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N1-methyladenosine methylation (m1A), as an important RNA methylation

modification, regulates the development of many tumours. Metabolic

reprogramming is one of the important features of tumour cells, and it plays

a crucial role in tumour development and metastasis. The role of RNA

methylation and metabolic reprogramming in osteosarcoma has been widely

reported. However, the potential roles and mechanisms of m1A-related

metabolic genes (MRmetabolism) in osteosarcoma have not been currently

described. All of MRmetabolism were screened, then selected two

MRmetabolism by least absolute shrinkage and selection operator and

multifactorial regression analysis to construct a prognostic signature.

Patients were divided into high-risk and low-risk groups based on the

median riskscore of all patients. After randomizing patients into train and

test cohorts, the reliability of the prognostic signature was validated in the

whole, train and test cohort, respectively. Subsequently, based on the

expression profiles of the two MRmetabolism, we performed consensus

clustering to classify patients into two clusters. In addition, we explored the

immune infiltration status of different risk groups and different clusters by

CIBERSORT and single sample gene set enrichment analysis. Also, to better

guide individualized treatment, we analyzed the immune checkpoint expression

differences and drug sensitivity in the different risk groups and clusters. In

conclusion, we constructed a MRmetabolism prognostic signature, which may

help to assess patient prognosis, immunotherapy response.
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumour,

which derived from mesenchymal cells and occurred mostly in

adolescents. Currently, the treatment of osteosarcoma is mainly

combined with neoadjuvant chemotherapy before and after

surgery. However, over the past three decades, there has been

limited improvement in the prognosis of OS (Gianferante et al.,

2017). Therefore, the search for biomarkers that allow early

diagnosis of OS has become a hot research topic and an

imperative in the field of oncology.

Chemical modification of RNA is an important branch of

epigenetics, and more than 100 chemical modifications of RNA

have been identified (Boccaletto et al., 2018). The common

internal modifications in mRNA include N6-adenylation

(m6A), N1-adenylation (m1A), and cytosine hydroxylation

(m5C) (Han et al., 2021). RNA methylation plays an essential

role in almost all steps of mRNA metabolism, and it’s

dysregulation is highly correlated with the occurrence and

progression of tumours. Aberrant methylation of oncogenes in

tumour cells has great potential for early tumour diagnosis.

Metabolic reprogramming, an important feature of tumour

cell, is an adaptive change of tumour cells to meet their

proliferation and metastasis. Inhibition of tumour cell

metabolic processes, including inhibition of glycolysis and

amino acid metabolism, is an emerging starvation therapy in

recent years (Kerk et al., 2021; Stine et al., 2022). Khodaei et al.

(2022) systematically described the generation of effective

immunotherapies by regulating the energy metabolism of

immune cells. In addition, Lee U. et al. (2022) found that the

interaction between metabolic pathways and Hippo signaling

pathways could affect the effect of antitumour drugs and drug

resistance. A few of studies had reported the potential value of

RNA methylation and metabolism-related genes in predicting

the prognosis of OS (Liu et al., 2021; Wu Y. et al., 2022; Li et al.,

2022). However, it remains to be elucidated whether and how

m1A regulates metabolism in OS, and the relationship between

m1A-related metabolic genes (MRmetabolism) and survival in

OS has never been explored.

In this study, we analyzed the mRNA expression matrix of

OS and normal adipose tissue from the UCSC Xena website to

develop a prognosis signature based on two MRmetabolism. We

also investigated the correlation of the signature with clinical

characteristics, tumour immune microenvironment (TIM) and

drug sensitivity.

Materials and methods

Data collection

The mRNA expression matrix and clinical data were

obtained from the UCSC Xena website (http://xena.ucsc.edu/),

including 85 tumour samples and 85 randomized adipose tissue

samples. m1A methylation genes were obtained from a previous

report (Zhang and Jia, 2018). Metabolism-related genes were

obtained by c2. cp.kegg.v7.5.1. symbols.gmt, which was

downloaded from the GSEA website (http://www.gsea-msigdb.

org/gsea/index.jsp).

Screening m1A methylation-related
metabolic genes

The “limma” (Wettenhall and Smyth, 2004) and “survival”

(van Dijk et al., 2008) packages were used to obtain differentially

expressed and prognosis-related metabolic genes and to analyze

their correlation with m1A methylation genes (|Pearson R| >
0.4 and p < 0.05).

Construction and validation of
m1A-related metabolic gene signature

Based on the expression profile of MRmetabolism and

clinical information, the least absolute shrinkage and selection

operator (LASSO) and multivariate Cox (multi-Cox) regression

analysis were used to develop a prognostic signature (Bunea et al.,

2011). The LASSO regression model was as follows: risk Score =

Ʃ [Exp (mRNA) × coef (mRNA)].

Subsequently, we divided all patients into high-risk and low-

risk groups with the median value of riskscore in the entire

cohort. Next, we randomized all patients into training and test

group in a ratio of 3:1. Then, to verify the prognostic ability of the

riskscore, Kaplan-Meier (K-M) survival analysis and the time-

dependent receiver operating characteristic (ROC) analysis were

performed in the whole cohort, training cohort and test cohort,

respectively.

Functional analysis

The curated gene set (kegg.v7.4. symbols.gmt and c5.

all.v7.5.1. symbols.gmt) and “clusterProfiler” (Yu et al., 2012)

were used to identify significantly enriched pathways between the

low-risk and high-risk groups.

Evaluation of immune cell infiltration and
immune checkpoints

We investigated the relationship between riskscore and

tumour-infiltrating immune cells (TIIC) by the CIBERSORT

algorithm and TIMER2.0 (http://timer.cistrome.org/). The

ESTIMATE, immune and stromal scores for the two risk

groups were also analyzed. We also investigated the
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expression levels of immune checkpoints in high-risk and low-

risk groups. In addition, the drug sensitivity was calculated in

the two risk groups by “pRRophetic” package (Geeleher et al.,

2014).

Consensus clustering based on
MRmetabolism

Using the “ConsensusClusterPlus” (Geeleher et al., 2014)

package, K-means was applied to cluster patients into two

clusters and to further investigate the differences of prognosis,

TIIC, immune checkpoint expression and drug sensitivity in the

two clusters.

Results

Identification m1A methylation-related
metabolic gene

The difference between OS samples and adipose tissue

samples was analyzed, we obtained 5,390 differentially

expressed mRNAs (|Log ₂ FC| > 1 and p < 0.05). Meanwhile,

through the survival analysis, we found 809 mRNAs associated

with prognosis. Subsequently, through the GSEA website,

941 mRNAs were obtained to be associated with metabolic

pathways in OS. By Venn diagram, 18 metabolism-related

genes are differentially expressed and correlated with

prognosis (Figure 1A). Subsequently, correlation analysis was

FIGURE 1
Identification of m1A methylation-related metabolic genes. (A) The intersection among clusters metabolism-related genes, survival-related
genes, and differentially expressed genes. (B) The Sankey diagram of m1A methylation-related genes and metabolism-related genes. (C) The forest
plot of four MRmetabolism was plotted by univariate Cox regression analysis. (D) The heatmap of differential expressions of four MRmetabolism.
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performed, four MRmetabolism (ACAT1, TDO2, PHOSPHO1,

and CHST13) were obtained (|Pearson R| > 0.4 and p < 0.05)

(Figure 1B). The four MRmetabolism were performed univariate

Cox (uni-Cox) regression analysis and the differential expression

was visualized as a heatmap (Figures 1C,D).

Construction and validation of the
MRmetabolism signature

Based on the expression of four MRmetabolism in the

whole cohort, the following equation was established by

LASSO and multi-COX regression analysis (Figures 2A,B):

riskscore = (−0.654436269446519* TDO2) +

(0.259855036675258* CHST13). We calculated the

riskscore for each patient. Then, 85 patients were

randomized into the train group (65 samples) and the text

group (20 samples) in a ratio of 3:1. Based on the median

value of riskscore in the whole cohort, we divided the patients

into high-risk and low-risk groups. Principal component

analysis (PCA) showed that patients with different

riskscore were divided into two parts (Figure 2C). The

survival status and riskscore were assessed in the whole,

train and text cohort, respectively, (Figures 2D–I). We also

FIGURE 2
Establishment of prognosis signature. (A,B) The LASSO regression model was constructed. (C) PCA of OS samples according to the riskscore.
(D–I) The distribution of the riskscore and survival status of patients in the whole, train and text cohort, respectively. (J–L) The heatmap of differential
expressions of two MRmetabolism between high-risk and low-risk groups.

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.993594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993594


analysis the expression of two MRmetabolism in the whole,

train and text cohort, respectively, (Figure 2J-L).

Subsequently, we found that the prognosis of low-risk group is

better than that of high-risk group by K-M survival in the whole,

train and text cohort (Figures 3A–C). The AUCs for 2-, 4-, and 6-

year survival were 0.783, 0.766, and 0.712 in the whole cohort,

respectively, (Figure 3D). The AUCs for 2-, 4-, and 6-year survival

were 0.739, 0.722, and 0.717 in the train cohort, respectively,

(Figure 3E). The AUCs for 2-, 4-, and 6-year survival were 0.960,

1.000, and 0.624 in the text cohort, respectively, (Figure 3F). We

performed uni-Cox and multi-Cox regression analyses, implying

that riskscore, as a high-risk factor, was significantly correlated

with overall survival (Figures 3G,H). A nomogram, including

clinicopathological variables and riskscore, was also constructed

to predict the prognosis of patients at 2, 4, and 6 years (Figure 3I).

Calibration curve showed that predicted survival times at 2, 4, and

6 years were consistent (Figure 3J).

GSEA enrichment analysis

GSEA was used to conduct Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis and Gene Ontology

(GO) analysis. ABC transporters signaling pathway,

oxidative phosphorylation, ribosome, and steroid

biosynthesis were significantly associated with the high-

risk group (Figures 4A, B). Cytokine-cytokine receptor

interaction, immune effector process, adaptive immune

response based on somatic recombination of immune

receptors built, adaptive immune response and activation

FIGURE 3
Evaluate the prognostic ability of the signature. (A–C) Kaplan–Meier survival estimates of overall survival of patients by the signature in the
entire, train and cohorts, respectively. (D–F) The entire, train and cohorts of ROC curve analysis, respectively. (G,H) Univariate and multivariate
analyses the signature. (I) A nomogram included clinical features and riskscore for predicting the overall survival of patients with OS at 2-, 4-, and 6-
years. (J) Calibration curves for 2-, 4-, and 6-years forecasts of nomogram.
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of immune responses were significantly associated with the

low-risk group (Figures 4C, D). Thus. we hypothesize that

m1A may be involved in OS development and progression

through immune-related pathways.

The role of MRmetabolism in tumour
immune microenvironment and
immunotherapy

IIC in each sample obtained by “CIBERSORT” algorithm,

and then analyze the differences of TIIC in the two risk groups

(Figure 5A). We also found that riskscore was positively

correlated with B cells naive, macrophages M0 and T cells

gamma delta, while was negatively correlated with mast cells

resting, monocytes and CD8 T cells (Figures 5B–G). We

further analyzed by different immune filtration platforms.

Although the algorithms of each platform are different, we

can conclude that a large number of immune cells are

concentrated in low-risk group (Figure 5H). Then, we

explored the relationship between riskscore and immune

status by ssGSEA. The results showed that CD8 T cells,

neutrophils, Tfh, Th2 cells, B cells, and NK cells were

associated with a high degree of infiltration in low-risk

group (Figure 5I). APC co inhibition, CCR, check-point,

HLA, inflammation-promoting, parainflammation, T cell co

inhibition, and Type II IFN reponse were enriched in the low-

risk group (Figure 5J). In addition, the low-risk group had

higher ESTIMAT, immune and stromal score. All of these

indicated that the low-risk group had a higher immune

infiltration status (Figure 5K-M). Therefore, we

hypothesized that the low-risk group was in an immune

activation state relative to the high-risk group.

Immune checkpoint inhibitors (ICIs) are an emerging

and effective therapeutic strategy for a variety of tumours.

While most studies suggest that immune checkpoints are

used by tumour cells to evade immune destruction, others

suggest that immune checkpoint expression positively

correlates with the efficacy of immunotherapy (Marin-

Acevedo et al., 2021; Lu et al., 2022). Therefore, we aimed

to verify the ability of MRmetabolism in predicting the

effective of immunotherapy. The expression of CD44,

FIGURE 4
GSEA analysis. (A,B) KEGG analysis in the high-risk and low-risk groups. (C,D) GO analysis in the high-risk and low-risk groups.
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NRP1, TNFSF14, CD200R1, and LAIR1 was higher in the low-

risk group than in the high-risk group (Figure 6A). And

BTNL2 and TNFRSF25 were highly expressed in the high-

risk group. In addition, we could find that the IC50 of the

40 drugs applied to OS treatment was different between the

high and low risk groups (p < 0.05) (Figure 6B). This implies

that we can select the appropriate immune checkpoint

inhibitors and drugs for patients.

FIGURE 5
Difference of tumour immune microenvironment between high-risk and low-risk groups. (A) The differential infiltration of tumour immune
cells between high-risk and low-risk groups. (B–G) The correlation between riskscore with immune cell types, including B cells naive, macrophages
M0 and T cells gamma delta, mast cell resting, monocyte and CD8 T cell. (H) The immune cell bubble of risk groups. (I,J) Single-sample gene set
enrichment analysis of immune status between low-risk and high-risk groups. (K–M) The difference of tumor immune microenvironment
(ESTMATE, immune, and stromal score) between high-risk and low-risk groups.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2022.993594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993594


FIGURE 6
Predict the best immune checkpoint inhibitors and drugs for two risk groups. (A) The expression of immune checkpoints in the two risk groups.
(B) The difference of sensitivity of drugs between high-risk and low-risk groups.
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Identification of molecular phenotypes
related to MRmetabolism

Based on the expression profiles of the two MRmetabolisms,

we performed consensus clustering. By increasing the clustering

variable (k) from 2 to 9, we found that the intra-group correlation

is highest and the inter-group correlation is lowest when k = 2

(Figure 7A). Consensus cumulative distribution function (CDF)

plots show that the CDF reaches an approximate maximum

when k = 2 and the classification is robust (Figures 7B–D).

Principal component analysis (PCA) was performed to verify

that the two clusters were well differentiated (Figure 7E). K-M

survival curve showed that Cluster one patients had a better

overall survival than Cluster 2 (Figure 7F). The Sankey diagram

showed that most patients with low-risk were Cluster 1, while

most patients with high-risk group were Cluster 2 (Figure 7G).

FIGURE 7
Consensus clustering of two MRmetabolism. (A) Consensus clustering matrix for k = 2. (B) Consensus clustering CDF with k = 2–9. (C) The
tracking plot for different k. (D) The area under the CDF curve for different k. (E) PCA of OS samples according to the clustering. (F) The survival
estimates of the two clusters. (G) The Sankey diagram of the two risk groups and the two clusters. (H) The differential infiltration of tumour immune
cells in the two clusters. (I) The difference of sensitivity of drugs in the two clusters.
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The differences of immune cell infiltration in the two clusters

showed that B cells naïve, macrophages M0 and T cells gamma

delta were highly infiltrated in Cluster 2, while CD8 T cells,

monocytes, and dendritic cells activated had a high degree of

infiltration in Cluster 1 (Figure 7H). In addition, we found that

Cluster 2 had a high ESTIMAT and stromal score. CD44 and

VTCN1 were highly expressed in Cluster 1. CD200, CD276,

ADORA2A, TNFRSF14, and TNFSF15 were highly expressed in

Cluster 2. In addition, we could find that the IC50 of the 28 drugs

applied to OS treatment was differential between Cluster one and

Cluster 2 (Figure 7I).

Discussion

Osteosarcoma is the most common primary malignant bone

tumour in adolescents. With the rapid changes in science and

technology, medical technology is constantly being updated.

However, the prognosis of patients with OS has not been greatly

improved (Gill and Gorlick, 2021). Untimely early diagnosis and

lack of individualized treatment are mainly responsible for the high

mortality rate of patients. The identification of reliable biomarkers of

sensitivity is essential to improve the prognosis of patients with

osteosarcoma.

To maintain the proliferation and metastasis, tumour cells

usually undergo metabolic reprogramming (Holbert et al., 2022).

In addition, dysregulation between metabolize and immune cells

can lead to immune escape of tumour cells (DePeaux and

Delgoffe, 2021). Tumour cells preferentially consume glucose

and produce lactate through aerobic glycolysis, the latter causing

a decrease in the pH of the tumour microenvironment, which in

turn hinders cytokine production and T-cell lytic activity (Judge

and Dodd, 2020). In addition, lactate can polarize macrophages

to a tolerogenic M2-like phenotype (DePeaux and Delgoffe,

2021). Targeting metabolic pathways has been reported to

enhance the efficacy of tumour immunotherapy (Wu H. L.

et al., 2022b; Khodaei et al., 2022).

m1A methylation can affect tumour progression. m1A

demethylation induced by ALKBH3 can promote protein

synthesis in tumour cells (Ueda et al., 2017). The prognosis of

breast or ovarian tumour could be affected by the stability of

macrophage colony-stimulating factor 1, which was regulated

through m1A demethylation (Woo and Chambers, 2019). There

are few reports about the effects of m1A on metabolism-related

pathways and tumours. Therefore, we propose to explore the role

of metabolism-related genes regulated by m1A in OS, which may

be a new direction for its treatment.

In our study, we identified the regulatory relationships of

three m1A genes and four metabolism-related genes in OS.

Among them, ACAT1 can promote epithelial mesenchymal

transition of tumour cells and sensitivity to chemotherapeutic

drugs (Han et al., 2022; Ueno et al., 2022). TDO2 increases

glycolysis through activation of the Kyn-AhR pathway to

promote tumour cell growth (Lee R. et al., 2022). The

migration and invasion of hepatoma cells could be regulated

through the Wnt5a pathway (Liu et al., 2022). Subsequently, we

screened two RMmetabolism (TDO2 and CHST13) to structure

the prognosis signature after LASSO and multi-Cox regression

analysis. The results of survival analysis showed that the low-risk

group had a better prognosis than the high-risk group, and the

riskscore was an independent predictor of OS.

GSEA results showed that the high-risk group was closely

associated with ABC transporters, oxidative phosphorylation,

ribosome, and steroid biosynthesis. As the upregulation of

oxidative metabolism in tumour cells could cause hypoxia and

consequently immunosuppression, it has been proposed to

improve immune efficacy by inhibiting oxidative

phosphorylation (Liu and Curran, 2020; Boreel et al., 2021).

Kang et al. (2021) systematically described the mechanism and

treatment of ribosomes in tumour and disease. Many malignant

and autoimmune diseases can be treated with small molecule

inhibitors and monoclonal antibodies by targeting sphingolipid

metabolism (Kang et al., 2021). The signaling pathways that

inhibit steroid synthesis are potential drug targets for the

development of novel tumour immunotherapies (Mahata

et al., 2020). What is more, the enrichment function of low-

risk group is closely related to immune function.

It has been shown that tumour cells and immune cells have

common metabolic requirements and nutritional deficiencies in

the tumour microenvironment (Scharping et al., 2016; Renner

et al., 2017). Next, we assessed the immune status of the two risk

populations. We assessed the immune cell infiltration status of

each patient by the CIBERSORT algorithm and ssGSEA. The

result showed that the low-risk group could be described as

immune activated, while the high-risk group could be described

as immunosuppression.

Molecular subtypes have been previously reported to be

associated with tumour immunosuppression and

microenvironment. Different subtypes have different immune

status, resulting in different prognosis and immunotherapeutic

response. Therefore, we divided the patients into two groups by

the two RMmetabolism. Then, performed K-M survival analysis and

immune status assessment, we found that Cluster 1was in an immune

activated state and had a better prognosis compared to Cluster 2.

Finally, we found that the high-risk population was highly

sensitive to AZD8055, Camptothecin, Elesclomol, GW.441756,

MS.275, S. Trityl.L.cysteine, SB590885, and Sorafenib. Low-risk

populations had high sensitivity to AP.24534, Bexarotene,

CHIR.99021, GSK269962A, JNJ.26854165, JNK. Inhibitor.VIII,

Lapatinib, Midostaurin, Pazopanib, SB.216763, and Shikonin.

These findings can be applied in the clinic to improve guidance

for individualized treatment.

In summary, we constructed a prognostic model for OS

patients based on two RMmetabolism to provide prognostic

assessment and immune analysis for OS patients and provide

new directions for targeted therapy for OS.

Frontiers in Genetics frontiersin.org10

Wang et al. 10.3389/fgene.2022.993594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993594


Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://xenabrowser.

net/datapages/, UCSC Xena.

Author contributions

GW and WF: contributed to the conceptualization; GW and

HW: performed the data analyses; SC and XZ: wrote the

manuscript; PZ and JW: contributed to the project

administration and funding acquisition. All authors have read

and agreed to the published version of the manuscript.

Funding

This research is supported by the Changsha City Science and

Technology Bureau (kq1901125, to JW), Hunan Province

Science and Technology Department (2020JJ8050, to JW), and

Natural Science Foundation of Hunan Province (2020JJ4862,

to PZ).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., Wirecki,
T. K., et al. (2018). Modomics: A database of RNA modification pathways.
2017 update. Nucleic Acids Res. 46 (D1), D303–D7. doi:10.1093/nar/gkx1030

Boreel, D. F., Span, P. N., Heskamp, S., Adema, G. J., and Bussink, J. (2021).
Targeting oxidative phosphorylation to increase the efficacy of radio- and immune-
combination therapy. Clin. Cancer Res. 27 (11), 2970–2978. doi:10.1158/1078-0432.
CCR-20-3913

Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., and Cohen, R.
(2011). Penalized least squares regression methods and applications to
neuroimaging. Neuroimage 55 (4), 1519–1527. doi:10.1016/j.neuroimage.
2010.12.028

DePeaux, K., and Delgoffe, G. M. (2021). Metabolic barriers to cancer
immunotherapy. Nat. Rev. Immunol. 21 (12), 785–797. doi:10.1038/s41577-021-
00541-y

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for
prediction of clinical chemotherapeutic response from tumor gene expression
levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468

Gianferante, D. M., Mirabello, L., and Savage, S. A. (2017). Germline and somatic
genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat. Rev.
Endocrinol. 13 (8), 480–491. doi:10.1038/nrendo.2017.16

Gill, J., and Gorlick, R. (2021). Advancing therapy for osteosarcoma. Nat. Rev.
Clin. Oncol. 18 (10), 609–624. doi:10.1038/s41571-021-00519-8

Han, P., Wu, S., Li, L., Li, D., Zhao, J., Zhang, H., et al. (2022). Epigenetic
inactivation of ACAT1 promotes epithelial-mesenchymal transition of clear cell
renal cell carcinoma. Genes. Genomics 44 (4), 487–497. doi:10.1007/s13258-021-
01211-y

Han, X., Wang, M., Zhao, Y-L., Yang, Y., and Yang, Y-G. (2021). RNA
methylations in human cancers. Semin. Cancer Biol. 75, 97–115. doi:10.1016/j.
semcancer.2020.11.007

Holbert, C. E., Cullen, M. T., Casero, R. A., and Stewart, T. M. (2022). Polyamines
in cancer: Integrating organismal metabolism and antitumour immunity. Nat. Rev.
Cancer 22, 467–480. doi:10.1038/s41568-022-00473-2

Judge, A., and Dodd, M. S. (2020). Metabolism. Essays Biochem. 64 (4), 607–647.
doi:10.1042/EBC20190041

Kang, J., Brajanovski, N., Chan, K. T., Xuan, J., Pearson, R. B., and Sanij, E. (2021).
Ribosomal proteins and human diseases: Molecular mechanisms and targeted
therapy. Signal Transduct. Target. Ther. 6 (1), 323. doi:10.1038/s41392-021-
00728-8

Kerk, S. A., Papagiannakopoulos, T., Shah, Y. M., and Lyssiotis, C. A. (2021).
Metabolic networks in mutant KRAS-driven tumours: Tissue specificities and the
microenvironment. Nat. Rev. Cancer 21 (8), 510–525. doi:10.1038/s41568-021-
00375-9

Khodaei, T., Inamdar, S., Suresh, A. P., and Acharya, A. P. (2022). Drug delivery
for metabolism targeted cancer immunotherapy. Adv. Drug Deliv. Rev. 184, 114242.
doi:10.1016/j.addr.2022.114242

Lee, R., Li, J., Li, J., Wu, C-J., Jiang, S., Hsu, W-H., et al. (2022). Synthetic
essentiality of tryptophan 2, 3-dioxygenase 2 in APC-mutated colorectal cancer.
Cancer Discov. 12 (7), 1702–1717. doi:10.1158/2159-8290.CD-21-0680

Lee, U., Cho, E-Y., and Jho, E-H. (2022). Regulation of Hippo signaling by
metabolic pathways in cancer. Biochim. Biophys. Acta. Mol. Cell. Res. 1869 (4),
119201. doi:10.1016/j.bbamcr.2021.119201

Li, L., Li, Z., He, X., Wang, Y., Lu, M., Gong, T., et al. (2022). A nutritional
metabolism related prognostic scoring system for patients with newly diagnosed
osteosarcoma. Front. Nutr. 9, 883308. doi:10.3389/fnut.2022.883308

Liu, A., and Curran, M. A. (2020). Tumor hypermetabolism confers resistance to
immunotherapy. Semin. Cancer Biol. 65, 155–163. doi:10.1016/j.semcancer.2020.
01.009

Liu, H., Xiang, Y., Zong, Q-B., Dai, Z-T., Wu, H., Zhang, H-M., et al. (2022).
TDO2 modulates liver cancer cell migration and invasion via the Wnt5a pathway.
Int. J. Oncol. 60 (6), 72. doi:10.3892/ijo.2022.5362

Liu, S., Wu, B., Li, X., Zhao, L., Wu, W., and Ai, S. (2021). Construction and
validation of a potent epigenetic modification-related prognostic signature for
osteosarcoma patients. J. Oncol. 2021, 2719172. doi:10.1155/2021/2719172

Lu, Y., Luo, X., Wang, Q., Chen, J., Zhang, X., Li, Y., et al. (2022). A novel
necroptosis-related lncRNA signature predicts the prognosis of lung
adenocarcinoma. Front. Genet. 13, 862741. doi:10.3389/fgene.2022.862741

Mahata, B., Pramanik, J., van der Weyden, L., Polanski, K., Kar, G., Riedel, A.,
et al. (2020). Tumors induce de novo steroid biosynthesis in T cells to evade
immunity. Nat. Commun. 11 (1), 3588. doi:10.1038/s41467-020-17339-6

Marin-Acevedo, J. A., Kimbrough, E. O., and Lou, Y. (2021). Next generation of
immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 14 (1), 45. doi:10.
1186/s13045-021-01056-8

Renner, K., Singer, K., Koehl, G. E., Geissler, E. K., Peter, K., Siska, P. J., et al.
(2017). Metabolic hallmarks of tumor and immune cells in the
tumor microenvironment. Front. Immunol. 8, 248. doi:10.3389/fimmu.2017.
00248

Frontiers in Genetics frontiersin.org11

Wang et al. 10.3389/fgene.2022.993594

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://doi.org/10.1093/nar/gkx1030
https://doi.org/10.1158/1078-0432.CCR-20-3913
https://doi.org/10.1158/1078-0432.CCR-20-3913
https://doi.org/10.1016/j.neuroimage.2010.12.028
https://doi.org/10.1016/j.neuroimage.2010.12.028
https://doi.org/10.1038/s41577-021-00541-y
https://doi.org/10.1038/s41577-021-00541-y
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1038/nrendo.2017.16
https://doi.org/10.1038/s41571-021-00519-8
https://doi.org/10.1007/s13258-021-01211-y
https://doi.org/10.1007/s13258-021-01211-y
https://doi.org/10.1016/j.semcancer.2020.11.007
https://doi.org/10.1016/j.semcancer.2020.11.007
https://doi.org/10.1038/s41568-022-00473-2
https://doi.org/10.1042/EBC20190041
https://doi.org/10.1038/s41392-021-00728-8
https://doi.org/10.1038/s41392-021-00728-8
https://doi.org/10.1038/s41568-021-00375-9
https://doi.org/10.1038/s41568-021-00375-9
https://doi.org/10.1016/j.addr.2022.114242
https://doi.org/10.1158/2159-8290.CD-21-0680
https://doi.org/10.1016/j.bbamcr.2021.119201
https://doi.org/10.3389/fnut.2022.883308
https://doi.org/10.1016/j.semcancer.2020.01.009
https://doi.org/10.1016/j.semcancer.2020.01.009
https://doi.org/10.3892/ijo.2022.5362
https://doi.org/10.1155/2021/2719172
https://doi.org/10.3389/fgene.2022.862741
https://doi.org/10.1038/s41467-020-17339-6
https://doi.org/10.1186/s13045-021-01056-8
https://doi.org/10.1186/s13045-021-01056-8
https://doi.org/10.3389/fimmu.2017.00248
https://doi.org/10.3389/fimmu.2017.00248
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993594


Scharping, N. E., Menk, A. V., Moreci, R. S., Whetstone, R. D., Dadey, R. E.,
Watkins, S. C., et al. (2016). The tumor microenvironment represses T cell
mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency
and dysfunction. Immunity 45 (2), 374–388. doi:10.1016/j.immuni.2016.
07.009

Stine, Z. E., Schug, Z. T., Salvino, J. M., and Dang, C. V. (2022). Targeting cancer
metabolism in the era of precision oncology.Nat. Rev. Drug Discov. 21 (2), 141–162.
doi:10.1038/s41573-021-00339-6

Ueda, Y., Ooshio, I., Fusamae, Y., Kitae, K., Kawaguchi, M., Jingushi, K., et al.
(2017). AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis
in cancer cells. Sci. Rep. 7, 42271. doi:10.1038/srep42271

Ueno, G., Iwagami, Y., Kobayashi, S., Mitsufuji, S., Yamada, D., Tomimaru, Y.,
et al. (2022). ACAT-1-Regulated cholesteryl ester accumulation modulates
gemcitabine resistance in biliary tract cancer. Ann. Surg. Oncol. 29 (5),
2899–2909. doi:10.1245/s10434-021-11152-1

van Dijk, P. C., Jager, K. J., Zwinderman, A. H., Zoccali, C., and Dekker, F. W.
(2008). The analysis of survival data in nephrology: Basic concepts and
methods of Cox regression. Kidney Int. 74 (6), 705–709. doi:10.1038/ki.
2008.294

Wettenhall, J. M., and Smyth, G. K. (2004). limmaGUI: a graphical user interface
for linear modeling of microarray data. Bioinformatics 20 (18), 3705–3706. doi:10.
1093/bioinformatics/bth449

Woo, H-H., and Chambers, S. K. (2019). Human ALKBH3-induced m1A demethylation
increases theCSF-1mRNAstability in breast andovarian cancer cells.Biochim.Biophys.Acta.
Gene Regul. Mech. 1862 (1), 35–46. doi:10.1016/j.bbagrm.2018.10.008

Wu, H-L., Gong, Y., Ji, P., Xie, Y-F., Jiang, Y-Z., and Liu, G-Y. (2022). Targeting
nucleotide metabolism: A promising approach to enhance cancer immunotherapy.
J. Hematol. Oncol. 15 (1), 45. doi:10.1186/s13045-022-01263-x

Wu, Y., Wang, Z., Shen, J., Yan, W., Xiang, S., Liu, H., et al. (2022). The role of
m6A methylation in osteosarcoma biological processes and its potential clinical
value. Hum. Genomics 16 (1), 12. doi:10.1186/s40246-022-00384-1

Yu, G., Wang, L-G., Han, Y., and He, Q-Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16 (5), 284–287.
doi:10.1089/omi.2011.0118

Zhang, C., and Jia, G. (2018). Reversible RNA modification N1-methyladenosine
(m1A) in mRNA and tRNA. Genomics Proteomics Bioinforma. 16 (3), 155–161.
doi:10.1016/j.gpb.2018.03.003

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.993594

https://doi.org/10.1016/j.immuni.2016.07.009
https://doi.org/10.1016/j.immuni.2016.07.009
https://doi.org/10.1038/s41573-021-00339-6
https://doi.org/10.1038/srep42271
https://doi.org/10.1245/s10434-021-11152-1
https://doi.org/10.1038/ki.2008.294
https://doi.org/10.1038/ki.2008.294
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1093/bioinformatics/bth449
https://doi.org/10.1016/j.bbagrm.2018.10.008
https://doi.org/10.1186/s13045-022-01263-x
https://doi.org/10.1186/s40246-022-00384-1
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.gpb.2018.03.003
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.993594

	N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvi ...
	Introduction
	Materials and methods
	Data collection
	Screening m1A methylation-related metabolic genes
	Construction and validation of m1A-related metabolic gene signature
	Functional analysis
	Evaluation of immune cell infiltration and immune checkpoints
	Consensus clustering based on MRmetabolism

	Results
	Identification m1A methylation-related metabolic gene
	Construction and validation of the MRmetabolism signature
	GSEA enrichment analysis
	The role of MRmetabolism in tumour immune microenvironment and immunotherapy
	Identification of molecular phenotypes related to MRmetabolism

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


