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Recent technological progress in themultiband echo planer imaging (MB EPI) technique enables acceleratedMR
diffusionweighted imaging (DWI) and allowswhole brain,multi-b-value diffusion imaging to be acquiredwithin
a clinically feasible time. However, its applications at 7 T have been limited due to B1 field inhomogeneity and
increased susceptibility artifact. It is an ongoing debatewhether DWI at 7 T canbeperformedproperly in patients,
and a systematic SNR comparison for multiband spin-echo EPI between 3 T and 7 T has not been methodically
studied. The goal of this study was to use MB EPI at 7 T in order to obtain 90-directional multi-shell DWI within
a clinically feasible acquisition time for patientswith glioma. This study included an SNR comparison between3 T
and 7 T, and the application of B1 mapping and distortion correction procedures for reducing the impact of var-
iations in B0 and B1. The optimizedmultiband sequence was applied in 20 patients with glioma to generate both
DTI and NODDI maps for comparison of values in tumor and normal appearing white matter (NAWM). Our SNR
analysis showed that MB EPI at 7 T was comparable to that at 3 T, and the data quality acquired in patients was
clinically acceptable. NODDI maps provided unique contrast within the T2 lesion that was not seen in anatomical
images or DTImaps. Such contrastmay reflect the complexity of tissue compositions associatedwith disease pro-
gression and treatment effects. The ability to consistently obtain high quality diffusion data at 7 T will contribute
towards the implementation of a comprehensive brain MRI examination at ultra-high field.

© 2015 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is estimated that 68,470 new cases of primary brain and central
nervous system tumors are expected to be diagnosed in the United
States in 2015, and gliomas account for the majority of primary malig-
nant brain tumors in adults (Ostrom et al., 2014). Although low-grade
lesions have a better prognosis, they often undergo transformation to
a more malignant, higher grade at the time of progression. Both primary
and recurrent gliomas infiltrate into adjacent brain tissue, making it diffi-
cult to define tumormargins. Proper diagnosis and grading, correct local-
ization, and assessment of response to therapy are of great importance for
all phases of treatment planning and selection.

Conventional T1- and T2-weighted MRI are applied in conjunction
with an injection of a Gadolinium-based contrast agent to delineate
ging, UCSF—Mission Bay, Byers
ncisco, CA, 94158-2330, USA.
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structural abnormalities in the brain and assess regions where the
brain–blood barrier has been compromised. However, these conven-
tional anatomic sequences have failed to reliably distinguish between
complex tissue componentswithin and around brain tumors such as in-
terstitial edema, gliosis, inflammation, cysts, necrosis and active tumor.
The specificity of conventional MRI is further compromised by treat-
ment with radiation, temozolomide and anti-angiogenic agents (Wen
et al., 2010).

Diffusion weighted imaging (DWI) has been a rapidly expanding
field in MRI and has been found valuable in evaluating many diseases
in the brain (Lerner et al., 2014; Rovaris et al., 2005; van Everdingen
et al., 1998). By sensitizing MR signal to the random motion of water
molecule protons at a microscopic level (of the order of 5–20 µm), it is
able to probe tissuemicrostructures in the brain such as axons, dendrites,
glial cells, and extra-cellular spaces (Yablonskiy and Sukstanskii, 2010), in
a manner that may provide valuable insights into tumor physiology. A
simple andmostwidely usedmodel to describe changes in signal intensi-
ty is diffusion tensor imaging (DTI),where the directionalmotionofwater
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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behavior is characterized by a 3 dimensional tensor. The apparent diffu-
sion coefficient (ADC) derived from tensor modeling is a sensitive yet
non-specific metric when evaluated in the highly heterogeneous tumor
environment. On serial MRI studies, reduction in ADC may be the result
of decreasing vasogenic edema or an increase in cell density. Increased
ADC may reflect tissue necrosis, an increase in interstitial fluid, or a de-
creasing cell density due to effective treatment. The ability to distinguish
between the mechanisms that lead to changes in ADCwould be very im-
portant for treatment planning andmonitoring patients. One approach to
addressing this problem is to use a more sophisticated diffusion model
that can distinguish between the different tissue compartments.

Neurite OrientationDispersion andDensity Imaging (NODDI) is a re-
cently proposed diffusionmodel that allows the quantification of specif-
ic microstructural features directly related to neuronal morphology
(Zhang et al., 2012). In particular, the NODDI model ascribes the signal
from water protons in neuronal tissue to one of three different pools:
i) free water in areas such as the ventricles that contain CSF and exhibit
isotropic diffusion; ii) restrictedwater within linear structures that rep-
resent dendrites and axons; and iii) water that is anisotropically hin-
dered, representing diffusion within glial cells, neuronal cell bodies
and extracellular environment. An orientation dispersion index (OD)
is produced to describe the coherence of neurite directions, with a
lower value indicating more coherent organization. The optimized 30-
minute protocol limited the NODDI model to a 2-shell 90-direction
DWI acquisition, which has been shown to produce reliable NODDI
maps (Zhang et al., 2012). Recent applications of NODDI that have pro-
vided encouraging results are from patients with multiple sclerosis
(Magnollay, 2014; Schneider et al., 2014), focal cortical dysplasia
(Billiet et al., 2014; Winston et al., 2014), neurofibromatosis (Billiet
et al., 2014), healthy newborn brain (Kunz et al., 2014), as well as in
the spinal cord (Grussu et al., 2015). These results are all at 3 T, and
the method has not yet been investigated at 7 T, or in patients with
brain tumors. The technique is enticing for the evaluation of patients
with glioma, in that we hypothesize that changes in vasogenic edema
would be reflected in the free water compartment (Stummer, 2007),
and changes in cell densitywould be associatedwith changes in the hin-
dered water compartment.

The availability of improved hardware and fast acquisition tech-
niques make it possible to obtain 90-directional multi-shell DWIwithin
a clinically feasible time. Conventional parallel imaging (Blaimer et al.,
2004; Deshmane et al., 2012) results in a significant loss in SNR because
the number of phase encoding steps that are acquired is reduced. For 2D
multi-slice imaging, significant improvements can be achieved by excit-
ing several slices at the same time usingmultiband radio frequency (RF)
pulses. Since each slice is excited and sampled identically without skip-
ping or missing k-space data, there is no loss of SNR due to reduced ac-
quisition time as is encountered with parallel imaging. This technique
has been successfully implemented in the highly publicized Human
Connectome Project for accelerated diffusion imaging acquisition at
3 T (Setsompop et al., 2013; Sotiropoulos et al., 2013). At higher field
strengths, reduced T2 compromises the gain in SNR from the increased
static magnetization, making the benefit of diffusion imaging at ultra-
high field unclear. Other challenges, such as increased B0 and B1 field
inhomogeneity, can also influence the quality of diffusion data at high
field (Uğurbil et al., 2013). Wu et al. (Wu et al., 2013) have attempted
to compensate for the B1 inhomogeneity through RF shimming of mul-
tiband pulses in both single and parallel transmit settings. Another
group has also implemented themultiband spoke technique to both im-
prove the B1 homogeneity across slices and reduce peak RF power
(Sharma et al., 2015). With the efforts put into the optimization for ac-
quisition of diffusion data at 7 T, it has been anticipated that the diffu-
sion data set acquired with a more powerful gradient set at 7 T will be
comparable to 3 T data (Uğurbil et al., 2013). Despite these advances,
the applications of ultra-high field diffusion weighted imaging have
been limited, and there has not yet been a rigorous direct comparison
of the SNR for diffusion imaging between 3 T and 7 T.
The goal of this study was to use multiband DWI at 7 T in order to
obtain 90-directional multi-shell data within a clinically feasible acqui-
sition time for patients with glioma. This study included an SNR com-
parison between 3 T and 7 T, and the application of B1 mapping and
distortion correction procedures for reducing the impact of variations
in B0 and B1. The optimized multiband sequence was applied to gener-
ate both DTI and NODDI maps and to compare the values in tumor and
normal appearing white matter (NAWM).

2. Data acquisition

2.1. Multiband acquisition

Multiband EPI was conducted with a quadrature transmit and
32-channel receive head coil (Nova Medical, Wilmington, MA) on GE
scanners. Three slices (40 mm apart) were simultaneously excited
(multiband factor of 3, or MB = 3) with a three-band RF excitation
(no inter-slice shift) and axial spin-echo echo planer (SE-EPI) readout
with phase encoding (PE) in the anterior–posterior (AP) direction,
resulting in 60 slices for whole brain coverage with isotropic voxels of
2 × 2× 2mm3 over a field of view of 256× 256mm2. 75% partial Fourier
k-space sampling was employed to reduce TE and an in-plane accelera-
tion factor of 3 (R = 3) was used, which we found to be the best trade-
off between TE and distortion. With a 50 mT/m amplitude gradient sys-
tem at b=2000 s/mm2, TEwas 71.6ms and TRwas 3200ms. Calibration
images were acquired at the beginning of the sequence with the same
three-band excitation pulses but with different phase offsets applied
between the bands so that they could be separated through a Fourier
Transform (FT). This used the same SE-EPI readouts but was interleaved
three times to fully sample k-space while having the same k-space
traversal speed as the actual accelerated acquisition.

A B1 mapping procedure was performed prior to the multiband
acquisition to determine the optimal transmit gain (TG) (D. Kelley,
2013) that can account for the B1 inhomogeneity at high field. B1
maps were generated using a gradient echo acquisition sequence
(TR/TE = 250/8 ms) with a 1 ms adiabatic Bloch–Siegert pulse and
the transmitter gain was automatically adjusted based on the medi-
an B1 of the image volume.

To correct for the susceptibility-induced distortion, one additional
b = 0 image was acquired with reversed phase encoding blips using
the same multiband sequence. This resulted in a pair of b = 0 images
with distortions going in opposite directions and allowed the off-
resonance field to be estimated with a method similar to that described
in Andersson et al. (2003) and implemented in FSL (Smith et al., 2004).
The correction was then applied for the other DWIs.

2.2. Volunteers3 data acquisition for SNR comparison

5 volunteers were scanned with both GE 3 T MR 750 and GE 7 T
MR950 scanners (GE Healthcare, Waukesha, WI) using 32-channel
receive-only head coils (Nova Medical, Wilmington, MA) and the
same gradient system (50 mT/m amplitude and 200 T/m/s slew rate).
Ten b = 0 (T2 weighted) images were repetitively acquired with both
standard EPI (MB = 1) and MB = 3 using the acquisition parameters
described above. With the same TR, only the central slab of the brain
was acquired for MB = 1.

2.3. Phantom data acquisition for determination of g factor maps

A homogeneous spherical water phantom was used to evaluate the
geometry factor (g-factor) map which quantifies the fractional loss in
SNR caused by the non-orthogonality of the array coil sensitivities
(Pruessmann et al., 1999). Two data sets were acquired in each scanner
using a gradient-recalled echo (GRE) imaging sequence (FOV =
256 × 256 mm2, matrix size = 64 × 64, slice thickness = 2 mm). The
first data set was used to assess the noise covariance matrix and was



Table 2
Summary of data acquisition with phantom, volunteers and patients.

Phantom Volunteer Patient

Purpose g-Factor estimation SNR
comparison

NODDI characterization

# subjects 1 5 20

Scanner 3 T 7 T 3 T 7 T 3 T 7 T

Sequences GRE RF on
GRE RF off

GRE RF on
GRE RF off

MB1
MB3

MB1
MB3

T1-nogad
T2 FLAIR
T1-gad
Standard DWI

MB NODDI
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obtained with all RF pulses suppressed. The second data set served to
determine coil sensitivity maps for each coil element and was obtained
with regular RF excitation.

2.4. Patients3 NODDI data acquisition

Twenty patients with glioma (13 males and 7 females, median
age = 54 years) were referred by physicians from the neuro-oncology
service at our institution and recruited to this study. The characteristics
of the patient population are summarized in Table 1. Tumors had been
graded by histological examination of tissue samples obtained during
biopsy or surgical resection: 10 had grade II, 3 had grade III and 7 had
grade IV. All patients were recurrent and 4 patients were showing pro-
gressive disease at the time of the scan.

A two-shell diffusion imaging protocol was acquired on the 7 T
scanner with MB = 3. This protocol included 7 b = 0 images (and
one additional b = 0 image with reversed phase-encoding gradient
for distortion correction), 30 directions at b = 1000 s/mm2, and 60
directions at b = 2000 s/mm2 with a total acquisition time of 5′ 42″.

Anatomical images of these patients were acquired at the 3 T
scanner, including sagittal T1-weighted spin echo, axial fluid attenuated
inversion recovery (FLAIR), contrast-enhanced 3D spoiled gradient-
recalled acquisition in the steady state (SPGR) T1-weighted and T1-
weighted post-contrast spin echo images (T1-gad). In 14 patients, 24-
directional DWI with a standard SE-EPI sequence was also acquired
(repetition time (TR)/echo time (TE) = 10 s/99 ms, voxel size =
2×2 × 2 mm3, in-plane R = 2, b = 1000 s/mm2).

Table 2 summarized the data acquisition with phantom, volunteers
and patients.

2.5. Postprocessing and analysis

2.5.1. Multiband image reconstruction
The image was aliased in both SI and AP directions, and was unfold-

ed using the SENSE/GRAPPA procedure as described in Blaimer et al.,
(2004). The calibration data were first concatenated and Fourier trans-
formed (FT) to generate the fully sampled k-space. Once the kernel
has been generated, aliased images went through the reconstruction
pipeline as illustrated in Fig. 1. The undersampled k-space was first
zero filled in the direction that no acceleration was performed (left–
right, Fig. 1B) and a standard GRAPPA/ARC procedure was applied to re-
construct the k-space data (Fig. 1C). After an inverse Fourier Transform
(ifft), the unaliased images (Fig. 1D)were individually transformed into
k-space again (Fig. 1E) to reconstruct the full k-space (Fig. 1F) through a
Table 1
Characteristics of patients.

No. Age Sex Grade RT Chemotherapy Disease state Image comments

1 59 M 2 Yes TMZ Recurrent Stable
2 65 M 4 Yes TMZ Recurrent Stable
3 48 M 2 Yes None Recurrent Stable
4 68 F 2 Yes TMZ Recurrent Progressive disease
5 60 F 3 Yes TMZ Recurrent Stable
6 34 M 2 No None Recurrent Stable
7 50 M 3 No TMZ Recurrent Stable
8 44 F 4 Yes TMZ Recurrent Progressive disease
9 48 M 4 Yes TMZ Recurrent Progressive disease
10 59 M 2 Yes TMZ Recurrent Stable
11 40 M 2 No None Recurrent Stable
12 41 F 4 Yes TMZ Recurrent Stable
13 65 M 2 Yes RAD001 Recurrent Stable
14 46 M 4 Yes TMZ Recurrent Stable
15 57 F 4 Yes None Recurrent Stable
16 55 M 4 Yes TMZ Recurrent Stable
17 27 F 2 Yes None Recurrent Stable
18 60 F 3 Yes TMZ Recurrent Stable
19 52 M 2 Yes TMZ Recurrent Stable
20 75 M 2 Yes None Recurrent Progressive disease
partial k-space reconstruction method using projection onto convex
sets (POCS) (Yudilevich and Stark, 1989). A 2D Fermi filter was then
applied to reduce Gibbs ringing, and single coil images (Fig. 1G) were
combined with a sum of squares coil combination (Fig. 1H).

2.5.2. SNR calculation and determination of g-factor
Repeated acquisitions of b= 0 (T2weighted) images fromMB1 and

MB3 of all 5 volunteers were used to calculate SNR according to Dietrich
O et al. (Dietrich et al., 2007). Each slice of the volunteer data was first
smoothed with an 8-by-8 mean filter. The SNR was then calculated
from Eq. (1) for each voxel within the brain.

SNR ¼ meanðvoxelÞ
stdðvoxelÞ ð1Þ

To calculate g-factor maps, phantom data were used to estimate
relative coil sensitivity maps using the eigenvector method de-
scribed by Walsh et al. (Walsh et al., 2000). g-Factor maps were then
estimated from the sensitivity maps with the equation shown in Eq. (2)
(Pruessmann et al., 1999) for different under-sampling schemes (MB1,
R = 3 and MB3, R = 3).

g j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�
RΨ

�1CR j; jC
�
RΨ

�1CR
�1

j; j

r
ð2Þ

CR is the coil sensitivity encodingmatrix corresponding to an R fold accel-
erated acquisition. Ψ is the noise covariance matrix of the 32-channel
coils, which was estimated by calculating the covariate matrix of the
noise data acquired with RF excitation disabled.

2.5.3. NODDI and DTI processing
After the multiband data were reconstructed, a susceptibility distor-

tion correction was applied using the TOPUP method available in FSL
(Andersson et al., 2003; Smith et al., 2004). Eddy current correction
was followed by applying affine registration to a reference volume
(eddy_correct, FSL).

The NODDI and DTI models were fitted within the brain mask.
The NODDI MATLAB toolbox (http://www.nitrc.org/projects/noddi_
toolbox/) was employed for NODDI. In order to fit the NODDI model,
the two diffusivities representing the diffusion coefficient of the isotropic
compartment (diso) and the intrinsic diffusivity of the intra-neurite com-
partments (d//) were fixed as in the original model (Zhang et al., 2012) to
diso = 3.00 µm2/s and d// = 1.70 µm2/s, which are the values commonly
employed in literature for the free diffusivity of water particles in CSF and
neural tissue in vivo at body temperature. The DTI fitting program in FSL
was employed to fit DTI with weighted least squares tensor fitting (dtifit,
FSL). Both models were fitted to the whole double-shell data set, and
the DTI model was also applied separately to the shell acquired at
b = 1000 s/mm2 and a shell acquired at b = 2000 s/mm2.

The following voxel-wise maps were obtained. For NODDI: the
isotropic volume fraction (viso), the intra-neurite (restricted) volume
fraction (vic), the extra-neurite (hindered) volume fraction (vec) and
the orientation dispersion index (OD). In this study, we calculated the

http://www.nitrc.org/projects/noddi_toolbox/
http://www.nitrc.org/projects/noddi_toolbox/


Fig. 1.Reconstruction flowchart for a data set withMB=3 and in-plane R=3. A. Aliased image and its undersampled k-space in PE direction. B. Zero filled k-space in the non-accelerated
direction for un-folding aliased slices. C. Reconstructed full k-space with GRAPPA/ARC. D. Single coil un-aliased images. E. K-space of un-aliased slices. F. Full k-space after partial k-space
reconstruction with POCS. G. Single coil images after Fermi filtering in k-space. H. Reconstructed images with sum of square coil combination.
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effective volume fraction for vic and vec so that viso + vic + vec = 1. For
DTI, we evaluated ADC and fractional anisotropy (FA).

3 T anatomical images were rigidly aligned (flirt, FSL) to 7 T diffu-
sion images in order to generate region of interests (ROIs) for the
evaluation of NODDI parameters. ROIs included voxels within the
Fig. 2. A. Center slice and the SNR map of a volunteer acquired with MB1 and MB3 at 3 T and 7
reduction in SNR fromMB1 toMB3 is smaller at 7 T compared to 3 T. B. Scatter plot of median SN
with a black line, with median SNR = 68.4 and 43.9 for 3 T MB1 and MB3, 50.2 and 46.1 for 7
region of T2 hyperintensity (T2L) on the FLAIR images and
contrast-enhancing lesions (CEL) on the T1-gad images. NAWM,
gray matter (GM) and cerebrospinal fluid (CSF) were defined from
the 3D SPGR brain images. Median values of diffusion maps were an-
alyzed within each ROI.
T. It can be noted that SNR is less homogeneous at 7 T due to B1 inhomogeneity, and the
R values of all slices of 5 volunteers (V1–V5).Median SNR of eachmethodwas highlighted
T MB1 and MB3.
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2.5.4. Statistical analysis
Statistical analysis was performed usingMatlab (Mathworks, Natick,

MA). Nonparametric Wilcoxon rank sum tests were applied to assess
differences in diffusion maps between tumor grades, or between differ-
ent regions of interests (ROIs), including T2L, CEL, NAWM, GM and CSF.
A p-value of 0.05 or smaller was considered to be significant. Adjust-
ment for multiple comparisons was not applied due to the exploratory
nature of this study.

3. Results

3.1. SNR comparison between 3 T and 7 T

Fig. 2A showed the center slice and the SNR map in a volunteer ac-
quired with MB1 and MB3 at 3 T and 7 T. It can be noted that SNR is
less homogeneous at 7 T due to B1 inhomogeneity, and the reduction
in SNR fromMB1 to MB3 is smaller at 7 T compared to 3 T. The median
SNRs of all slices were compared by a scatter plot for all 5 volunteers in
Fig. 2B. Themedian SNR was 68.4 and 43.9 for MB1 andMB3 at 3 T, and
50.2 and 46.1 for MB1 and MB3 at 7 T.
Fig. 3. A. g-Factor maps at 3 T and 7 T when undersampling in one direction (MB1, in-plane,
sensitivity maps estimated from a phantom data acquired at different field strengths with 32
method were shown in black line, with median 1/g = 0.97 and 0.57 for 3 T MB1 and MB3 and
3.2. g-Factor maps

g-Factor maps (center slice and slices 40 mm above and below)
at 3 T and 7 T for different undersampling schemes were shown in
Fig. 3A. Median 1/g values of all slices were scatter plotted in Fig. 3B,
with a black line indicating the median value of each method. Median
1/g was 0.97 and 0.57 for 3 T MB1 and MB3 and 0.98 and 0.71 for 7 T
MB1 and MB3. The noise correlation matrix of the 3 T 32-channel coil
and 7 T 32-channel coil was shown in Fig. 3C.

3.3. DTI and NODDI results in patients

3.3.1. Quality of fit of DTI
14 out of 20 patients had 3 T DTI data available acquiredwith a stan-

dard sequence. 3 T and 7 T DTI data were compared for this population
in their native space, which included: (1) 3 T standard DTI with b =
1000, 24dir; (2) 7 T multiband DTI with b = 1000, 30dir; (3) 7 T multi-
band DTI with b = 2000, 60dir and (4) 7 T multiband double shell,
90dir. ADC and FAmaps of a patient were shown in Fig. 4A. The median
values of ADC and FA within NAWM and GM for 14 patients from
R = 3), or in two directions (MB3, in-plane R = 3). g-Factor maps were calculated from
-channel coils. B. Scatter plot of median 1/g value of all slices. Median 1/g values of each
0.98 and 0.71 for 7 T MB1 and MB3.



Fig. 4. A. ADC and FA maps for patient data acquired with (1) 3 T standard DTI, b = 1000, 24dir; (2) 7 T multiband, b = 1000, 30dir; (3) 7 T multiband, b = 2000, 60dir and (4) 7 T
multiband, double shell. B. Box plots of median ADC and FA within NAWM, GM of 14 patients. C. Susceptibility artifact correction with TOPUP for a patient data set that was acquired
with multiband at 7 T.
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different data sets are shownwith bar plots in Fig. 4B. For b= 1000, the
ADC was not significantly different between 3 T and 7 T within the
NAWM, and FAwas significantly higher at 7 T (p b 0.0001). As expected,
the ADC obtained at b = 2000 was significantly lower than ADC at b =
1000 (p b 0.0001) due to the non-Gaussianity of water diffusion in a re-
stricted environment, and the values fitted from the double shell were
in between the values fitted from each shell.

Correction for susceptibility artifacts with TOPUP is shown in
Fig. 4C for a patient data set that was acquired at 7 T. It can be
seen that distortions were in the opposite direction between re-
versed and regular phase encoding blips, and with TOPUP the dis-
tortion was well corrected.

3.3.2. Evaluation of NODDI parameters
The mean and standard deviation of NODDI and DTI parameters in

the NAWM, GM, CSF, T2L and CEL were summarized in Table 3, as a
Table 3
DTI and NODDI matrix values (mean ± SD) in the T2L, CEL, NAWM, GM and CSF.

T2L CEL

N = 20 N = 11

ADC 1.29 ± 0.21 0.97 ± 0.19
FA 0.17 ± 0.04 0.17 ± 0.04
OD 0.25 ± 0.08 0.35 ± 0.09
viso 0.37 ± 0.19 0.15 ± 0.12
vic 0.16 ± 0.08 0.32 ± 0.17
vec 0.43 ± 0.15 0.44 ± 0.21

G2 T2L G3 T2L G4 T2L

N = 10 N = 3 N = 7

ADC 1.27 ± 0.20 1.43 ± 0.22 1.24 ± 0.21
FA 0.18 ± 0.04 0.13 ± 0.02 0.16 ± 0.04
OD 0.23 ± 0.07 0.26 ± 0.10 0.28 ± 0.08
viso 0.36 ± 0.21 0.43 ± 0.23 0.35 ± 0.17
vic 0.15 ± 0.06 0.11 ± 0.05 0.19 ± 0.10
vec 0.46 ± 0.16 0.42 ± 0.19 0.39 ± 0.14
function of tumor grade.Within both the T2L and CEL, the ADCwas sig-
nificantly higher and FA was lower than in NAWM (p b 0.0001). Both
viso and vec were significantly elevated (p b 0.0001) compared to
NAWMandvicwas significantly decreased (p b 0.0001). ADCwas signif-
icantly lower in the CEL than the T2L,while OD andVicwere significant-
ly higher (p b 0.01, p b 0.001), viso was significantly lower (p b 0.05) and
vec was not significantly different between the two lesions. These met-
rics were not found to be different between tumor grades (p N 0.1).

NODDImaps of three patients who had lesionswith different grades
are shown in Fig. 5, togetherwithADC and FAmaps fitted from the same
double-shell data, and 3 T T1-gad and FLAIR images. All three patients
had received radiation therapy (RT) and were stable at the time
of scan. Within in the T2L, variations were seen in viso, vic and vec, that
reflected different water mobility characteristics. Contrast enhancing
lesions were present in all patients (blue arrow) and all demonstrated
elevated OD and vic compared to surrounding tissues. The white
NAWM GM CSF

N = 20 N = 20 N = 20

0.61 ± 0.03 0.79 ± 0.05 1.41 ± 0.20
0.36 ± 0.05 0.15 ± 0.01 0.09 ± 0.02
0.29 ± 0.03 0.46 ± 0.03 0.46 ± 0.03
0.09 ± 0.05 0.11 ± 0.08 0.66 ± 0.19
0.55 ± 0.06 0.38 ± 0.04 0.13 ± 0.07
0.28 ± 0.06 0.34 ± 0.08 0.07 ± 0.10

G2 CEL G3 CEL G4 CEL

N = 5 N = 1 N = 5

0.99 ± 0.25 1.05 ± 0.00 0.94 ± 0.16
0.18 ± 0.03 0.11 ± 0.00 0.18 ± 0.04
0.34 ± 0.08 0.44 ± 0.00 0.34 ± 0.11
0.15 ± 0.10 0.41 ± 0.00 0.10 ± 0.10
0.30 ± 0.24 0.24 ± 0.00 0.35 ± 0.12
0.44 ± 0.26 0.34 ± 0.00 0.47 ± 0.19



Fig. 5. NODDI maps of three patients with lesions of different grades, together with ADC and FA maps fitted from the same double-shell data, and 3 T T1-gad and FLAIR images. T2L was
outlined, defined as the hyperintensity abnormality in the FLAIR image. Within in the T2L, variations were seen in viso, vic, and vec, reflecting different water mobility characteristics at
different parts of the lesion. Contrast enhancing lesions were present in all patients (arrow) and all demonstrated elevated OD and vic. The white arrow indicated two interesting regions
at the edge of T2L of the grade II and grade III patients, which could easily be easily missed on anatomical images and DTI maps, but was highlighted due to elevated vec.
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arrow indicates two interesting regions at the edge of T2L of the grade II
and grade III patients. These regions could easily be missed on anatom-
ical images andDTImaps, as their intensities were very close to NAWM,
but were highlighted in NODDI maps due to elevated vec.

4. Discussion

The use of sophisticated diffusionmodels to provide improved char-
acterization of tissue composition is a promising technique for evaluat-
ing lesion heterogeneity in patients with glioma. The application of
these models has typically been limited by the need to acquire a large
number of diffusion directions at high b-values which is not feasible in
clinical settings (Assaf and Basser, 2005; Panagiotaki et al., 2014). In
this study, we demonstrated the feasibility of acquiringmultishell diffu-
sion weighted data in the whole brain using the multiband technique
within the same acquisition time that has been used to acquire routine
DTI. The resulting data were fitted with both NODDI and standard DTI
models. Our results showed that the NODDI maps were able to provide
unique contrast within the T2L and are likely to provide information
that is complementary to FA and ADC.

Major concerns for obtaining diffusion data using ultra high field
strength MR scanners are increased variation in B0 and B1. In this
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study, we used 3-fold in-plane acceleration to shorten TE, as well as to
increase the bandwidth in the phase-encoding direction in order to
reduce the extent of distortion. To further correct for the suscepti-
bility distortion, we used the TOPUP correction by adding an addi-
tional b = 0 image with reversed phase encoding blips into the
sequence (Andersson et al., 2003; Smith et al., 2004). The correction
performedwell for these data, as was illustrated in Fig. 4C. B1 inhomoge-
neity caused spin-echo imperfections over the entire brain, resulting in
non-uniform signal intensity. To ameliorate this situation, we optimized
the transmitter gain based on the median B1 of the image volume by
incorporating themeasured B1field strength. It has beenpreviously dem-
onstrated that this technique can improve the situation by providing 82%
of the available spin echo signal (D. Kelley, 2013). The volunteer data in
Fig. 2 illustrate uniform images from central slice.

The performance of the EPI sequence at ultra-high field has been dif-
ficult to assess because the T2 values of brain tissue are difficult to mea-
sure accurately at 7 T.We carried out a straightforward SNR comparison
between 3 T and 7 T with the same hardware settings (gradient, coils)
and acquisition parameters (TR, TE, k-space coverage and voxel size).
Our results showed that without multiband, the SNR was higher at 3 T
(SNR ≈ 68.4) than 7 T (SNR ≈ 50.2), indicating that the shortened T2
as well as increased B0 and B1 inhomogeneity at 7 T outweighed the
increased static magnetization and the total signal was reduced at the
same echo time. However, when 3-fold acceleration was applied with
multiband, the SNR was comparable between 3 T (SNR ≈ 43.9) and
7 T (SNR ≈ 46.1). The SNR loss after simultaneous multi-slice acquisi-
tion is caused by the spatially dependent amplification of noise,
known as the geometry factor, or ‘g-factor’. Our estimation of g-factor
maps showed that with MB = 3 and in-plane R = 3, the g-factor was
lower at 7 T (g = 1.4) than 3 T (g = 1.75). This explained why SNR is
no longer superior at 3 T with a multiband factor of 3. The improved
g-factor map at 7 T compared to 3 T that was observed in our study is
in great agreement with the literature (Wiesinger et al., 2004b). It has
been shown both in theory (Kelley et al., 2008; Ohliger et al., 2003;
Wiesinger et al., 2004a) and in experiments (Kelley et al., 2008;
Wiesinger et al., 2004b) that the g-factor is dependent upon B0 field
strength at high field (B0 N 1.5 T), and improves as the field increases,
because the coil sensitivities grow progressively asymmetric (Collins
et al., 2002) and become increasingly structured due to the shortening
RF wavelength and related interference effects (Yang et al., 2002). It has
also beendemonstrated that improvement in the g-factor at highfield be-
comes more obvious as acceleration factor increases (Wiesinger et al.,
2004b). Our data demonstrated comparable SNR between 7 T and 3 T
with 9-fold acceleration, and it can be predicted that a higher acceleration
factor can be achieved at 7 T with less reduction in SNR compared to 3 T.

Themultiband diffusion sequencewas applied to the characterization
of glioma using a 2-shell, 90-direction protocol that is straightforward to
implement and sufficiently economical for clinical applications, yet so-
phisticated enough to distinguish three types of water diffusion in the
brain. The ADC and FA maps fitted from this 7 T protocol were first com-
pared to the data acquired at 3 T for patients with both data sets available
(N=14). Our results showed that ADC values at b=1000mm2/swithin
NAWM and GMwere close between 3 T and 7 T, with ADC higher in GM
than NAWM,which is consistent with the trend reported in the literature
(Helenius et al., 2002). FA values were higher at 7 T in both NAWM and
GM, which could be caused by the difference in SNR between
the two acquisitions, with a lower SNR at 7 T (MB3, SNR ≈ 46.1/
33 dB) than 3 T (standard DTI, SNR N 68.4/37 dB). Increasing FA
with decreasing SNR has been reported in both experiments and
computer simulations. Pierpaoli et al. (Pierpaoli et al., 1996) showed
that, for lower SNR, the longitudinal principal eigenvalue λ1 was
overestimated, whereas the eigenvalues λ2/λ3 are underestimated,
leading to overestimation of FA. Landman et al. (Landman et al.,
2007) developed a theoretical framework to model the influence
of noise in DTI and showed that for SNR b 40 dB in b = 0 s/mm2 im-
ages, mean FA increased with decreasing SNR, and ADC was less
affected than FA. Out results for FA and ADC were both supportive
of these findings.

The NODDI model distinguishes three types of water diffusion be-
havior and eachwas quantifiedwith a compartment fraction.When ap-
plied to tumor, it is natural to speculate that vasogenic edema would
belong to viso given its isotropically fast diffusing movement. Invading
tumor cells along fiber tracts should be categorized as vec, as they co-
exist with glial cells in the space around the neurites. Our data were
supportive of these assumptions by showing increased viso and de-
creased vic within T2L and CEL lesions compared to NAWM, consistent
with increased edema and loss of neurons. The increased vec was likely
to reflect the invading tumor cells. These assumptions should be validat-
ed with tissue samples, which were not available in the current study.
Patients recruited into this study were at different stages of disease
and had received varying treatments, which may explain why these
matrices were not found to be significantly different between tumor
grades.

The NODDI maps provided unique contrast across the tumor and
highlighted interesting regions that could not be seen in ADC or FA
maps. The different types of contrast observed may be reflective of pro-
gressive disease or of treatment effects that are worth noting for radiol-
ogists. Obtaining follow-up data at later time points would be valuable
for tracking changes in these regions andmay be helpful in interpreting
them. Definitive verification and interpretationwould require the use of
image guided tissue samples and will be considered for future studies.

Another interesting finding that is observed in Fig. 5 was that vic
values were higher in CEL compared to the T2L. In the NODDI model,
vic represents neuron density, which conflicts with this finding as we
know that the CEL contains less neurons than T2L and reflects either
the most aggressive tumor packed with dense tumor cells or non-
specific changes related to treatment effect. This suggests that when ap-
plied to tumor, vic can no longer be interpreted as “neuron density”.
Rather, the elevated vic can be explained by the presence of restrictive
structures with restrictions in all direction, which is consistent with
the similarly elevated OD. This warned us that we should be very cau-
tious when interpreting NODDI results in tumor, as this model was
not directly built on tumor and some parameters were prefixed based
on values in normal brain such as the intrinsic free diffusivity in vic.

The 3-fold acceleration in the slice direction was the highest that
could be obtained with our current multiband technique, as the separa-
tion of aliased slices (40mm) is close to the coil size and SNR lost would
be exacerbated if a higher acceleration factor was used in that direction.
Another technique, termed blipped-CAIPIRINHA can be implemented
to both increase the SNR and achieve a higher acceleration factor
(Setsompop et al., 2012). This technique can reduce the g-factor in si-
multaneous multi-slice acquisitions by introducing interslice image
shifts and thus increase the distance between aliased voxels. Another
limitation was that we used the Shinnar–Le Roux (SLR) optimized RF
pulses where the high RF energy transmission limited the optimal TR
that can be achieved at high field due to specific absorption rate
(SAR). Advanced RF pulse design techniques have been reported to
lower the peak RF power at ultra high field (Eichner et al., 2014;
Sharma et al., 2015). Implementation of these techniques will further
improve SNR and reduce the acquisition time. These will be considered
for future studies.

In conclusion, we have demonstrated the feasibility of using multi-
band diffusion weighted imaging at 7 T within 6 min in order to apply
the NODDI model to characterizing glioma. The 7 T diffusion data qual-
ity was generally comparable to data acquired at 3 T and quantitative
diffusion measurements (ADC and FA) were similar. Anatomical imag-
ing at 7 T benefits from the higher SNR, and the ability to consistently
obtain high quality diffusion data at 7 T will contribute towards the im-
plementation of a comprehensive brain MRI examination at ultra-high
field. We have shown that NODDI maps provided unique contrast
within the T2L lesion that was not seen in anatomical images or DTI
maps. Such contrast may reflect the complexity of tissue compositions
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associated with disease progression and treatment effects. Changes in
viso, vic and vec in tumor lesions compared with NAWMwere consistent
with the alternations in tissue components within tumor. Histological
analysis of image-guided tissue samples is needed in future studies to
better understand these variations.
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