rosa, CA,
USA), the Keysight N1500a software version 20.0.24092501 [52], and the method in [50].

Then, considering the dispersiveness and losses of the brain tissues and the intrin-
sic freedom-degree of customization of the rubber–graphite mixtures, we prioritized the
relative permittivity at the central frequency, 3.5 GHz. This yelded better agreement with
reference values both at and above this frequency as shown in Figure 6a. For the conductivi-
ties (Figure 6b), the reached values overestimate the reference values, which is a worse case
due to the higher attenuation of the propagating waves. Despite the limitation of a perfect
agreement with the reference values, we can consider the overall phantom suitable for the
proofing-of-concept of an ML-driven MWS since it is representative of the complexity and
challenges of an anthropomorphic multi-tissue condition.

(a) (b)

Figure 6. Complex permittivity of the multi-tissue head phantom. (a) Relative permittivity.
(b) Conductivity.

Table 2. Mass percentage of graphite powder for each tissue.

Tissue Graphite %

Skin 42
Skull 20

Cerebellum 45
Ventricles 50

Gray matter 47
White matter 41

The CSF is produced using water, salt, and triton X-100 mixtures, as in [53]. One
mixture is produced to simulate the healthy condition, and four to mimic the pathological
condition at different severity grades, corresponding to four permittivity reductions, respec-
tively. Permittivity reduction is based on [19], which reports a 5% drop in CSF permittivity
at 1 GHz in pathological cases. Figure 7 shows the permittivity for the four emulated CSF
pathological stages, dubbed PAT1:4, indicating, respectively, reductions of 2.5%, 5%, 7.5%,
and 10% relative to the healthy scenario at 1 GHz. However, variations in the relative
permittivity are almost constant in the whole considered band. The specific composition of
each fluid is detailed in Table 3.
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(a) (b)

Figure 7. Measured permittivity of CSF at different pathological severity. (a) Relative permittivity.
(b) Conductivity. REF indicates the reference values taken from the CNR-IFAC database [48].

Table 3. Recipes for artificial CSF.

CSF Water % † Triton X-100 % Salt %

Healthy 89.43 9.17 1.40
PAT1 (2.5 %) ‡ 86.86 11.76 1.38
PAT2 (5.0 %) 84.96 13.66 1.38
PAT3 (7.5 %) 82.99 15.62 1.39
PAT4 (10.0 %) 81.95 16.65 1.40

† The percentages refer to mass. ‡ Percentage reduction in permittivity with respect to Healthy.

3.2. Measurement Procedure

During the measurement of the scattering parameters, a Multiple Input Multiple
Output (MIMO) configuration is employed. Both transmission and reflection parameters
are considered to fully characterize the system’s response.

The measurement procedure follows a repetitive three-step cycle: first, filling the gap
in the head phantom with the corresponding CSF liquid; second, acquiring the scattering
parameters; and third, draining the liquid from the phantom. Then, the acquisition pro-
cedure repeats the cycle while alternating the healthy CSF with the pathological variants,
which are randomly poured into the phantom to avoid systematic biases, resulting in four
healthy and four pathological scenarios. To build the dataset, we conducted measurements
over three days: six acquisitions on the first two days, and three on the last.

A measure consists of a 6 × 6 scattering matrix ranging from 500 MHz to 6.5 GHz,
spanned in 101 points, with the VNA set to 0 dBm input power and the IF filter to 100 Hz.
Then, each scenario is measured 10 times, taking about 50 s, for 80 measurements per
acquisition and a total of 1200 in the whole dataset.

4. Machine-Learning-Driven Sensing
This work employs the MLP algorithm, a type of Artificial Neural Network (ANN)

commonly used for complex medical classification tasks [54]. For instance, it has been
applied in [55] for brain stroke detection, and in [56] for the detection and monitoring of
heart and liver diseases and for lung cancer. The MLP is based on a number of neurons,
as in the human brain, which are linked together with weighted connections, and the
output of each neuron is regulated by an activation function. The network consists of
at least three layers of neurons: an input layer, a hidden layer, and an output layer [57].
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The supervised method is adopted, where the algorithm is trained on labeled samples to
create a surrogate model. In this study, the MLP is used for binary classification (healthy vs
pathological) and multi-class classification to differentiate AD severity levels.

The dataset is augmented by doubling its size, generating virtual scattering matrices by
swapping left and right antennas, as illustrated in Figure 8. This data augmentation process
enhances the variability by accounting for the phantom’s asymmetry and is exploited to
overcome the limitations of having a single phantom manufactured for this study.

-50        0         50

(a) Original configuration (b) Flipped configuration

Figure 8. Data augmentation. (a) Original array configuration and (b) flipped configuration.

The augmented dataset used as input for the MLP algorithm is structured as a matrix,
where each row represents a measurement, and the columns contain the corresponding
reshaped complex scattering parameters at different frequencies, for a total of 6 × 6 ×
101 = 3636 columns. Two cases are considered: using real and imaginary parts separately
(3636 × 2 = 7272 features), or using only the magnitude (3636 features). Considering
magnitude-only information may be of utmost importance in practice, due to the lower
cost and greater simplicity of receivers that measure the module only [55].

The ANN optimization procedure consists of three phases: training, validation,
and testing. During training, the model learns patterns and relationships within the
dataset by adjusting its parameters to minimize the loss function. The validation tunes
hyperparameters and prevents overfitting by evaluating the model’s performance on an
independent validation set. Typically, the dataset is divided into training and validation
subsets, with a split ratio that ensures sufficient data for learning and model assessment.
In this work, the impact on classification performance is evaluated by employing three
training–validation split ratios: 60:40, 70:30, and 80:20, using the data from the first two days
of measurements. Training and validation sets are generated using two approaches. In data
division one (DD1), all the samples are grouped by class. Then, for each class, the samples
are randomly split into training and validation sets according to the specified ratios. In data
division two (DD2), the 10 measurements within each of the 192 measurement sets are
randomly split using the same percentages, ensuring that each measurement set contributes
samples to both the training and validation sets; see the scheme in Figure 9. This helps
assess whether performance depends on specific measurement sets while maintaining
class balance. Finally, the testing phase evaluates the NN’s generalization capability using
unseen data, verifying its effectiveness in real-world scenarios. In this case, data from the
third day is used.
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Figure 9. Illustration of the data-splitting process into training and validation sets for DD1 and DD2.
The data is randomly divided into training and validation sets using three different proportions:
60:40, 70:30, and 80:20.

The hyperparameters affect the model structure and the learning process. In this work,
to select the best set of hyperparameters, the grid-search method is used [58]. In this method,
different values of the hyperparameters are given as input. For each hyperparameter
combination, a model is trained using the training set and then evaluated on the validation
set. Finally, the combination with the best score is chosen. For binary classification, the score
is evaluated using the accuracy, which measures the proportion of correctly predicted
samples as:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP stands for true positive and TN for true negative, indicating the number of
samples correctly predicted as positive and negative, respectively. FP refers to false positive,
and FN to false negative, indicating the number of samples wrongly predicted as positive
and negative, respectively. Moreover, other commonly used metrics for performance
evaluation are precision, recall, and f1-score:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

f1-score = 2 × precision × recall
precision + recall

(4)

Precision quantifies the proportion of correct positive predictions, while recall measures
the proportion of true positive samples correctly identified. The f1-score is the combination of
precision and recall via a harmonic mean; it becomes advantageous when the dataset classes
are not balanced. It is used as an evaluation score for the multi-class classifier.

During the grid-search optimization process, the considered MLP hyperparameters
are: the number of neurons for each layer, the learning rate (the step size towards the
minimization of a loss function at each iteration), the training function (the function used
to train the algorithm to recognize the input and to produce the correct output), and
the loss function. The optimized hyper-parameters for binary classification are reported
in Tables 4 and 5 for DD1 and DD2, respectively, considering the different training and
validation proportions and the use of the complex scattering parameters or the module
only. Specifically, for the training function, CGB and S-CGB correspond to the conjugate
gradient method and scaled conjugate gradient method, while for the loss function, MSE
and SAE are the mean squared error and the sum absolute error, respectively.
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Table 4. Binary classification, DD1, MLP hyper-parameters.

Training–Validation (%) 60:40 70:30 80:20

Real–Imag

Neurons 6 24 32
Learning rate 0.03 0.01 0.045
Training fn. S-CGB S-CGB S-CGB

Loss fn. MSE MSE SAE

Module

Neurons 32 32 10
Learning rate 0.035 0.035 0.035
Training fn. CGB CGB S-CGB

Loss fn. MSE MSE SAE

Table 5. Binary classification, DD2, MLP hyper-parameters.

Training–Validation (%) 60:40 70:30 80:20

Real–Imag

Neurons 10 48 12
Learning rate 0.02 0.035 0.045
Training fn. CGB CGB S-CGB

Loss fn. MSE MSE SAE

Module

Neurons 24 48 24
Learning rate 0.03 0.025 0.035
Training fn. S-CGB S-CGB S-CGB

Loss fn. MSE SAE SAE

The other hyperparameters are set, for all the considered configurations, as in [59]: the
minimum gradient of the performance function is 10−6, the validation and test ratios for
the training data are 0.15, the momentum (a parameter that helps the training acceleration
in the relevant direction and dampens oscillations) is 0.9, and the maximum number of
validation failures (the worsening of the performances before training stops) is six. Finally,
the number of hidden layers is set to two [20], and the maximum number of epochs to 2000.

5. Results and Discussion
In the following, Section 5.1 covers a principal components analysis (PCA). Then, we

analyze the proposed system’s performance, investigating first a binary classification in
Section 5.2 and then a multi-class classification in Section 5.3.

5.1. Principal Components Analysis

To determine whether a simpler classification algorithm, such as a support vector
machine (SVM) or decision tree, is suitable for this problem, a PCA is performed on
the original dataset, excluding the flipped data. PCA reduces the dimensionality of the
dataset by transforming it into a set of uncorrelated principal components, ranked by
the amount of variance they capture. Analyzing the explained variance ratio makes it
possible to assess whether most of the information is concentrated in a few principal
components, indicating that a lower-complexity classifier could effectively separate the
data. Additionally, visualizing the data in the space of the first few principal components
helps determine whether clear decision boundaries exist, further guiding the choice of an
appropriate classification model.

Figure 10 presents a scatter plot of the dataset projected onto the three principal
components (PC1, PC2, PC3). The plot reveals that the measurements form small clusters,
each corresponding to the ten consecutive measurements by a given set. However, these
clusters are not perfectly compact due to noise and instrument drift. Additionally, the lack of
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clear separability using a 3D plane indicates that a more advanced classification algorithm,
such as MLP, is required to achieve accurate classification.

(a) Real and imaginary part (b) Module only

Figure 10. Scatter plot of PCA visualization for the original dataset, with different colors representing
the mimicked pathological severity.

5.2. Binary Classification

Before discussing the results of the testing phase for the binary classification in detail,
Table 6 reports the accuracy values obtained during the validation phase with the optimized
hyperparameter configurations. The accuracy reaches high values in all assessed cases,
consistently higher than 96.7%.

Table 6. Binary classification, validation phase, accuracy results in percentages.

Training–Validation (%) 60:40 70:30 80:20

DD1 Real–Imag 99.35 99.31 99.74
Module 96.74 98.44 98.18

DD2 Real–Imag 99.74 98.26 98.44
Module 97.92 99.48 98.18

The results achieved by applying the different trained algorithm models to the testing
set, which contains previously unseen data belonging to a different day of measurements,
are reported in Tables 7 and 8 for the DD1 and DD2, respectively (see Section 4). These
tables contain the values of accuracy, precision, recall, and f1-score for each test. Each
column corresponds to a different training–validation split, as reported in the first row,
and the upper part of the tables refers to separate features for the real and imaginary parts
of the scattering parameters, while in the lower part, only the module is used.

Table 7. Binary classification, DD1, testing phase, results in percentages.

Training–Validation (%) 60:40 70:30 80:20

Real–Imag

accuracy 73.54 60.62 61.04
precision 82.70 77.97 78.10

recall 73.54 60.63 61.04
f1-score 71.55 53.40 54.07

Module

accuracy 94.37 73.75 81.25
precision 94.65 82.79 82.14

recall 94.37 73.75 81.25
f1-score 94.36 71.81 81.12
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Table 8. Binary classification, DD2, testing phase, results in percentages.

Training–Validation (%) 60:40 70:30 80:20

Real–Imag

accuracy 60.00 73.33 72.08
precision 77.78 82.16 82.00

recall 60.00 73.33 72.08
f1-score 52.38 71.29 69.72

Module

accuracy 83.33 92.71 80.00
precision 86.84 93.34 85.44

recall 83.33 92.71 80.00
f1-score 82.93 92.68 79.20

The algorithm tends to achieve higher performance using the module configuration
approach in both the DD1 and DD2; this could be due to inaccuracies in the experimental
evaluation of the phase of the scattering parameters, which affect the complex quantities.
Regarding the training–validation proportions and the two data divisions (DD1 and DD2),
no evident trend emerges: the highest performances with DD1 are obtained using 60%:40%
partitioning, and with DD2 using the 70%:30% one.

5.3. Multi-Class Classification

Starting from the two previous best-performing binary classifiers (60%:40% for DD1,
and 70%:30% for DD2, both considering the module), a further analysis is carried out to
assess the AD severity levels. Two possible pathological classifications are considered:
first, four classes corresponding to PAT1, PAT2, PAT3, and PAT4, and, second, two classes
clustering the two lowest severities, PAT1 and PAT2, and the two highest severities, PAT3
and PAT4. The corresponding optimized MLP hyper-parameters are reported in Table 9.
The other hyper-parameters are set to the same values as for the binary classification case
(see Section 4).

Table 9. Multi-class classification, module configuration, MLP hyper-parameters.

Hyper-Param.
DD1, 60:40 (%) DD2, 70:30 (%)

4 Classes 2 Classes 4 Classes 2 Classes

Neurons 32 2 24 2
Learning rate 0.045 0.03 0.02 0.045
Training fn. CGB S-CGB S-CGB S-CGB
Loss fn. MSE MSE MSE MSE

The testing phase results are shown as confusion matrices, together with the f1-score,
in Figures 11 and 12, where a darker color indicates the closer value to the maximum for the
considered-true label: 240 for the healthy case (labeled as H), 60 for each pathological case
in Figure 11 (labeled as PAT1, PAT2, PAT3, and PAT4), and 120 for each pathological case
in Figure 12 (labeled as PAT1-PAT2 and PAT3-PAT4). It is worth noting that the matrices
join the previous binary classification between healthy and pathological cases and the
subsequent multi-class pathology classification. The results indicate that the algorithm
struggles to distinguish between all four pathological severities accurately but achieves
an f1-score of up to 87.42% when considering only two severity levels. Furthermore,
the confusion matrices in Figure 11 reveal that misclassifications of pathological cases as
healthy CSF predominantly occur in PAT1. The classifier seldom confuses classes with a
permittivity difference greater than 2.5%.
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Figure 11. MLP confusion matrices for the multi-class classification with four pathological classes,
using the module of the scattering parameters as dataset features. A darker color indicates a higher
value. (a) DD1, 60:40 (%); (b) DD2, 70:30 (%).

217 23 0

4 106 10

0 17 103

H

H

PAT1:2

PAT1:2

PAT3:4

PAT3:4

Predicted labels

Tr
ue

la
be

ls

(a) f1-score = 87.42 %

208 32 0

3 77 40

0 0 120

H

H

PAT1:2

PAT1:2

PAT3:4

PAT3:4

Predicted labels

Tr
ue

la
be

ls

(b) f1-score = 81.73 %

Figure 12. MLP confusion matrices for the multi-class classification with two pathological classes,
using the module of the scattering parameters as dataset features. A darker color indicates a higher
value. (a) DD1, 60:40 (%); (b) DD2, 70:30 (%).

6. Conclusions and Perspectives
In this work, we described an approach to investigate the feasibility of microwave

sensing and machine learning to achieve early AD detection. The physiological basis of
this assumption is the reduced permittivity of CSF in AD patients. For this reason, we
built a measurement system using a VNA and an array of six custom wide-band antennas
designed for this application. To validate the approach, we realized a custom multi-tissue
realistic phantom of a human head where the CSF layer can be changed to assume dif-
ferent permittivity values, representing the healthy case or different severity levels of the
pathological case. The antennas were placed around the phantom to acquire the scatter-
ing parameters in the healthy and AD conditions. A data augmentation technique was
used to double the dimension and the variability of the original dataset. Then, the aug-
mented dataset was used to train, validate, and test the MLP classification algorithms.
When tested on data belonging to an entirely different day with respect to training and
validation, the classifiers achieved an accuracy higher than 94% on binary classification
(healthy/pathological), and an f1-score higher than 87% in multi-class classification using
two pathological severity levels, confirming the potential impact of this technology on AD
early detection.

We acknowledge that real-world scenarios involve additional complexities, and while
our proposed method has shown potential, the primary goal of this study is to demonstrate
its feasibility. Further research will be necessary to evaluate its effectiveness and gener-
alizability on real patient data. In the future, we plan to conduct controlled in vivo tests
to assess the system’s performance in real biological conditions, to combine the designed
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microwave sensing system with other machine learning algorithms, and to investigate
other placements of the antennas to detect the CSF variations.
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MIMO Multiple input multiple output
ML Machine learning
MLP Multilayer perceptron
MRI Magnetic resonance imaging
MSE Mean squared error
MWS Microwave sensing
PCA Principal components analysis
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TP True positive
VNA Vector network analyzer
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