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Abstract

Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental
factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related
miRNA-EF interactions is becoming crucial not only for the understanding of the mechanisms by which miRNAs and EFs
contribute to disease, but also for disease diagnosis, treatment, and prognosis. In this paper, we analyzed the human
miRNA-EF interaction data and revealed that miRNAs (EFs) with similar functions tend to interact with similar EFs (miRNAs)
in the context of a given disease, which suggests a potential way to expand the current relation space of miRNAs, EFs, and
diseases. Based on this observation, we further proposed a semi-supervised classifier based method (miREFScan) to predict
novel disease-related interactions between miRNAs and EFs. As a result, the leave-one-out cross validation has shown that
miREFScan obtained an AUC of 0.9564, indicating that miREFScan has a reliable performance. Moreover, we applied
miREFScan to predict acute promyelocytic leukemia-related miRNA-EF interactions. The result shows that forty-nine of the
top 1% predictions have been confirmed by experimental literature. In addition, using miREFScan we predicted and publicly
released novel miRNA-EF interactions for 97 human diseases. Finally, we believe that miREFScan would be a useful
bioinformatic resource for the research about the relationships among miRNAs, EFs, and human diseases.
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Introduction

The complex interactions between genetic factors (GFs) and

environmental factors (EFs) contribute jointly to phenotypes and

diseases [1–4]. The in-silico study of GF-EF interactions have

provided great helps in understanding diagnosing, and treating

diseases. For example, the research about the interactions between

drugs (one class of important EFs) and their targets (GFs) has

revealed plenty of important biological insights and promoted

drug-target interactions identification [5–8]. Moreover, the drug-

target interaction prediction methods lay a solid foundation for

identifying new indication of approved drugs and hence accelerate

new drug development and human medical improvement [9–13].

MicroRNAs (miRNAs) are a class of important and newly

identified GFs, which regulate the expression of target genes by

binding to the 39 untranslated regions of target mRNAs at the

post-transcription level mostly in a negative manner. Increasing

studies have shown that miRNAs play critical roles in a number of

biological processes, such as cell growth, differentiation, prolifer-

ation, development, apoptosis, and metabolism [14–16]. There-

fore, dysfunction of miRNAs is associated with a wide spectrum of

human diseases [17–19]. On the other hand, EFs have also been

proved to be very important causes to the development of many

diseases, especially complex diseases [3,4,20]. From above

analysis, we can conclude that identifying disease-related

miRNA-EF interactions is a very important problem in the

computational biology.

In recent years, accumulated studies have shown that miRNAs

functionally interact with a number of EFs, such as diet [21], stress

[22], cigarette smoke [23], air pollution [24], alcohol [25], drug

[26], virus [27], radiation [28] etc, and they work together to affect

phenotypes and diseases, including cancer and cardiovascular

diseases. For example, hypoxia condition could completely reverse

mir-297-mediated repression of VEGFA expression and lead to

cancer [29]. Cigarette smoke condensate (CSC) could significantly

increase mir-31 expression and activate LOC554202 in normal

respiratory epithelia and lung cancer cells, which could result in

lung cancer [30]. Besides contributing to the formation of diseases,

miRNA-EF interactions could also be used to treat some diseases.

For instance, during clinical therapy of advanced stage gastric

cancer patients, doxifluridine could significantly impact the

expression of mir-181b and mir-21 [31]. Paclitaxel could suppress

the expression of mir-29c and contribute to the cure of ovarian

cancer [32].

In terms of their importance, therefore, it becomes emergently

necessary to analyze and predict miRNA-EF interactions and their

relationships with human diseases. In a recent study, we have
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constructed the miREnvironment database, which contains a

comprehensive manually curated collection of experimentally

supported interactions among miRNAs, EFs, and phenotypes [33].

Based on the human miRNA-EF interaction data in the

miREnvironment database, we previously uncovered a number

of biological patterns of miRNA-EF interactions [34]. Moreover,

we presented a method to characterize the relationship of EFs

based on their interacting miRNAs, a framework to predict the

result of cancer treatment by anti-cancer drugs or radiation based

on miRNA signatures, and a model to infer novel EF-disease

associations based on their interacting miRNAs [34]. These studies

present a new dimension of information for miRNA, and suggest a

new way for studying the relationships among GFs, EFs, and

human diseases [34]. However, this model can not predict ternary

relationships among miRNAs, EFs, and diseases together at the

same time. To our knowledge, no computational models for

potential disease-related miRNA-EF interactions inference have

been developed [34]. But such a model is emergently needed. In

this study, by analyzing the human miRNA-EF interaction data in

the context of a given disease, we revealed that for a given disease,

miRNAs with similar functions tend to interact with similar EFs,

and vice versa. This finding establishes the theoretical basis for the

computational inference of novel disease-related miRNA-EF

interactions Based on the above finding, we then developed a

semi-supervised classifier based method (miREFScan) to predict

new disease-related miRNA-EF interactions. Both leave-one-out

cross validation and case study (acute promyelocytic leukemia)

have demonstrated that miREFScan has a reliable predictive

ability. Finally, we applied miREFScan to predict new miRNA-EF

interactions for 97 human diseases, which greatly expanded the

relationship space of miRNAs, EFs, and human diseases.

Materials and Methods

Materials
Here, we briefly introduce the data and corresponding matrix

representation used in this study.

1) The disease-related miRNA-EF interaction matrix A.

In order to quantitatively describe known disease-related

miRNA-EF interaction, we constructed matrix A for each given

disease. The entity A(i,j) in row i column j is 1 if the interaction

between miRNA i and EF j contributes to this disease based on the

confirmation from miREnvironment database [33], otherwise 0.

To construct matrix A, we first downloaded the whole dataset from

the miREnvironment database (http://cmbi.bjmu.edu.cn/miren,

Version of September, 2011), which contains more than 2500

entries in 17 species from 370 publications. Each entry includes

information of a miRNA name, an EF name and their related

phenotype/disease. This database provides a useful biomedical

resource for researchers to study miRNAs, EFs, diseases and the

mutual relationship between them [33] and lays the data

foundation for disease-related miRNA-EF interactions predictive

methods development. We next extracted information of human

and obtained 1379 entries to carry on following research. For these

1379 entries, we double-checked the dataset and implemented the

following operations: removed the entries with a phenotype named

‘‘n/a’’ and normalized the names of miRNAs, EFs, and human

diseases. Finally, we obtained 862 distinct relationships among

miRNAs, EFs, and diseases, which include 418 miRNAs, 138 EFs,

and 97 diseases. This dataset is regarded as the standard dataset in

this study for the performance evaluation of the developed method

in both cross validation and case study. This dataset is listed in

Table S1. The top four diseases that have largest miRNA-EF

interaction dataset are bladder cancer, breast cancer, colon

cancer, and xenograft tumor (Figure S1).

2) The EF chemical structure similarity matrix SC
E (here, E

denotes EF and C denotes chemical structure).

A number of EFs in our dataset are drugs. Chemical structure

similarity is often used as an effective drug similarity evaluation

measure in drug-related research [9,35,36]. Here, we constructed

EF chemical structure similarity matrix SC
E to quantitatively

describe the similarity between EFs. The entity SC
E (i,j) in row i

column j is the chemical structure similarity between EF i and j if

these two EFs are both drugs, otherwise 0. Here, chemical

structure similarity is calculated by SIMCOMP [37] based on the

information of drug chemical structures from KEGG database

[38], PubChem [39], and ChemicalBook (http://www.

chemicalbook.com/). Chemical structure similarity score calculat-

ed by SIMCOMP is a global ratio between the size of common

structures and union structures of two drugs. The chemical

structure similarity matrix is shown in Table S2.

3) miRNA functional similarity matrix SF
M (here, M denotes

miRNA and F denotes functional similarity).

We downloaded the miRNA-miRNA functional similarity

scores from http://cmbi.bjmu.edu.cn/misim/ [40] in May 2011.

Functional similarity between miRNAs was described by matrix

SF
M . The entity SF

M (i,j) in row i column j is the functional

similarity score between miRNA i and j, which is calculated based

on the observation that miRNAs with similar functions tend to be

associated with similar diseases [17].

4) Network-based EF similarity matrix SM
E and SD

E (here, E

denotes EF, M (D) denotes similarity based on EF-miRNA

(disease) interactions).

In order to improve the traditional similarity between EFs,

network-based EF similarity matrix SM
E and SD

E were constructed

here. We can obtain disease-miRNA, disease-EF, and EF-miRNA

interactions from known disease-related miRNA-EF interactions.

Based on these interactions and the underlying assumption that

two EFs are more similar if they interact with more common

miRNAs (diseases), we can give another similarity measure for EF

pairs. The entity SM
E (i,j) in row i column j is the number of known

miRNAs shared by EF i and j. Correspondingly, the entity SD
E (i,j)

in row i column j is the number of known disease shared by EF i

and j. The basic idea of new network-based EF similarity has been

demonstrated in Figure 1.

5) Network-based miRNA similarity matrix SE
M and SD

M (here,

M denotes miRNA, E (D) denotes similarity based on miRNA-EF

(disease) interactions).

In order to improve the functional similarity between miRNAs,

network-based miRNA similarity matrix SE
M and SD

M were

constructed here in the similar way as the matrix constructed in

4). The entity SE
M (i,j)(SD

M (i,j)) in row i column j is the number of

EFs (diseases) shared by two miRNAs. Figure 1 also demonstrates

the basic idea of network-based miRNA similarity.

6) Integrated EF-EF similarity matrix SE and miRNA-miRNA

similarity matrix SM (here, E denotes EF, M denotes miRNA).

In order to accurately describe the similarity between EFs

(miRNAs), we constructed the integrated similarity matrix SE (SM )

between EF (miRNA) pairs based on traditional drug chemical

structure similarity (miRNA functional similarity) and network-

based similarity. Here, network-based similarity matrix must be

normalized. Take SM
E as an example, a diagonal matrix DM

E is

defined such that DM
E (i,i) is the sum of row i of SM

E and

corresponding normalized matrix is defined as follows:

SM
E ~ (DM

E ){1=2 SM
E (DM

E ){1=2, where SM
E (i,j) ~SM

E (i,j)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DM

E (i,i)DM
E (j,j)

p
. Similar operations are then applied to other

Disease-Related miRNAs and EFs Prediction
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three network-based similarity matrix and corresponding normal-

ized matrix SD
E ,SE

M ,SD
M are obtained, respectively. The entity

SE(i,j) in row i and column j is integrated similarity between EF i

and j, which can be calculated as follows:

SE(i,j)~

SC
E (i,j)

3
z

SM
E (i,j)

3
z

SD
E (i,j)

3
i,j[IE

SM
E (i,j)

2
z

SD
E (i,j)

2
otherwise

8>>><
>>>:

where IE is the set of all the drugs in the EFs and trivial

combinatorial coefficients are used here. Similarly, integrated

miRNA similarity matrix can also be defined in this manner as

follows:

SM (i,j)~

SF
M (i,j)

3
z

SE
M (i,j)

3
z

SD
M (i,j)

3
i,j[IM

SE
M (i,j)

2
z

SD
M (i,j)

2
otherwise

8>>><
>>>:

The Theoretical Basis of miREFScan
The theoretical basis of miREFScan is that miRNA pair

interacting with more similar EFs is often more similar, and vice

versa. This assumption is referred to as the similar nature of

disease-related miRNA-EF interactions in this paper. In order to

validate this theoretical basis, we designed and implemented the

following two experiments. The similarity used here is the

integrated similarity between miRNA (EF) pair that has been

defined above.

For the first experiment, we firstly obtained the binary relation

between miRNAs and EFs, which are represented by miRNA and

EF list. Then we calculated corresponding pairwise similarity for

all the possible miRNA combinations in the miRNAs list. For the

EFs list, similar operations were conducted. Thus we obtained two

column vectors denoting pairwise similarity for miRNAs and EFs

in the same combination order, respectively. At last, we calculated

the Spearman correlation coefficient between these two vectors

and corresponding p-value. Here, the null hypothesis for

calculating p-values is that these two column vectors are not

relevant. The above process has been shown in Figure 2. As a

result, the Spearman correlation coefficient is 0.2260 and the

corresponding p-value is 2:2|10{16, indicating a weak positive

correlation between these two vectors. Although the Spearman

Figure 1. Framework for the calculation of network-based miRNA (EF) similarity.
doi:10.1371/journal.pone.0043425.g001

Disease-Related miRNAs and EFs Prediction
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correlation coefficient is relatively small, the fundamental

assumption could be verified considering the fact that the length

of vectors is 371, 091.

Here, we take miRNA as an example for the description

simplicity of the second experiment. Firstly, for each miRNA pair,

we identified all the EFs interacting with these two miRNAs,

separately defined as EF set 1 and EF set 2. Then, the similarity

between EF set 1 and 2 (defined as the maximum similarity of all

EF pairs combined by any EF in set 1 and 2) was calculated.

Thirdly, if the similarity of EF set 1 and 2 was larger than given EF

similarity cutoff, we calculated similarity between these two

investigated miRNAs. Finally, all the miRNA pairs satisfying the

condition that the similarity between corresponding EF sets is

larger than a certain cutoff were selected and statistical analysis

was implemented. Here the cutoff actually means the degree of the

similarity between two EF sets interacting with given miRNAs (i.e.

define what is ‘‘more similar EFs’’ in the similarity nature). Box

plot for the similarity between all the selected miRNA pairs

correspond to different EF similarity cutoffs is shown in Figure 3,

which confirms the statement that miRNAs pair interacting with

more similar EFs is often more similar. Homologously, the

conclusions about EF pairs are also illustrated based on the results

in Figure S2.

This basic principle of miREFScan is formulated into two

classifiers within the framework of Laplacian Regularized Least

Square (LapRLS) in the miRNA and EF space, respectively. Two

classifiers are combined to predict potential disease-related

miRNA-EF interactions. EF-miRNA pairs with high scores are

expected to be associated with disease in interest with high

confidence and have priority to be validated in biological

experiments.

Framework of miREFScan
miREFScan aims to select a continuous classification function

which could reflect the probability that each miRNA-EF pair is

associated with a given disease (Figure 4). It is also expected that the

classifiers could meet the following criterions: (1) The classification

function complies with the prior miRNA-EF interactions informa-

tion; (2) This function is smooth over the miRNA and EF space and

hence meet similar nature of disease-related miRNA-EF interac-

tions, i.e., when similar miRNA (EF) are combined with the same

EF (miRNA), these interactions should obtain similar probability

scores. Towards the above purpose, we proposed a method,

miREFScan, based on a semi-supervised classifier. miREFScan

consists of similarity calculation and employment of the LapRLS,

which defines a cost function and minimizes the cost function to

obtain classification function. miREFScan works as the following

steps. Firstly, traditional and network-based similarity scores are

both calculated between EF (miRNA) pairs to quantitatively define

Figure 2. The flow chart of the first experiment for verifying the similarity nature.
doi:10.1371/journal.pone.0043425.g002

Disease-Related miRNAs and EFs Prediction
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the integrated similarity. Secondly, Laplacian operation is applied to

the integrated similarity matrix for the employment the framework

of LapRLS. Normalized Laplacian similarity matrices are defined as

LE~ (DE) {1=2 (DE{SE)(DE){1=2 and LM~(DM ) {1=2

(DM{SM )(DM ){1=2, where diagonal matrices DM and DE are

defined such that DM (i,i) and DE(i,i) is the sum of the row i of SM

and SE , respectively. Then, cost functions are constructed and

hence classification functions FM in the miRNA space and FE in the

EF space are correspondingly obtained by minimizing cost function,

respectively. Taking classification function in the miRNA space as

an example, optimal classification function can be obtained by

solving the following optimization problems:

min
FM

½ A{FMk k2
F zgM FT

MLM FM

�� ��2

F
�, where :k kF is the Frobenius

norm and gM is the trade-off parameter. The solution of the above

optimization problem is F�M~SM (SMzgMLMSM ){1A [41,42].

In the same way, the optimal classifier in the EF space can be

obtained as follows: F�E~SE(SEzgELESE){1AT . Finally, the

classification functions in different spaces are combined together to

give the final solution, i.e. F�~lF�Mz(1{l)F�E , where l is the

weight parameter describing the importance of miRNA and EF

space for final prediction results.

Results

Leave-one-out Cross Validation
Although three kinds of parameters in miREFScan can be

better selected through further cross-validation, here we select the

parameter according to some previous studies and will discuss the

parameter effect in the next section for simplicity [9,42].

Therefore, we choose gM~gE~0:3 for trade-off parameters in

the cost functions [42], l~0:5 for weight parameter in the final

classifier [42] and trivial mean parameter for the similarity

integration [9]. We performed cross validation to evaluate the

performance of miREFScan. When each cross validation run is

implemented, network-based miRNA similarity and EF similarity

will be recalculated, i.e. we discard the information from tested

disease-related miRNA-EF interactions. miREFScan aims to

prioritize candidate miRNA-EF interactions for a specific given

disease, i.e. it can not prioritize candidate interaction for all the

diseases in the dataset simultaneously. In the gold standard

dataset, each disease is associated with 8.89 miRNA-EF interac-

tions on average. This fact means little difference between leave-

one-out cross validation and 10-fold cross validation. Many

diseases have little known miRNA-EF interactions such as acute

myeloid leukemia [43], alcoholic liver disease [44], and lymphoma

[45]. Out of 97 diseases investigated in this paper, 32, 17, 12, 9, 3

diseases have 1, 2, 3, 4, 5 known related interactions, respectively.

This fact means that we can’t implement multi-fold cross

validation for substantial proportion of diseases. Hence, here we

use leave-one-out cross validation for performance evaluation.

When leave-one-out cross validation is implemented, each

known miRNA-EF interaction associated with a given disease is

taken in turn as test sample and other known interactions

associated with the same disease are taken as training samples.

Because method developed in this paper is disease-dependent and

need known seed interactions, we can’t implement leave-one-out

cross validation for the diseases which have only one miRNA-EF

relation. For each given disease, candidate sample consists of

Figure 3. Box plot for the similarity between all the selected miRNA pairs correspond to different EF similarity cutoffs is shown.
doi:10.1371/journal.pone.0043425.g003

Disease-Related miRNAs and EFs Prediction
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known left-out interaction and unknown miRNA-EF interactions.

Then, we evaluate the method based on the rank of this known

left-out interactions in the candidate samples. ROC curve plots

true positive rate (sensitivity) versus false positive rate (1-specificity)

at different cutoffs. AUC is the area under ROC curve, and

AUC = 1 shows perfect performance and 0.5 indicates random

performance. Actually, no known disease-related miRNA-EF

interactions prediction methods have been reported until now.

Hence, we compared miREFScan with some similar methods

which either ignore the use of network-based similarity or use the

classifier in the single space. An important fact must be pointed out

is that these methods with relatively weak predictive actuary are

firstly developed in this paper. The aim of comparison between

these methods with miREFScan is to demonstrate the reasonabil-

ity of making full use of network-based similarity and combining

classifiers in different spaces into final predictive results. When

leave-one-out cross-validation is implemented, ROC curve of each

disease can be obtained to assess how well the known miRNA-EF

interactions of this disease rank relative to the candidate ones.

Therefore, the AUC for each disease is listed in Table S3. Because

we will have different AUCs for different diseases, hence we gave a

overall AUC for the global evaluation of the methods for disease-

related miRNA-EF interactions prediction. The overall AUC

comparison with various other methods for all the diseases in gold

standard dataset is shown in Figure 5. As a result, miREFScan

achieved an AUC of 0.9564 and significantly improved other

methods, indicating that miREFScan has a reliable performance.

The Effect of Parameters on miREFScan Performance
There are three kinds of parameters in miREFScan, including

combinatorial coefficients in integrated similarity, trade-off

parameters in the cost function and weight parameter in the final

classifier.

In Figure 5, the combined classifier without network-based

similarity can still obtain a good performance in leave-one-out

cross validation (AUC = 0.9251). This observation shows that

Figure 4. The flowchart of miREFScan includes three steps: calculation of integrated similarity, classifier construction, and classifier
combination to obtain final predictive results.
doi:10.1371/journal.pone.0043425.g004

Disease-Related miRNAs and EFs Prediction
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combinatorial coefficients have little impact on predictive accuracy

of miREFScan. In our previous study about drug target

interactions prediction, combinatorial parameters were selected

in the same way to integrate different drug similarity measures and

we also had illustrated the robustness of predictive accuracy to

parameter selection [9].

Furthermore, the selection of trade-off parameters is in the same

way as the method for drug-target interaction predictions by Xia

et al [42], where good predictive performance had been obtained.

To further confirm that miREFScan is robust to the selection of

trade-off parameters in the cost functions, various values are

assigned to gM and gE and corresponding AUC of miREFScan is

calculated in the framework of leave-one-out cross validation

(Table 1). The results show that miREFScan is robust to this

parameter.

For the selection of weight parameter in the final classifier, we

admit the fact that there are no good methods to combine different

predictive result from corresponding space into the final result.

Therefore, we follow the rules used by Xia et al [42], i.e.

implement mean operation for results in the different spaces. From

Figure 5, we observe that only classifier in miRNA space still

obtains a good accuracy, which demonstrates the importance of

miRNA dataset. This observation may arise from the fact that

most of EFs show little similarity to other EFs. To investigate

whether the performance of miREFScan is robust to the selection

of this weight parameter, various values from 0.1 to 0.9 are

assigned to l and corresponding AUC is also calculated in the

framework of leave-one-out cross validation (Table 2). As a result,

predictive accuracy of miREFScan is not sensitive to the selection

of weight parameter.

Case Study
Acute promyelocytic leukemia (APL), a subtype of acute

myelogenous leukemia, is a cancer of the blood and bone marrow.

As a common and highly fatal functional disease, discovering

Figure 5. AUC comparison between miREFScan and other methods by leave-one-out cross validation. The result shows that miREFScan
has a reliable performance.
doi:10.1371/journal.pone.0043425.g005

Table 1. AUC in the framework of leave-one-out cross
validation schema under different trade-off parameters
combination is calculated to confirm that miREFScan is robust
to the selection of parameter values.

gE gM 0.001 0.01 0.1 1 10 100 1000

0.001 0.9503 0.9576 0.9544 0.9543 0.9516 0.9573 0.9556

0.01 0.9324 0.9597 0.9578 0.9577 0.9550 0.9606 0.9590

0.1 0.9197 0.9387 0.9565 0.9577 0.9550 0.9606 0.9589

1 0.9137 0.9230 0.9388 0.9573 0.9555 0.9611 0.9595

10 0.9107 0.9171 0.9232 0.9464 0.9510 0.9569 0.9553

100 0.9131 0.9193 0.9243 0.9459 0.9518 0.9581 0.9564

1000 0.9121 0.9183 0.9233 0.9446 0.9507 0.9569 0.9552

doi:10.1371/journal.pone.0043425.t001

Disease-Related miRNAs and EFs Prediction

PLOS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e43425



effective therapy ways for APL is definitely an urgent and significant

problem in clinical treatment [46]. Although the pathogenesis of APL

is very complicated and need to be further comprehended,

researchers have confirmed that the combined action of certain

miRNAs and EFs is likely to play important roles during the clinical

treatment process [47]. For example, 100 nmol/L all-trans retinoic

acid could suppress the regulation of several miRNAs, such as let-7a,

mir-15a, and mir-16 which is helpful to the therapy of APL [47], and

the interaction between mir-21 and arsenic trioxide (ATO), which

could regulate ATO-induced cell death, may have a great curative

effect for this terrible disease [48]. Based on the above instances,

discovering novel miRNA and EF combinations associated with APL

is of great importance. Here we predicted novel APL-related

miRNA-EF interactions using miREFScan. As a result, for the top

1% candidate samples, 49 novel APL-related miRNA-EF interac-

tions (Table 3) have been confirmed by latest experimental literatures

[49]. Especially, mir-16 and let-7a have been proved to be modulated

by ATO in the apoptosis process of APL cell NB4 [49].

Consequently, ATO has already been identified as an active agent

in the treatment process of APL, both in induction, consolidation, and

retrieval therapy stages (http://www.cancer.gov/cancertopics/pdq/

treatment/childAML/HealthProfessional/page7). Moreover, these

two APL-related miRNA-EF interactions were ranked the 3rd and

the 4th in predictive list among more than 50, 000 candidate

interactions. Interestingly, the 2nd ranked interaction is between mir-

15a and arsenic trioxide, which has been confirmed to produce

synergistic apoptosis induced effect in certain primary leukemic cells

[50], which means this interaction between miRNA and EF might be

a potential therapeutic train of thought for the treatment of many

kinds of acute leukemia containing APL. For the 1st ranked

prediction between Retinoic Acid and mir-21, we can’t find positive

or negative evidences to support or negate this prediction. From

known APL-related interactions, we can find three APL-related

interactions between Retinoic Acid and let-7a, mir-15a, mir-16,

respectively. Considering the fact that these three miRNAs all have

relatively high functional similarity with mir-21, we can infer the

potential probabilities for 1st ranked interactions. In conclusion, the

case study of APL suggests that miREFScan has potential value to

discover novel miRNA-EF interactions for given diseases, which will

be useful in understanding diseases, diagnosing diseases, and treating

diseases.

Predicting Novel Disease–related miRNA-EF Interactions
The leave-one-out cross validation and the case study about

acute promyelocytic leukemia have demonstrated that miREFS-

can has a reliable predictive accuracy. We further applied

miREFScan to all the 97 human diseases included in the

miREnvironment database. We publicly released the top 100

novel miRNA-EF interactions for each disease for further

biological experiment validation (Table S4). These predicted

novel relationships among miRNAs, EFs, and human diseases

could be useful for biomedical research.

Discussion

Predicting novel disease-related miRNA-EF interactions is

becoming an emergently important problem in bioinformatics,

which could not only benefits the understanding of the disease

pathogenesis at the miRNA and EF levels, but also plays

significant roles in the prognosis, diagnosis, treatment and

prevention of disease [34]. In this work, we first observed that

miRNAs (EFs) pair interacting with more similar EFs (miRNAs) is

often more similar after analyzing the human disease related

miRNA-EF interaction data. Based on the above finding, we then

developed the miREFScan to predict novel disease-related

interactions between miRNAs and EFs based on a semi-supervised

classifier in the framework of LapRLS. The result shows that

miREFScan has a reliable accuracy of prediction. miREFScan is

the first computational tool which can predict ternary relationships

among miRNAs, EFs, and diseases together at the same time. It is

anticipated that miREFScan would be a useful resource for

researches about the relationships among miRNAs, EFs, and

human diseases.

The reliable performance of miREFScan could be attributed to

the combination of the following several factors. Firstly, a highly

reliable set of experimentally supported disease-related miRNA-

EF interactions are used as training dataset for prediction.

Secondly, from the AUC comparison between miREFScan and

classifier in combined space without introducing network-based

similarity (Figure 5), we can conclude that proposed integrated

similarity between miRNA (EF) pairs improves traditional

similarity evaluation measure. More importantly, from the AUC

comparison between miREFScan and classifier in single space by

introducing network-based similarity (Figure 5), the benefits from

combing predictive results in different spaces are significantly

shown. Finally, a semi-supervised classifier is constructed to infer

novel disease-related miRNA-EF interactions, which could over-

come the difficulty of obtaining negative samples in the practical

situations. Actually, the advantage of semi-supervised methods

over supervised methods has been demonstrated in many previous

studies, especially in the practical problems lacking of negative

samples. In summary, the reliable performance of miREFScan

could be attributed to the fact that miREFScan integrates

Table 2. AUC in the framework of leave-one-out cross validation schema under different weight parameters is calculated to
confirm that miREFScan is robust to the selection of parameter values.

l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AUC 0.9347 0.9444 0.9510 0.9547 0.9564 0.9572 0.9575 0.9576 0.9577

doi:10.1371/journal.pone.0043425.t002

Table 3. Forty-nine APL-related interactions between miRNAs
and arsenic trioxide predicted by miREFScan are confirmed by
experimental literature [49].

mir-16 let-7a let-7d let-7g mir-181b mir-155 mir-19a

let-7f mir-146a mir-181a mir-29a mir-200c mir-199a mir-18a

mir-27a mir-125b mir-17 mir-126 mir-10a mir-181c mir-203

mir-98 mir-143 mir-20b mir-100 mir-23b mir-132 mir-1

mir-9 mir-146b mir-10b mir-181d mir-27b mir-34c mir-191

mir-125a mir-372 mir-133b mir-148a mir-215 mir-96 mir-149

mir-150 mir-140 mir-214 mir-196a mir-30c mir-212 mir-128a

doi:10.1371/journal.pone.0043425.t003
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heterogeneous datasets to capture the relationship between

miRNAs, EFs, and diseases.

Of course, miREFScan has some limitations. Firstly, miREFS-

can can not work for the diseases which do not have known

miRNA-EF interactions. In the future, we plan to introduce

disease similarity information to solve this problem. Secondly,

similarity measures and integration methods from different

similarity measures can be further improved. We want to integrate

more biological relevant information to define miRNA-miRNA

similarity and EF-EF similarity and develop methods such as order

statistics used in the ENDEAVOUR [51] and rank fusion

algorithm in MCDGPA [52]. Arets et al [51] used order statistics

to fuse different prioritizations from multiple heterogeneous

datasets into a global ranking for disease gene prioritization to

integrate different similarity measures. In MCDGPA for disease

gene prioritization, we proposed the rank fusion algorithm to fuse

local rank of gene in each module into global rank in the entire

network [52]. Thirdly, the performance of miREFScan can be

further improved when more disease-related miRNA-EF interac-

tion data are collected in the miREnvironment database. In

addition, the final prediction results of miREFScan come from two

different classifiers in the spaces of miRNAs and EFs, respectively.

How to directly obtain a single classifier or reasonably integrate

different classifiers for novel predictions will be an important

problem for future research.

Supporting Information

Figure S1 The top four largest miRNA-EF interaction
networks, which are related with bladder cancer (a),

breast cancer (b) colon cancer (c), and Xenograft tumor
(d).
(TIF)

Figure S2 Box plot for the similarity between all the
selected EF pairs correspond to different miRNA
similarity cutoffs is shown.
(TIF)

Table S1 All the experimentally supported human
disease-related miRNA-EF interactions, which is regard-
ed as the gold standard dataset for the performance
evaluation in the term of cross validation and case
study.
(XLS)

Table S2 The chemical structure similarity between all
the 138 EFs in the gold standard dataset.
(XLS)

Table S3 The AUC for each disease when leave-one-out
cross validation is implemented.
(XLS)

Table S4 Top 100 novel disease-related miRNA-EF
interactions for all the 97 diseases.
(XLS)
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