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Abstract: This study evaluates a novel handheld sensor technology coupled with pattern recognition
to provide real-time screening of several soybean traits for breeders and farmers, namely protein and
fat quality. We developed predictive regression models that can quantify soybean quality traits based
on near-infrared (NIR) spectra acquired by a handheld instrument. This system has been utilized to
measure crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine)
composition, total fat, the profile of major fatty acids, and moisture content in soybeans (n = 107),
and soy products including soy isolates, soy concentrates, and soy supplement drink powders
(n = 15). Reference quantification of crude protein content used the Dumas combustion method
(AOAC 992.23), and individual amino acids were determined using traditional protein hydrolysis
(AOAC 982.30). Fat and moisture content were determined by Soxhlet (AOAC 945.16) and Karl
Fischer methods, respectively, and fatty acid composition via gas chromatography-fatty acid methyl
esterification. Predictive models were built and validated using ground soybean and soy products.
Robust partial least square regression (PLSR) models predicted all measured quality parameters with
high integrity of fit (RPre ≥ 0.92), low root mean square error of prediction (0.02–3.07%), and high
predictive performance (RPD range 2.4–8.8, RER range 7.5–29.2). Our study demonstrated that a
handheld NIR sensor can supplant expensive laboratory testing that can take weeks to produce
results and provide soybean breeders and growers with a rapid, accurate, and non-destructive tool
that can be used in the field for real-time analysis of soybeans to facilitate faster decision-making.

Keywords: soybean; protein content; essential amino acids; fat content; major fatty acids; near-infrared
spectroscopy; partial least square regression; SIMCA

1. Introduction

Soybeans (Glycine max (L.) Merr.) are one of the most valuable legume crops worldwide, with global
production reaching 361 million metric tons in 2019 [1]. The soybean’s economic viability comes
from both its high protein (~38%) and oil (~18%) content [2]. In addition to providing up to 90%
of the U.S. oilseed production; soybeans are the largest source of animal protein feed globally [3].
High protein content combined with an excellent profile of essential amino acids that are highly
digestible makes the soybean a valuable source of protein for livestock, with as much as 98% of soybean
meal (the residue left after oil extraction) going into livestock feed [4]. When it comes to predicting
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overall feed quality, crude protein alone was found to be less important than a balance of essential
amino acids, with the U.S. Soybean Export Council identifying lysine, cysteine, methionine, threonine,
and tryptophan as being the five most critical amino acids for determining feed quality [5]. Commodity
soybeans traditionally contain high levels of polyunsaturated acids (~63%), which could lead to lipid
oxidation and degradation during frying and storage [6]. Thus, many genetic breeding efforts are
targeted at silencing the production of polyunsaturated fatty acids while increasing the production of
oleic acid [6–8].

The ability of soybean to provide consistently high-quality protein and oil content, essential amino
acids, and high polyunsaturated fatty acid composition makes it a target for substantial breeding and
genome editing programs. While technological advances in high-throughput genotyping over the
past decade, such as gene-editing technologies, have ushered in a new era of plant genomics, plant
breeders have identified the lack of high-volume screening as a major bottleneck in phenotyping [9].
In addition to plant breeders, soybean farmers also need faster methods to phenotype soybeans.
Traditionally, the price that a soybean farmer receives for their soybeans is a flat fare by the bushel
and not adjusted for oil content, protein content, or amino acid profile [10]. Premium pricing can
be obtained for soybeans that have a more favorable composition, including higher protein and oil
content, total metabolizable energy, digestibility, batch-to-batch consistency, and amino acid profile.
As a result, breeders and growers are continually developing varieties that can satisfy the market’s
needs [11].

Based on these market trends, a rapid and non-destructive technology that can measure the
crude protein and fat content, profile the critical amino acids and major fatty acid composition of
soybeans, and assess the batch-to-batch consistency of the harvest will be valuable for both soybean
breeders and farmers. Near-infrared (NIR) spectroscopy has been in use since the 1960s for analyses
of compositional traits such as moisture, protein, starch, and fat content in various food groups
ranging from grains to legumes to dairy products [12–19]. In soybeans, total protein and fats, some
amino acids, and fatty acid profiles have been successfully measured using NIR spectroscopy [20–22],
although performance suffered for amino acids such as tryptophan and sulfurous amino acids such as
methionine and cysteine, all three of which are considered either essential or semi-essential amino
acids for livestock [23]. A previous study on amino and fatty acid predictions with NIR spectroscopy
showed that direct measurement of whole intact soybean seeds tends to see a lower coefficient of
determinations (R2 = 0.06–0.83) as compared to ground soybeans (R2 = 0.38–0.85) [24]. Better prediction
performance of ground samples as compared to whole kernel/kernels has been observed in other crops
such as maize and rapeseed [25–28]. A major challenge with intact seeds was the infrared scattering
effects that arise from uneven surfaces of whole seeds and kernels.

Previous studies of NIR spectroscopy methods for soybean characterization employed benchtop
spectrometers, which constrains analysis to the laboratory instead of the field. Advancements in
microchip technology have propelled a variety of compact NIR devices into the market, where a small
handheld device can contain not just the light source, interferometer, and photodetector, but also
embedded electronics for system control and data processing. These portable optical systems offer
spectral resolutions that often parallel their benchtop counterparts while providing similar or superior
performance [29]. Successful prediction models built using these compact sensors could open the
door to on-the-go soybean protein and fat quality monitors, such as systems mounted on a combine
harvester. Not only can this increase the efficiency of breeding and cultivar selection, but it also
provides a quick way to measure protein and oil quality at point-of-sale, thereby evolving the sale of
soybeans toward a value-pricing model. Detailed information on the application of the portable and
handheld NIR spectrometers can be found in the literature [30–32].

The objective of this study was to investigate the feasibility of using real-time, field-deployable,
handheld NIR spectrometers to develop partial least squares regression (PLSR) models to rapidly
quantify crude protein, essential amino acids (lysine, threonine, methionine, tryptophan, and cysteine),
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total fat content, major fatty acid composition, and moisture content in ground soybeans and to identify
high-oleic soybeans from their conventional counterparts.

2. Materials and Methods

2.1. Sample Preparation

A variety of commercial and regionally sourced soybean samples were acquired for this study.
Conventional (n = 30) and genetically modified Plenish soybeans (high-oleic variety) (n = 30) were
kindly provided by DuPont Pioneer’s Plenish Division. To increase the protein variability, the Ohio
Soybean Council (OSC) supplied additional soybeans (n = 47) representative of the Midwest region.
Furthermore, we included other soy products (n = 15), including soy isolates, soy concentrates, and soy
supplement drink powders that were purchased from online vendors. The soybean samples were
blended with liquid nitrogen and homogenized using a Waring Lextra 2 speed blender (East Windsor,
NJ, USA) to produce a fine powder. Samples were blended for 60 s on high speed, with manual stirring
at every 20-s interval. All the samples, including blended soybeans and powdered soy products,
were sieved through a screen (US mesh size #30, or 0.595 mm) to maintain uniform particle size,
and those samples were used both for spectroscopic and chemical reference analysis.

Due to the limited resources, each type of reference analysis could only be implemented to a
selective number of samples (individual amino acids = 32; total protein = 92; individual fatty acids = 96;
fat = 60; and moisture = 60).

2.2. Reference Analysis

Ground samples were sent to the Service Testing and Research (STAR) Laboratory at The Ohio
State University, where the Dumas combustion method (AOAC 992.23) was performed for the
quantitative determination of nitrogen. The output was multiplied by a nitrogen conversion factor of
5.71 as recommended by the USDA, the Food and Agriculture Organization (FAO), and World Health
Organization (WHO) to obtain crude protein content [33–35].

Amino acid characterization was conducted by the Agricultural Experimental Station Chemical
Laboratories at the University of Missouri, Columbia, using the AOAC Official Method 982.30. Lysine
and threonine were determined using the standard method of acid hydrolysis with 6 M HCl and
followed by hydrolysis for 24 h at 110 ◦C, with the hydrolysate dried under vacuum and dissolved in
buffer. For methionine and cysteine analysis, performic acid was used instead of HCl for hydrolysis.
For tryptophan analysis, alkaline hydrolysis was performed using 4.2 N NaOH. All resulting hydrolysate
underwent cation-exchange chromatography coupled with post-column ninhydrin derivatization and
quantitation. The amount of each amino acid was calculated and expressed as mg of amino acid/100
mg of soybean sample, equivalent to a percentage-by-wet-mass basis.

To determine the total fat content, about 10 g of ground soybean was placed in a 33 mm × 80 mm
single-thickness cellulose extraction thimble (Whatman, Buckinghamshire, UK). The thimble was
placed in a Soxhlet extraction tube with 125 mL of petroleum ether. Extraction was performed for
6 h per AOAC Method 945.16. Total fat content was calculated as the weight of the initial minus
final weight of the thimble with the sample divided by the initial sample weight multiplied by 100.
The petroleum ether and fat mixture were then placed on a rotary evaporator to remove the solvent,
and the fat was pipetted from the bottom of the flask. The fat was stored at 4 ◦C until needed for
further gas chromatography (GC) analysis.

The determination of fatty acid profile in extracted fats was accomplished with a fatty acid methyl
ester (FAME) derivatization. For this purpose, approximately 100 µL fat sample diluted in 10 mL of
hexane and 100 mL 2 N potassium hydroxide in methanol was vortexed for 30 s. A 1.5 mL aliquot
was transferred to a 2 mL micro-centrifuge tube, and a pinch of sodium sulfate anhydrous was added
to the mixture. The centrifuge tube rotated at 13.2 rpm for 5 min at room temperature using an
Eppendorf 5415 R Centrifuge (Eppendorf North America, Hauppauge, NY, USA). A 1 mL aliquot
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of the hexane portion was collected in a 1.5 mL amber colored glass GC vial with Teflon screw-top
cap. The major fatty acids were quantified using an Agilent HP-6890 series (Santa Clara, CA) gas
chromatograph (GC) equipped with a flame ionization detector (FID), an HP-G1513A autosampler
and a sample tray. The fatty acids were separated through an HP-88 60 m × 0.25 mm × 0.2 mm
column (Agilent 112–8867) using helium as the carrier gas. The injection volume was 1 mL, with a
split ratio of 20:1. The oven conditions were 110 ◦C for 1 min following by increase to 220 ◦C (5 ◦C
min–1) and held at that temperature for 15 min. The injector and the detector temperature were set at
220 ◦C and 250 ◦C, respectively. The identification of the fatty acids was carried out by comparing the
retention times of each peak against reference standards (Supelco 37 Component FAME Mix, Sigma
Aldrich, St. Louis, MO, USA). All chemicals and solvents used in this study were purchased from
Fisher Scientific (Waltham, MA, USA). The concentration of each fatty acid was calculated based on
the percentage area under the peak.

The moisture content of the ground soybean samples was determined using a Metrohm, 915 KF
Ti-Touch Karl-Fischer (Herisau, Switzerland) automatic titrator, following the AOAC Official Method
2001.12, and expressed as a percentage.

2.3. NIR Spectroscopic Analysis

NIR spectral data were acquired using a handheld prototype instrument (Figure 1a,b) based
on the NeoSpectra Micro (Si-Ware Systems, Cairo, Egypt) spectrometer. This compact Fourier
Transform Near-Infrared (FT-NIR) spectrometer comprises a single-chip Michelson interferometer
with monolithic opto-electro-mechanical structure and a single uncooled indium-gallium-arsenide
(InGaAs) photodetector. The prototype instrument also includes a sample rotation stage to enable
spatial averaging over a variety of view angles, mitigating effects of spatial heterogeneity. Additional
components include a motor, a USB port, a cooling fan, and a battery pack that enables 12 h of operation
without charging. The prototype unit uses Bluetooth wireless data transfer to an Android tablet. Diffuse
reflectance spectral measurements were accumulated over a spectral range of 1350–2560 nm with
spectral resolution of 16 nm. A variety of integration times were tested, and the best reproducibility
and signal-to-noise ratio was observed at 20 s. For each sample, spectra were collected in triplicate.

Figure 1. Photograph of the handheld NIR prototype sensor used for soybean samples spectra collection
(a) and an inner view of the spectrometer housing (b).

A Duroplan (DWK Life Sciences, Mainz, Germany) 60-mm diameter Petri dish was used to
hold the samples during NIR measurements. We found that it was important to use distortion-free
glassware for sample presentation, as some Petri dishes have ring-shaped distortions on the bottom,
which can cause scattering and affect measurement accuracy. Ground soybean was added to the Petri
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dish until 3
4 full and gently tapped on the bench ten times or until the sample is compact and no

visible cracks can be seen from the bottom of the Petri dish. The sample thickness was maintained
at 1 cm. The Petri dish was placed on a rotating plate, which slowly rotates the dish during the
spectral collection, with a 1 mm gap between the Petri dish and the spectrometer’s optical window.
The background spectra were collected using a highly Lambertian diffuse reflectance standard (99%
reflectance value, Spectralon, Labsphere, North Sutton, NH, USA) to eliminate the environmental
changes. Noise levels of the collected spectra were observed by rationing and taking the standard
deviation of two replications of a random sample and the visual representation is given in Appendix A,
Figure A1. The reproducibility of the spectral measurements was evaluated by collecting spectra with
3 h intervals (Appendix B, Figure A2).

2.4. Statistical Analysis

The effect of gene editing on soybean crude protein content, total fat, and major fatty acid
composition was evaluated by using independent samples t-test to determine whether there were
statistically significant differences between groups (high oleic, GMO vs. non-GMO). If the probability
values (p-value) were lower than 0.05, the groups were considered to be significantly different. Statistical
analyses were performed using IBM SPSS Statistics software version 26.0 (IBM Co., Armonk, NY, USA).

2.5. Multivariate Analysis

The NIR spectral data were collected in the GRAMS (.spc) file format and analyzed using a
commercial multivariate statistical analysis software package (Pirouette version 4.5, Infometrix Inc.,
Bothell, WA, USA). Quantification models of total crude protein, essential amino acids, total fat,
major fatty acid composition, and moisture content were generated using PLSR. Full cross-validation
(leave-one-out approach) was used to validate the calibration models internally. Soybean samples
were randomly divided into calibration (80% of the total samples) and independent validation (the
remaining 20% of the total samples) sets to determine the robustness of the generated models. The two
replications of the same sample were used either in the calibration set or in the external validation
set. An NIR spectrum consists of thousands of data points, and PLSR extracts a set of dependent
variables (latent variables or factors) from that spectrum, providing an information rich-data set by
reducing the dimensionality and solving the problem with high-collinearity [36]. The performance
of the generated prediction models was evaluated by root mean square error of cross-validation
(RMSECV), root mean square error of prediction (RMSEP), loading vectors, the correlation coefficient of
cross-validation (RCV), outlier diagnostics, leverage, and residual analysis. For each model, the optimal
number of factors was defined as the number that results in the first local minimum RMSECV. An ideal
prediction model should have small values of RMSECV as well as RCV close to unity [16]. Samples
with abnormal standard residual patterns and high leverage were re-analyzed and excluded from the
model if necessary; therefore, the number of samples in each model could be different.

The classification analysis between genetically modified (high-oleic) and conventional soybeans
used soft independent modeling of class analogy (SIMCA). SIMCA is a supervised classification
algorithm using principal component analysis (PCA) to cluster groups based on their spectral
characteristics. SIMCA uses prior knowledge of class memberships and applies that information
to assign new samples to the group with the lowest residual variance. The discriminating power
plot identifies which variables (spectral bands) have a widespread impact on the classification of
the groups of genetically modified (high-oleic) and conventional samples. The performance of the
generated predictive models was evaluated based on their 3D class projection, interclass distance,
misclassifications, and residuals. Tight and well-separated clusters with an interclass distance >3
indicated that the classes are significantly different from each other [37]. High-oleic and conventional
samples were randomly divided into calibration (80%) and validation (20%) sets. The accuracy
and robustness of the generated calibration model were evaluated using the external validation set.
Furthermore, the classification model performance was also evaluated by calculating the specificity
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and the sensitivity of the results from the validation model. Sensitivity is the ability of the model to
identify its samples (true positives), and specificity is the ability of the model to distinguish external
samples (true negatives) [38].

All spectral data for the PLSR and SIMCA modeling were mean-centered by calculating the
average of all points within a spectrum and subtracting that average value from each point to remove
unnecessary information and enhance sample-to-sample differences [39]. For all the PLSR models
(total crude protein, crucial amino acids, fat, fatty acids, and moisture content), we found a combination
of normalization (2-norm × 100) and 2nd derivative (Savitzky–Golay polynomial filter with a 21-point
window) transformations was most effective for data pretreatment. Taking the normalization and 2nd
derivative transformation can resolve overlapping peaks by enhancing subtle peak shoulders that can
highlight sample-to-sample differences and eliminate the baseline shift [40]. The data for the SIMCA
modeling were only transformed with normalization (2-norm × 100) after the mean-centering.

3. Results

3.1. Characterization of Soybean Samples

Table 1 summarizes the reference analysis results for levels of essential amino acids (lysine,
threonine, methionine, tryptophan, and cysteine), total protein, major fatty acids (palmitic, stearic,
oleic, linoleic, and linolenic), fat, and moisture for all samples, including soybean, soy isolate, soy
concentrate, and soy supplement drink powders.

Table 1. Reference analysis results for essential amino acid (lysine, threonine, methionine, tryptophan,
and cysteine), total protein, major fatty acid (palmitic, stearic, oleic, linoleic, and linolenic), fat, and
moisture content in soybeans and soy products.

Parameter (%) * Minimum Maximum Mean STDEV ** CV% ***

Threonine
Soybean 1.34 1.56 1.45 0.06 4.17

Soy Products 1.75 3.20 2.64 0.54 20.46

Cysteine Soybean 0.45 0.60 0.55 0.04 7.20
Soy Products 0.63 1.06 0.92 0.14 15.52

Methionine
Soybean 0.47 0.64 0.51 0.04 5.02

Soy Products 0.63 1.14 0.95 0.20 22.39

Lysine Soybean 2.34 2.57 2.43 0.07 2.88
Soy Products 2.91 5.54 4.50 1.08 24.37

Tryptophan Soybean 0.35 0.54 0.44 0.04 10.04
Soy Products 0.60 1.32 0.99 0.23 23.31

Total Protein
Soybean 32.48 37.4 34.12 0.89 1.81

Soy Products 42.96 81.91 67.39 14.46 21.45

Palmitic Acid

Soybean

6.22 13.4 9.19 2.57 22.93
Stearic Acid 3.53 5.21 4.40 0.54 11.79
Oleic Acid 17.60 84.00 52.83 28.05 42.04

Linoleic Acid 4.10 57.40 27.29 22.88 91.23
Linolenic Acid 1.88 8.19 4.53 2.43 30.38

Fat 16.07 16.97 16.35 0.18 1.11
Moisture 5.30 5.68 5.49 0.09 1.59

* Individual amino acids (threonine, cysteine, methionine, lysine, and tryptophan), total protein, fat, and moisture
are given in % wet basis; fatty acids (palmitic, stearic, oleic, linoleic, and linolenic) are given in % peak area from the
GC analysis. ** Standard deviation. *** Coefficient of variation.

Although the soybeans used in this research were sourced from various cultivars and growing
regions across the Midwest region, they still exhibited a narrow range of protein and essential amino
acid levels. This prompted us to include other powdered forms of soy products, including isolate,
concentrate, and soy supplement drink powders into our analysis to extend the range of values to
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build a more accurate predictive model. The soybean protein content ranged from 32.48–37.40%,
with an average of 34.12 ± 0.89% (Table 1). The protein contents for the soybeans were within the
range reported by the USDA (32.00–38.50% with an average of 34.11 ± 0.67%) and Banaszkiewicz
(2011) (32–43.6%) [41,42]. On the other hand, some other researchers reported slightly higher protein
content; Singh and others (2008) mentioned that the average protein concentration in the soybean is
38% while Preece and others (2017) stated the average is 40% [43,44]. Temperature, solar radiation,
water availability, soil nutrient supply, and genotype are the main factors that affect the protein and
the amino composition of the soybeans, which may explain the differences in the protein content
on different studies [45,46]. The other possibility of having a lower protein content from some of
the studies could be using a different nitrogen-protein conversion factor. Although USDA and FAO
suggest a soybean nitrogen-protein conversion factor of 5.71, as used in this study, some studies in
the literature use 6.25 to determine the protein concentration and therefore reported higher protein
concentrations, such as 38.5–40.8% [47], 37.0–43.6% [48], and 36.8–39.0% [49].

The essential amino acid (lysine, threonine, methionine, tryptophan, and cysteine) content of
soybean samples and soy products are reported in Table 1 and exhibited a narrow range. A previous
study that compared 14 different soybean cultivars also found a narrow range of values for threonine,
cysteine, methionine, lysine, and tryptophan. Additionally, the study found no significant difference
in cysteine, methionine, lysine, and tryptophan between public sector cultivars and other cultivars,
except for threonine (p < 0.001) [50]. This explains why although various cultivars of soybeans were
sourced for our investigation, sample-to-sample variability in all five amino acids was small. A separate
study showed that climatic variables during soybean growth were more impactful on amino acid
composition, with the cysteine levels ranging from 0.14 to 0.68%, threonine ranging from 0.87 to
2.19%, methionine from 0.31 to 0.85%, tryptophan from 0.30 to 0.80, and lysine from 0.88 to 3.92% [51].
All these ranges are much wider than exhibited by our soybean samples, thus it is recommended to
source soybeans with a diverse set of amino acid profiles by capturing soybeans grown in varied
climatic conditions, not just varying cultivars. The soybean samples’ fat content ranged from 16.07 to
16.97%, with an average of 16.35 ± 0.18 (Table 1), which is consistent with ranges reported by other
researchers [42,48,52,53]. The major fatty acid composition of the soybeans (Table 1) was similar to
values reported in previous studies [54–56]. The moisture content of ground soybean samples ranged
from 5.30 to 5.68%, with an average of 5.49 ± 0.09% (Table 1). The optimum harvest moisture content
of the soybean is 13%, but soybeans consistently lose their moisture content during storage, explaining
the low moisture content [57].

The high-oleic and the conventional soybean varieties tested in this study had an average of
34.2 ± 0.6% and 33.7 ± 0.6% protein content, respectively, which indicated a significant difference
(p < 0.05) (Table 2). High-oleic varieties exhibited higher protein content than the conventional samples,
indicating that the genetic modification of the soybean seeds that increased levels of oleic acid also
increased protein levels significantly. Similarly, La and others (2014) found increased protein levels
after genetic modification of soybeans [58]. Like protein content, the fat content in the high-oleic
varieties exhibited greater increase than the conventional varieties (Table 2). La and others (2014) also
reported elevated fat content in high-oleic varieties [58]. The high-oleic soybeans showed a significant
difference (p < 0.05) in palmitic, stearic, oleic, linoleic, and linolenic acids compared to conventional
soybeans. The fatty acid composition of the high-oleic and conventional soybeans determined in
this study was similar to the literature [54,59]. In high-oleic soybean varieties, the oxidative stability
was improved with an average of 53% increase in oleic acid as opposed to an average 49% decrease
in polyunsaturated fatty acids (linoleic and linolenic acids) levels compared to their conventional
counterpart (Table 2).
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Table 2. Total protein, fat content, and fatty acid composition comparison of high-oleic and conventional
soybean samples.

Parameter (%) * High-Oleic Conventional p-Value **

Total Protein 34.17 ± 0.61 33.66 ± 0.60 0.000
Fat 16.42 ± 0.19 16.27 ± 0.10 0.000

Palmitic Acid 7.00 ± 0.52 11.95 ± 0.69 0.000
Stearic Acid 3.87 ± 0.33 4.91 ± 0.23 0.000
Oleic Acid 79.25 ± 2.00 23.35 ± 3.65 0.000

Linoleic Acid 5.99 ± 1.32 51.61 ± 3.13 0.000
Linolenic Acid 2.21 ± 0.32 7.09 ± 0.53 0.000

* Total protein and fat contents are given in % wet basis; fatty acids (palmitic, stearic, oleic, linoleic, and linolenic)
are given in % peak area from the GC analysis. ** indicates the significant difference between high-oleic and
conventional soybeans (p < 0.05).

3.2. Characterization of NIR Spectra

Figure 2 shows example NIR spectra collected from ground soybeans (high-oleic and conventional
varieties), soy isolate, and soy concentrate. The absorptions in the NIR region correspond to vibrational
transitions between the fundamental energy level and energy levels of overtone and combination
bands [60]. The region between 1695 and 1786 nm is associated with the first overtone of C–H groups of
fatty acids [61]. The region between 1923 and 1961 nm is associated with the O–H functional group (1st
overtone of the combination mode), and 1786–2000 nm corresponded to the C–H functional group (1st
overtone of CH3 and –CH=CH–, of fatty acids) [16]. The 2000–2222 nm range includes the stretching
and combination vibrations of N–H and C=O bonds corresponding to proteins that are assignable to a
combination of amide I and amide II bands. The major band at 2063 nm corresponds to N-H bending
and stretching combination bands [16,29,62]. The region between 2273 and 2480 nm is associated with
combination bands of C–H groups, typically from fatty acids and carbohydrates [16,29,61].

Figure 2. Raw NIR spectra of ground soybeans (high-oleic and conventional varieties), soy isolate,
and soy concentrate.
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Spectral differences associated with the protein and fat content of soy isolates, concentrates,
and ground soybean samples were mainly located at 2040–2220 nm, 1890–2000 nm, and 1790–1695
nm (Figure 2). The soy isolates and concentrates had protein levels of ~90% and 70%, respectively,
while the soybean samples had ~34% protein. On the other hand, the fat content in soybeans (~16%)
was also higher than soy isolates and concentrates (~3%) [63,64]. The bands in the 2040–2220 nm
region, specifically the bands at 2188 nm and 2063 nm were notably higher for the soy isolate samples,
which had the highest amount of protein. Our visual observations were consistent with to the band
assignments of 2188 nm, which is related to the N−−H bend second overtone, C−−H stretch/C==O
stretch combination, and C==O stretch/amide III combination of the protein structures and 2063 nm,
which is associated with the N−−H bend second overtone or N−−H bend/N−−H stretch combination
of the protein structures [65]. The bands in the 1890–2000 nm and 1790–1695 nm regions were lower
for the isolate and the concentrate because of their lower amounts of fat content. In the literature,
those regions are assigned to the fatty acid structures [16]. Even though there was a significant
difference in the fat and protein content between the high-oleic and conventional soybean samples, no
marked visual difference was observed on the raw spectral profiles (Figure 2).

3.3. SIMCA Classification Model for High-Oleic vs. Conventional Soybeans

To discriminate the genetically modified (high-oleic) samples from the conventional soybean
samples, NIR spectral data were evaluated using soft independent class analogy (SIMCA) based on
information obtained by GC analysis. Figure 3a shows a SIMCA projection plot for the NIR results using
the first three principal components (PCs), indicating well-separated classes using the first three factors
determined by the cross-validation leave-one-out approach. The projection shows compact clusters for
high oleic and conventional soybean samples, giving an interclass distance (ICD) of 10.1. The ICD is a
unitless value that indicates how well the groups are separated from each other in the multivariate
space. An ICD greater than 3.0 suggests that the two tested groups are significantly different and thus
can be assigned to separate classes [37]. In brief, high-oleic and conventional soybean groups were
largely independent of each other, requiring only three principal components (PCs) to explain 98%
of the variance within groups. The cross-validated SIMCA model indicated zero misclassifications
and zero no-match samples. The discriminating power graph in Figure 3b demonstrates the variables
(wavelengths) that can be characteristic of the specific chemical components responsible for the
separation between the high-oleic and conventional soybean groups [66]. The discriminating power
plot (Figure 3b) showed that the classification of high-oleic and conventional soybean samples is
explained by the bands centered at 1731 and 1709 nm, which corresponds to the C–H stretching
vibrations of lipids (1st overtone of fatty acids) [65,67].

The classification model’s prediction performance was evaluated using an external validation
set that comprises 20% of the whole samples in each category (6 high-oleic and 6 conventional
samples). The external validation showed that the SIMCA classification model had no misclassification,
no unmatched or unmodeled samples, and 100% accuracy for predicting the new samples. Furthermore,
the SIMCA model’s predictive performance showed 100% specificity and sensitivity in distinguishing
the high-oleic samples or conventional samples in the correct classes.

3.4. Regression Models

PLSR models were generated using the spectra collected by the handheld NIR instrument and
the reference analysis results for each quality parameter, including crude protein, fat, and moisture
contents; essential amino acids; and major fatty acids profile. Samples were randomly divided into
two groups as calibration (80% of the total sample size) and external validation (the remaining 20%)
before the PLSR modeling. The calibration model was cross-validated (leave-one-out), and the external
validation set used to evaluate the robustness of the generated calibration models. During the PLSR
model development, it was critical to select the relevant spectral range and the optimum number of
factors. The relevant spectral range selection improves the quality of predictions by removing the
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highly collinear neighboring wavelengths [68]. Therefore, the region used to generate each model was
related explicitly to the investigated components. The optimum number of factors for each model was
also chosen specifically to eliminate under or overfitting. Table 3 shows the performance statistics of
the PLSR calibration and external validation models that were obtained for each relevant constituent
of soybeans, soybean isolates, concentrates, and soy supplement drink powders. As mentioned
previously, due to the limited resources, every reference test could not be applied to each sample.
The number of samples employed in each reference test was as follows; individual amino acid analysis
(n = 32), total protein analysis (n = 92), individual fatty acids (n = 96), fat (n = 60), moisture (n = 60).

A full cross-validated total protein calibration model was generated using the dataset within a
relevant spectral range (2294–1876 nm) and employing four factors (Table 3) (which explains 97.34%
of the variation) as an optimal number of principal components (PCs). Figure 4a shows the PLSR
plot developed for the total protein content, with a correlation coefficient (R2) of 0.99 and RMSECV
of 1.51%. Ingle and others (2016) reported the use of a NIR probe analyzer combined with PLSR to
generate predictive models for the determination of protein content (range 22–90%) of 17 protein
powder mix products with SECV of 3% and R2 of 0.99 [69]. Benchtop FT-NIR units’ prediction of
protein content exhibited R2 of 0.94 and SECV of 0.26% [48], and R2 of 0.81 and root mean square error
of the calibration (RMSEC) of 0.81% [70]. The calibration models for the essential amino acids (lysine,
threonine, methionine, tryptophan, and cysteine) were generated using the spectral range between
2307 and 1978 nm, and four to six factors (Table 3) were used to explain 99.66–99.96% of the variance.
Figure 4b shows the PLSR plot developed for the lysine amino acid content and providing an R2 of 0.99
and an RMSECV of 0.17% (Table 3). Furthermore, the other amino acids exhibit R2 of 0.99–1.00 and
RMSECV of 0.05, 0.04, 0.04, and 0.03%, respectively (Table 3). The PLSR plots for threonine, cysteine,
methionine, and tryptophan amino acids are given in Appendix C, Figure A3. A previous study on
amino acid prediction with NIR spectroscopy showed that the direct measurement of whole intact
soybean seeds tends to produce reduced coefficients of determination (R2 = 0.06–0.83) compared to
ground soybeans (R2 = 0.40–0.85) [24]. In another study, a benchtop NIR spectrometer was used to
predict the crude protein and amino acid contents in the ground soybean samples and produced R2 of
0.84–0.98 and standard error of cross-validation (SECV) of 0.015–0.092% for the tested amino acids
and R2 of 0.99 and SECV of 0.545 for crude protein [26]. Balastreri and others (2016) determined total
protein, lysine, and methionine amounts in ground soybeans using a benchtop unit and obtained 0.995,
0.975, and 0.943 for R2 and 0.172, 0.012, and 0.04% for SECV, respectively [71].
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Table 3. Statistical performance of the prediction models developed using a handheld NIR sensor for estimating various constituents of soy samples.

Parameter (%) *
Calibration Model External Validation Model

Range N a Factor RMSECV b Rcv
c Range n d RMSEP e RPre

f RPD g RER h

Threonine 1.34–3.20 26 6 0.05 1.00 1.44–3.19 6 0.08 1.00 8.7 22.3
Cysteine 0.45–1.06 26 4 0.03 0.99 0.54–1.02 6 0.02 0.99 8.8 19.9

Methionine 0.47–1.14 26 4 0.04 0.99 0.47–1.13 6 0.07 0.97 3.8 9.7
Lysine 2.34–5.54 26 5 0.17 0.99 2.38–5.48 6 0.15 1.00 8.6 21.2

Tryptophan 0.35–1.32 26 4 0.04 0.99 0.42–1.26 6 0.04 0.99 8.2 21.2
Total Protein 32.48–81.91 73 4 1.51 0.99 33.28–81.15 18 1.64 0.99 8.3 29.2
Palmitic Acid 6.50–13.00 77 5 0.49 0.97 6.40–12.50 19 0.40 0.98 4.8 15.1
Stearic Acid 3.43–5.36 70 6 0.21 0.91 3.44–5.15 17 0.21 0.93 2.4 8.3
Oleic Acid 17.60–84.00 76 5 3.04 0.99 17.20–79.90 19 3.07 0.99 8.1 20.5

Linoleic Acid 4.10–54.60 77 5 2.48 0.99 4.90–57.40 19 2.71 0.99 7.2 19.4
Linolenic Acid 1.90–8.50 76 5 0.55 0.94 3.50–7.80 19 0.56 0.95 2.8 7.6

Fat 16.07–16.97 46 6 0.05 0.95 16.07–16.84 12 0.07 0.96 2.6 13.3
Moisture 5.32–5.68 45 6 0.04 0.91 5.30–5.58 11 0.04 0.92 2.4 7.5

a Number of samples used in calibration models. b Root mean square error of cross-validation. c Correlation coefficient of cross-validation. d Number of samples used in external validation
models. e Root mean square error of prediction. f Correlation coefficient of prediction for external validation. g Residual predictive deviation. h Range error ratio. * Individual amino acids
(threonine, cysteine, methionine, lysine, tryptophan), total protein, fat, and moisture are given in % wet basis; fatty acids (palmitic, stearic, oleic, linoleic, linolenic) are given in % peak area
from the GC analysis. RMSECV and RMSEP are in units of the predicted parameters.
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Figure 3. Soft independent modeling of class analogy (SIMCA) 3D projection plot for high-oleic and
conventional soybean varieties (a) SIMCA discriminating plot based on the NIR spectra of high-oleic and
conventional soybean samples using the handheld NIR sensor, showing bands and regions responsible
for class separation (b).

Figure 4. Partial least squares regression (PLSR) calibration and external validation plots for total
protein (a), lysine (b), fat (c), and oleic acid (d) contents in soybean samples using the handheld NIR
sensor. Grey diamonds represent samples in the calibration set; black diamonds represent samples in
external validation set.

Total fat content model was generated by using the spectral range from 1859 to 1680 nm and
six factors (Table 3), which explain 99.97% of the variance. The PLSR plot is shown in Figure 4c and
provides R2 of 0.95 and RMSECV of 0.05% (Table 3). We obtained better model performances than
previously reported studies with benchtop units [16,70,72]. To generate the fatty acid composition
models, the spectral range (1859–1680 nm), which contains signatures related to fatty acids, was selected.
The models used five to six factors (Table 3) to explain 99.64–99.89% of the variance. Figure 4d shows
the PLSR plot developed for the oleic acid, providing R2 of 0.99 and RMSECV of 3.04%. The other
major fatty acids, including palmitic, stearic, linoleic, and linolenic acids provided R2 of 0.91–0.99 and
RMSECV of 0.21–2.48% (Table 3) and the PLSR plots of these fatty acids are given in Appendix C,
Figure A3. The performance of the calibration models that were developed in this study using
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the handheld NIR sensor with ground soybean samples is superior to previously reported studies
conducted on ground [24], whole [73], and soybean cotyledons [74] using benchtop NIR equipment.

The moisture content model was generated using spectra between 1825 and 1440 nm and six
factors. The model was able to explain 98.79% of the variance and provided R2 of 0.91 and RMSECV of
0.04 (Table 3) and the PLSR plot for the moisture models is given in Appendix C, Figure A3. Our study
showed superior performance in the determination of moisture content than Ferreira and others
(2013) [70].

Generated calibration models were externally validated using an independent set of samples, and
their robustness was evaluated. For each trait, similar model performances, including Rcv, RPre, SECV,
and SEV, both for the cross-validated calibration set and externally validated were obtained (Table 3).
Figure 4 and Appendix C, Figure A3 show how the external validation set samples distribution within
the range of the calibration set. Additionally, the predictive performances and the robustness of the
generated models were further evaluated through residual predictive deviation (RPD) and range error
ratio (RER) [75]. The RPD is the ratio between the standard deviation of the reference data in the
calibration set and the RMSEP, and the RER is the range of the reference data in the validation set to
the RMSEP [76]. In general, higher RPD and RER indicate a more accurate and robust model [76,77].
Values for RPD between 2.5 and 4.9 are acceptable for screening purposes, 5 to 6.4 indicates good
prediction for quality control applications, and the values above 6.5 are suitable for process control
applications [77]. On the other hand, values greater than 4 for RER are acceptable for sample screening,
more than 10 is suitable for quality control, and more than 15 is for quantification purposes [78].
Accordingly, the proposed NIR spectrometer is a suitable tool for quantification and process control
applications for all essential amino acids (except methionine), total protein, oleic acid, and linoleic acid
contents (Table 3). Methionine, stearic acid, linolenic acid, and moisture content models can be used
for rough screening purposes (Table 3). According to the RER values, palmitic acid and fat contents
can be predicted with reasonable accuracy, and the models can be used for quality control applications,
but their RPD levels indicate lower accuracy (Table 3), which could be related to the random sample
selection in the validation set (low standard deviation).

4. Conclusions

Our study supports the use of a novel portable NIR spectrometer based on a monolithic
opto-electro-mechanical structure and InGaAs photodetector for assessing protein quality including
crude protein, essential amino acids (threonine, cysteine, methionine, lysine, and tryptophan), fat,
moisture, and fatty acid (palmitic, stearic, oleic, linoleic, and linolenic acids) in commercial soybeans
and soy products. Combining reference test results with NIR spectra along with multivariate analysis,
we successfully developed prediction models with strong correlation between reference tests and
predicted values (RPre ≥ 0.92). All prediction models exhibited high precision with low RMSEP values
(0.02–3.07%), although widening the range of crude protein and amino acid levels would certainly
make the model more reliable. Furthermore, our instrument can discriminate between high-oleic
and conventional soybean samples without misclassification. The performance of the PLSR models
developed by the handheld instrument was shown to be equivalent and, in some instances, superior to
models developed from benchtop infrared systems in other studies. A handheld spectrometer can
provide soybean breeders and growers with a tool that can be taken to the field for real-time analysis
of soybeans to facilitate faster decision-making.
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Appendix A

Figure A1. Noise level information by the signal ratio and taking the standard deviation of a random
sample’s spectral replications and their corresponding spectra.

Appendix B

Figure A2. The reproducibility of the spectral measurements for a random sample that is tested with
3-h intervals. Spectra were collected at given times; A: 11 p.m. B: 2 p.m. C: 5 p.m.
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Appendix C

Figure A3. Partial least squares regression (PLSR) calibration and external validation plots for threonine
(a), cysteine (b), methionine (c), tryptophan (d), palmitic acid (e), stearic acid (f), linoleic acid (g),
linolenic acid (h), and moisture (i) contents in soybean samples using the handheld NIR sensor.
Grey diamonds represent samples in calibration set; black diamonds represent samples in external
validation set.



Sensors 2020, 20, 6283 16 of 19

References

1. U.S. Department of Agriculture World Agricultural Supply and Demand Estimates. Available online:
https://www.usda.gov/oce/commodity/wasde/wasde0920.pdf (accessed on 10 June 2020).

2. Hartman, G.L.; West, E.D.; Herman, T.K. Crops that feed the World 2. Soybean-worldwide production, use,
and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [CrossRef]

3. USDA Economic Research Service Soybeans & Oil Crops. Available online: https://www.ers.usda.gov/topics/
crops/soybeans-oil-crops/ (accessed on 10 June 2020).

4. Goldsmith, P.D. Economics of soybean production, marketing, and utilization. In Soybeans-Chemistry,
Production Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL,
USA, 2008; Volume 2, pp. 117–150.

5. Miller-Garvin, J.; Naeve, S. United States Soybean Quality Annual Report 2017. Available online: https://ussec.
org/wp-content/uploads/2017/12/2017.12.21-U.S.-Soy-Quality-Report.pdf (accessed on 29 December 2018).

6. Demorest, Z.L.; Coffman, A.; Baltes, N.J.; Stoddard, T.J.; Clasen, B.M.; Luo, S.; Retterath, A.; Yabandith, A.;
Gamo, M.E.; Bissen, J.; et al. Direct stacking of sequence-specific nuclease-induced mutations to produce
high oleic and low linolenic soybean oil. BMC Plant Biol. 2016, 16, 1–8. [CrossRef] [PubMed]

7. Flores, T.; Karpova, O.; Su, X.; Zeng, P.; Bilyeu, K.; Sleper, D.A.; Nguyen, H.T.; Zhang, Z.J. Silencing
of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean
[Glycine max (Merr.)]. Transgenic Res. 2008, 17, 839–850. [CrossRef] [PubMed]

8. Kanai, M.; Yamada, T.; Hayashi, M.; Mano, S.; Nishimura, M. Soybean (Glycine max L.) triacylglycerol lipase
GmSDP1 regulates the quality and quantity of seed oil. Sci. Rep. 2019, 9, 1–10. [CrossRef] [PubMed]

9. Darrigues, A.; Lamkey, K.R.; Scott, M.P. Breeding for Grain Amino Acid Composition in Maize.
In Plant Breeding: The Arnel R. Hallauer International Symposium; Lamkey, K.R., Lee, M., Eds.; Blackwell
Publishing: Ames, IA, USA, 2006; pp. 335–344.

10. Perrin, R. The Impact of Component Pricing of Soybeans and Milk. Am. Agric. Econ. Assoc. 1980, 62, 445–455.
[CrossRef]

11. U.S. Soybean Export Council. U.S. Soy’s Superior Value is Demonstrated Through More Nutrients,
Greater Consistency. Available online: https://ussec.org/u-s-soys-superior-demonstrated-nutrients-greater-
consistency/ (accessed on 10 June 2020).

12. Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. Comparison
of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and
antinutritional parameters in common beans. Food Chem. 2020, 306, 125509. [CrossRef]

13. Hacisalihoglu, G.; Freeman, J.; Armstrong, P.R.; Seabourn, B.W.; Porter, L.D.; Settles, A.M.; Gustin, J.L.
Protein, weight, and oil prediction by single-seed near-infrared spectroscopy for selection of seed quality
and yield traits in pea (Pisum sativum). J. Sci. Food Agric. 2020, 100, 3488–3497. [CrossRef] [PubMed]

14. Weng, Y.; Shi, A.; Ravelombola, W.S.; Yang, W.; Qin, J.; Motes, D.; Moseley, D.O.; Chen, P. A Rapid Method
for Measuring Seed Protein Content in Cowpea (Vigna unguiculata (L.) Walp). Am. J. Plant Sci. 2017, 8,
2387–2396. [CrossRef]

15. Bagchi, T.B.; Sharma, S.; Chattopadhyay, K. Development of NIRS models to predict protein and amylose
content of brown rice and proximate compositions of rice bran. Food Chem. 2016, 191, 21–27. [CrossRef]

16. Ferreira, D.S.; Galão, O.F.; Pallone, J.A.L.; Poppi, R.J. Comparison and application of near-infrared (NIR) and
mid-infrared (MIR) spectroscopy for determination of quality parameters in soybean samples. Food Control
2014, 35, 227–232. [CrossRef]

17. Holse, M.; Larsen, F.H.; Hansen, Å.; Engelsen, S.B. Characterization of marama bean (Tylosema esculentum)
by comparative spectroscopy: NMR, FT-Raman, FT-IR and NIR. Food Res. Int. 2011, 44, 373–384. [CrossRef]

18. Laporte, M.F.; Paquin, P. Near-infrared analysis of fat, protein, and casein in cow’s milk. J. Agric. Food Chem.
1999, 47, 2600–2605. [CrossRef]

19. Williams, P.C.; Stevenson, S.G.; Starkey, P.M.; Hawtin, G.C. The application of near infrared reflectance
spectroscopy to protein-testing in pulse breeding programmes. J. Sci. Food Agric. 1978, 29, 285–292.
[CrossRef]

20. Jiang, G.L. Comparison and application of non-destructive NIR evaluations of seed protein and oil content
in soybean breeding. Agronomy 2020, 10, 77. [CrossRef]

https://www.usda.gov/oce/commodity/wasde/wasde0920.pdf
http://dx.doi.org/10.1007/s12571-010-0108-x
https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/
https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/
https://ussec.org/wp-content/uploads/2017/12/2017.12.21-U.S.-Soy-Quality-Report.pdf
https://ussec.org/wp-content/uploads/2017/12/2017.12.21-U.S.-Soy-Quality-Report.pdf
http://dx.doi.org/10.1186/s12870-016-0906-1
http://www.ncbi.nlm.nih.gov/pubmed/27733139
http://dx.doi.org/10.1007/s11248-008-9167-6
http://www.ncbi.nlm.nih.gov/pubmed/18256901
http://dx.doi.org/10.1038/s41598-019-45331-8
http://www.ncbi.nlm.nih.gov/pubmed/31222045
http://dx.doi.org/10.2307/1240199
https://ussec.org/u-s-soys-superior-demonstrated-nutrients-greater-consistency/
https://ussec.org/u-s-soys-superior-demonstrated-nutrients-greater-consistency/
http://dx.doi.org/10.1016/j.foodchem.2019.125509
http://dx.doi.org/10.1002/jsfa.10389
http://www.ncbi.nlm.nih.gov/pubmed/32201942
http://dx.doi.org/10.4236/ajps.2017.810161
http://dx.doi.org/10.1016/j.foodchem.2015.05.038
http://dx.doi.org/10.1016/j.foodcont.2013.07.010
http://dx.doi.org/10.1016/j.foodres.2010.10.003
http://dx.doi.org/10.1021/jf980929r
http://dx.doi.org/10.1002/jsfa.2740290315
http://dx.doi.org/10.3390/agronomy10010077


Sensors 2020, 20, 6283 17 of 19

21. Xu, R.; Hu, W.; Zhou, Y.; Zhang, X.; Xu, S.; Guo, Q.; Qi, P.; Chen, L.; Yang, X.; Zhang, F.; et al. Use of
near-infrared spectroscopy for the rapid evaluation of soybean [Glycine max (L.) Merri.] water soluble protein
content. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117400. [CrossRef]

22. Dunmire, K.M.; Dhakal, J.; Stringfellow, K.; Stark, C.R.; Paulk, C.B. Evaluating Soybean Meal Quality Using
Near-Infrared Reflectance Spectroscopy Evaluating Soybean Meal Quality Using Near-Infrared Reflectance
Spectroscopy. Kans. Agric. Exp. Stn. Res. Rep. 2019, 5, 8. [CrossRef]

23. Boisen, S.; Hvelplund, T.; Weisbjerg, M.R. Ideal amino acid profiles as a basis for feed protein evaluation.
Livest. Prod. Sci. 2000, 64, 239–251. [CrossRef]

24. Pazdernik, D.L.; Killam, A.S.; Orf, J.H. Analysis of amino and fatty acid composition in soybean seed, using
near infrared reflectance spectroscopy. Agron. J. 1997, 89, 679–685. [CrossRef]

25. Chen, G.L.; Zhang, B.; Wu, J.G.; Shi, C.H. Nondestructive assessment of amino acid composition in rapeseed
meal based on intact seeds by near-infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 2011, 165,
111–119. [CrossRef]

26. Fontaine, J.; Hörr, J.; Schirmer, B. Near-infrared reflectance spectroscopy enables the fast and accurate
prediction of the essential amino acid contents in soy, rapeseed meal, sunflower meal, peas, fishmeal, meat
meal products, and poultry meal. J. Agric. Food Chem. 2001, 49, 57–66. [CrossRef]

27. Rosales, A.; Galicia, L.; Oviedo, E.; Islas, C.; Palacios-Rojas, N. Near-infrared reflectance spectroscopy (NIRS)
for protein, tryptophan, and lysine evaluation in quality protein maize (QPM) breeding programs. J. Agric.
Food Chem. 2011, 59, 10781–10786. [CrossRef]

28. Tallada, J.G.; Palacios-Rojas, N.; Armstrong, P.R. Prediction of maize seed attributes using a rapid single
kernel near infrared instrument. J. Cereal Sci. 2009, 50, 381–387. [CrossRef]

29. Plans, M.; Simó, J.; Casañas, F.; Sabaté, J.; Rodriguez-saona, L. Characterization of common beans
(Phaseolus vulgaris L.) by infrared spectroscopy: Comparison of MIR, FT-NIR and dispersive NIR using
portable and benchtop instruments. FRIN 2013, 54, 1643–1651. [CrossRef]

30. Teixeira Dos Santos, C.A.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the applications of portable
near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, 67, 1215–1233. [CrossRef]

31. Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [CrossRef]
32. Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their

potential for high-throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [CrossRef]
33. Jones, B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins;

U.S. Department of Agriculture Circular No. 183; U.S. Department of Agriculture: Washington, DC,
USA, 1931; pp. 1–22.

34. U.S. Department of Agriculture Composition of Foods Raw, Processed, Prepared. USDA National Nutrient
Database for Standard Reference SR, Release 27. Available online: https://data.nal.usda.gov/dataset/
composition-foods-raw-processed-prepared-usda-national-nutrient-database-standard-referenc-0
(accessed on 7 July 2020).

35. Tome, D.; Cordella, C.; Dib, O.; Peron, C. Nitrogen and Protein Content Measurement and Nitrogen to Protein
Conversion Factors for Dairy and Soy Protein-Based Foods: A Systematic Review and Modelling Analysis.
Available online: https://www.who.int/publications/i/item/9789241516983 (accessed on 24 June 2020).

36. Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression).
Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [CrossRef]

37. Kvalheim, O.M.; Karstang, T.V. SIMCA-classification by means of disjoint cross validated principal
components models. In Multivariate Pattern Recognition in Chemometrics, Illustrated by Case Studies;
Brereton, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 209–248.

38. Karunathilaka, S.R.; Yakes, B.J.; He, K.; Chung, J.K.; Mossoba, M. Non-targeted NIR spectroscopy and
SIMCA classification for commercial milk powder authentication: A study using eleven potential adulterants.
Heliyon 2018, 4, e00806. [CrossRef]

39. Sivakesava, S.; Irudayaraj, J. A rapid spectroscopic technique for determining honey adulteration with corn
syrup. J. Food Sci. 2001, 66, 787–791. [CrossRef]

40. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

41. Banaszkiewicz, T. Nutritional Value of Soybean Meal. In Soybean and Nutrition; El-Shemy, H.A., Ed.; InTech:
Rijeka, Croatia, 2011; pp. 1–20. ISBN 978-953-307-536-5.

http://dx.doi.org/10.1016/j.saa.2019.117400
http://dx.doi.org/10.4148/2378-5977.7864
http://dx.doi.org/10.1016/S0301-6226(99)00146-3
http://dx.doi.org/10.2134/agronj1997.00021962008900040022x
http://dx.doi.org/10.1016/j.anifeedsci.2011.02.004
http://dx.doi.org/10.1021/jf000946s
http://dx.doi.org/10.1021/jf201468x
http://dx.doi.org/10.1016/j.jcs.2009.08.003
http://dx.doi.org/10.1016/j.foodres.2013.09.003
http://dx.doi.org/10.1366/13-07228
http://dx.doi.org/10.1177/0003702818809719
http://dx.doi.org/10.1016/j.cofs.2020.04.008
https://data.nal.usda.gov/dataset/composition-foods-raw-processed-prepared-usda-national-nutrient-database-standard-referenc-0
https://data.nal.usda.gov/dataset/composition-foods-raw-processed-prepared-usda-national-nutrient-database-standard-referenc-0
https://www.who.int/publications/i/item/9789241516983
http://dx.doi.org/10.1002/wics.51
http://dx.doi.org/10.1016/j.heliyon.2018.e00806
http://dx.doi.org/10.1111/j.1365-2621.2001.tb15173.x
http://dx.doi.org/10.1021/ac60214a047


Sensors 2020, 20, 6283 18 of 19

42. U.S. Department of Agriculture. 2011 Soybean Export Farmgate Assesment Data. Available online:
https://www.ams.usda.gov/sites/default/files/media/soyexport2011data.pdf (accessed on 24 June 2020).

43. Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and edible uses of soy protein products.
Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [CrossRef]

44. Preece, K.E.; Hooshyar, N.; Zuidam, N.J. Whole soybean protein extraction processes: A review. Innov. Food
Sci. Emerg. Technol. 2017, 43, 163–172. [CrossRef]

45. Assefa, Y.; Bajjalieh, N.; Archontoulis, S.; Casteel, S.; Davidson, D.; Kovács, P.; Naeve, S.; Ciampitti, I.A.
Spatial Characterization of Soybean Yield and Quality (Amino Acids, Oil, and Protein) for United States.
Sci. Rep. 2018, 8, 1–11. [CrossRef] [PubMed]

46. dos Santos, E.L.; Pípolo, A.E.; de Faria, R.T.; Prete, C.E.C. Influence of genotype on protein and oil
concentration of soybean seeds. Braz. Arch. Biol. Technol. 2010, 53, 793–799. [CrossRef]

47. Kim, H.J.; Ha, B.K.; Ha, K.S.; Chae, J.H.; Park, J.H.; Kim, M.S.; Asekova, S.; Shannon, J.G.; Son, C.K.;
Lee, J.D. Comparison of a high oleic acid soybean line to cultivated cultivars for seed yield, protein and oil
concentrations. Euphytica 2015, 201, 285–292. [CrossRef]

48. Zhu, Z.; Chen, S.; Wu, X.; Xing, C.; Yuan, J. Determination of soybean routine quality parameters using
near-infrared spectroscopy. Food Sci. Nutr. 2018, 6, 1109–1118. [CrossRef]

49. Bazoni, C.H.V.; Ida, E.I.; Barbin, D.F.; Kurozawa, L.E. Near-infrared spectroscopy as a rapid method for
evaluation physicochemical changes of stored soybeans. J. Stored Prod. Res. 2017, 73, 1–6. [CrossRef]

50. Zarkadas, C.G.; Gagnon, C.; Gleddie, S.; Khanizadeh, S.; Cober, E.R.; Guillemette, R.J.D. Assessment of
the protein quality of fourteen soybean [Glycine max (L.) Merr.] cultivars using amino acid analysis and
two-dimensional electrophoresis. Food Res. Int. 2007, 40, 129–146. [CrossRef]

51. Carrera, C.S.; Reynoso, C.M.; Funes, G.J.; Martinez, M.J.; Dardanelli, J.; Resnik, S.L. Amino acid composition
of soybean seeds as affected by climatic variables. Pesqui. Agropecuária Bras. 2011, 46, 1579–1587. [CrossRef]

52. Singh, S.; Patel, S.; Litoria, N.; Gandhi, K.; Faldu, P.; Patel, K.G. Comparative Efficiency of Conventional and
NIR Based Technique for Proximate Composition of Pigeon Pea, Soybean and Rice Cultivars Comparative
Efficiency of Conventional and NIR Based Technique for Proximate Composition of Pigeon Pea, Soybean
and Rice C. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 773–782. [CrossRef]

53. Dong, Y.; Qu, S.Y. Nondestructive Method for Analysis of the Soybean Quality Nondestructive Method for
Analysis of the Soybean Quality. Int. J. Food Eng. 2012, 8. [CrossRef]

54. Napolitano, G.E.; Ye, Y.; Cruz-Hernandez, C. Chemical Characterization of a High-Oleic Soybean Oil. JAOCS
J. Am. Oil Chem. Soc. 2018, 95, 583–589. [CrossRef]

55. Cournoyer, P. Biotechnology Notification File No. 000164 CFSAN Note to the File. Available online:
https://www.fda.gov/media/120708/download (accessed on 18 June 2020).

56. Abdelghany, A.M.; Zhang, S.; Azam, M.; Shaibu, A.S.; Feng, Y.; Qi, J.; Li, Y.; Tian, Y.; Hong, H.; Li, B. Natural
Variation in Fatty Acid Composition of Diverse World Soybean Germplasms Grown in China. Agronomy
2020, 10, 24. [CrossRef]

57. Narayan, R.; Chauhan, G.S.; Verma, N.S. Changes in the quality of soybean during storage. Part 1-Effect of
storage on some physico-chemical properties of soybean. Food Chem. 1988, 27, 13–23. [CrossRef]

58. La, T.C.; Pathan, S.M.; Vuong, T.; Lee, J.D.; Scaboo, A.M.; Smith, J.R.; Gillen, A.M.; Gillman, J.; Ellersieck, M.R.;
Nguyen, H.T.; et al. Effect of high-oleic acid soybean on seed oil, protein concentration, and yield. Crop Sci.
2014, 54, 2054–2062. [CrossRef]

59. Mermelstein, N.H. Improving soybean oil. Food Technol. 2010, 64, 72–77.
60. Pasquini, C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz.

Chem. Soc. 2003, 14, 198–219. [CrossRef]
61. Subramanian, A.; Rodriguez-Saona, L. Fourier Transform Infrared (FTIR) Spectroscopy. In Infrared Spectroscopy

for Food Quality Analysis and Control; Sun, D.-W., Ed.; Elsevier Inc.: Burlington, NJ, USA, 2009; pp. 145–178.
ISBN 9780123741363.

62. Liu, Y.; Cho, R.K.; Sakurai, K.; Miura, T.; Ozaki, Y. Studies on spectra/structure correlations in near-infrared
spectra of proteins and polypeptides. Part I: A marker band for hydrogen bonds. Appl. Spectrosc. 1994, 48,
1249–1254. [CrossRef]

63. Wang, H.; Johnson, L.A.; Wang, T. Preparation of soy protein concentrate and isolate from extruded-expelled
soybean meals. JAOCS J. Am. Oil Chem. Soc. 2004, 81, 713–717. [CrossRef]

https://www.ams.usda.gov/sites/default/files/media/soyexport2011data.pdf
http://dx.doi.org/10.1111/j.1541-4337.2007.00025.x
http://dx.doi.org/10.1016/j.ifset.2017.07.024
http://dx.doi.org/10.1038/s41598-018-32895-0
http://www.ncbi.nlm.nih.gov/pubmed/30279447
http://dx.doi.org/10.1590/S1516-89132010000400007
http://dx.doi.org/10.1007/s10681-014-1210-5
http://dx.doi.org/10.1002/fsn3.652
http://dx.doi.org/10.1016/j.jspr.2017.05.003
http://dx.doi.org/10.1016/j.foodres.2006.08.006
http://dx.doi.org/10.1590/S0100-204X2011001200001
http://dx.doi.org/10.20546/ijcmas.2018.701.094
http://dx.doi.org/10.1515/1556-3758.2511
http://dx.doi.org/10.1002/aocs.12049
https://www.fda.gov/media/120708/download
http://dx.doi.org/10.3390/agronomy10010024
http://dx.doi.org/10.1016/0308-8146(88)90032-5
http://dx.doi.org/10.2135/cropsci2013.12.0819
http://dx.doi.org/10.1590/S0103-50532003000200006
http://dx.doi.org/10.1366/0003702944027408
http://dx.doi.org/10.1007/s11746-004-966-8


Sensors 2020, 20, 6283 19 of 19

64. Sharma, S.; Kaur, M.; Goyal, R.; Gill, B.S. Physical characteristics and nutritional composition of some new
soybean (Glycine max (L.) Merrill) genotypes. J. Food Sci. Technol. 2014, 51, 551–557. [CrossRef]

65. Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR Spectroscopy to Agricultural Products.
In Handbook of Near-Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA,
2008; pp. 347–386. ISBN 978-0-8493-7393-0.

66. Wold, S.; Sjöström, M. SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy.
In Chemometrics: Theory and Application; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC,
USA, 1977; pp. 243–282. ISBN 9780841203792.

67. Myrzakozha, D.; Turgaliev, D.; Sato, H. Determination of Fatty-Acid Composition in Oils of Animal Origin
by Near-Infrared Spectroscopy. Food Nutr. Sci. 2014, 5, 1408–1414. [CrossRef]

68. Hemmateenejad, B.; Akhond, M.; Samari, F. A comparative study between PCR and PLS in simultaneous
spectrophotometric determination of diphenylamine, aniline, and phenol: Effect of wavelength selection.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 958–965. [CrossRef]

69. Ingle, P.D.; Christian, R.; Purohit, P.; Zarraga, V.; Handley, E.; Freel, K.; Abdo, S. Determination of protein
content by NIR spectroscopy in protein powder mix products. J. AOAC Int. 2016, 99, 360–363. [CrossRef]

70. Ferreira, D.S.; Pallone, J.A.L.; Poppi, R.J. Fourier transform near-infrared spectroscopy (FT-NIRS) application
to estimate Brazilian soybean [Glycine max (L.) Merril] composition. Food Res. Int. 2013, 51, 53–58. [CrossRef]

71. Balastreri, C.; Baretta, D.; Paulino, A.T. Near-Infrared Spectroscopy and Multivariate Analysis for the
Determination of Nutritional Value of Soybean Meal and Maize Bran. Anal. Lett. 2016, 49, 1548–1563.
[CrossRef]

72. Asekova, S.; Han, S.; Choi, H.; Park, S.; Shin, D.; Kwon, C.; Shannon, J.G.; Lee, J. Determination of forage
quality by near-infrared reflectance spectroscopy in soybean. Turk. J. Agric. For. 2016, 40, 45–52. [CrossRef]

73. Kovalenko, I.V.; Rippke, G.R.; Hurburgh, C.R. Determination of amino acid composition of soybeans
(Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 3485–3491. [CrossRef] [PubMed]

74. Roberts, C.A.; Ren, C.; Beuselinck, P.R.; Benedict, H.R.; Bilyeu, K. Fatty Acid Profiling of Soybean Cotyledons
by Near-Infrared Spectroscopy. Appl. Spectrosc. 2006, 60, 1328–1333. [CrossRef]

75. Liang, L.; Wei, L.; Fang, G.; Xu, F.; Deng, Y.; Shen, K.; Tian, Q.; Wu, T.; Zhu, B. Prediction of holocellulose and
lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection. Spectrochim.
Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117515. [CrossRef]

76. Jiang, H.; Jiang, X.; Ru, Y.; Chen, Q.; Xu, L.; Zhou, H. Sweetness Detection and Grading of Peaches
and Nectarines by Combining Short- and Long-Wave Fourier-Transform Near-Infrared Spectroscopy.
Anal. Lett. 2020. [CrossRef]

77. Aykas, D.P.; Rodriguez-Saona, L.E. Assessing potato chip oil quality using a portable infrared spectrometer
combined with pattern recognition analysis. Anal. Methods 2016, 8, 731–741. [CrossRef]

78. Hayes, D.J.M.; Hayes, M.H.B.; Leahy, J.J. Use of near infrared spectroscopy for the rapid low-cost analysis of
waste papers and cardboards. Faraday Discuss. 2017, 202, 465–482. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s13197-011-0517-7
http://dx.doi.org/10.4236/fns.2014.514153
http://dx.doi.org/10.1016/j.saa.2006.09.014
http://dx.doi.org/10.5740/jaoacint.15-0115
http://dx.doi.org/10.1016/j.foodres.2012.09.015
http://dx.doi.org/10.1080/00032719.2015.1118483
http://dx.doi.org/10.3906/tar-1407-33
http://dx.doi.org/10.1021/jf052570u
http://www.ncbi.nlm.nih.gov/pubmed/19127714
http://dx.doi.org/10.1366/000370206778998932
http://dx.doi.org/10.1016/j.saa.2019.117515
http://dx.doi.org/10.1080/00032719.2020.1795186
http://dx.doi.org/10.1039/C5AY02387D
http://dx.doi.org/10.1039/C7FD00081B
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Reference Analysis 
	NIR Spectroscopic Analysis 
	Statistical Analysis 
	Multivariate Analysis 

	Results 
	Characterization of Soybean Samples 
	Characterization of NIR Spectra 
	SIMCA Classification Model for High-Oleic vs. Conventional Soybeans 
	Regression Models 

	Conclusions 
	
	
	
	References

