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Abstract: 3D object recognition is an generic task in robotics and autonomous vehicles. In this paper,
we propose a 3D object recognition approach using a 3D extension of the histogram-of-gradients
object descriptor with data captured with a depth camera. The presented method makes use of
synthetic objects for training the object classifier, and classify real objects captured by the depth
camera. The preprocessing methods include operations to achieve rotational invariance as well as
to maximize the recognition accuracy while reducing the feature dimensionality at the same time.
By studying different preprocessing options, we show challenges that need to be addressed when
moving from synthetic to real data. The recognition performance was evaluated with a real dataset
captured by a depth camera and the results show a maximum recognition accuracy of 81.5%.

Keywords: 3D object recognition; 3DHOG; histogram-of-gradients; ModelNet40; ModelNet10;
feature descriptor; Intel RealSense; depth camera; PCA

1. Introduction

Since the popularization of consumer depth cameras, 3D data acquisition and surface
description techniques enabled a significant number of new applications like object recogni-
tion [1], robot grasping [2], 3D reconstruction [3] or autonomous navigation [4]. In addition
to the visual information, depth cameras allow to detect and measure 3D features regarding
the object’s shape, improving therefore the recognition performance in comparison with
visual cameras. Additionally, depth cameras are not affected by illumination changes and
therefore are especially suitable for safety applications.

Advanced object recognition approaches are typically based on convolutional neu-
ral networks (CNNs) to extract a hierarchy set of abstract features from each object to
capture key information regarding the class to which it belongs. Despite their recogni-
tion performance, CNN approaches demand high computational and memory resources,
making them difficult to implement when there are strong limitations in hardware [5].
In addition, CNNs require extended datasets for training and testing which, in practice,
limit their application [6].

In opposite to CNNs, classic object recognition approaches rely on a previous ex-
pertise to extract a set of key object features to construct a hand-crafted object descriptor.
Our previous research on hand-crafted object descriptors showed good object recognition
performances in comparison with the state-of-the-art 3D CNN approaches based on the
synthetic ModelNet10 dataSet [7] as well as a relatively low processing time making it
suitable for real-time processing [8]. The goal of that paper was to develop a processing
pipeline using a more traditional approach while maintaining a comparable recognition
accuracy to CNN-based approaches. We used the synthetic ModelNet10 dataset for this
purpose because recognition results of various other works are available and thus allow a
comparison without reimplementing the approaches. However, a synthetic dataset does
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not allow to evaluate the object descriptor for a real object recognition application using
a depth camera which is the intent of this research. Depth cameras provide a non-ideal
object measurements with respect the ideal object shapes of the existing synthetic dataset.
These non-idealities are caused mainly by noise and depth computation artifacts as well as
by the impossibility to capture a complete 3D object shape due to occlusion effects.

Ideally, any 3D object recognition approach targeting real data would be trained on a
corresponding real dataset using the 3D objects captured by the depth camera as well as
test the recognition processing chain. This involves to measure a relevantly large number
of different objects belonging to each class which, in practice, limits the application scope
due the impossibility, in many cases, to measure enough objects. This problem is especially
significant for the CNN approaches due to the required extended and labeled datasets [6].

The scientific contribution of this work is to use our previously developed processing
pipeline as base to explore a 3D object recognition approach using real data from a depth
camera for classification and a synthetic dataset to train the classifier. We analyze whether
the constraint of large datasets with real data can be leveraged by using synthetic data for
the training process. In addition, we systematically review the required data processing
steps to maximize the recognition performances and thus extend our previous pipeline to
handle real data. To evaluate the depth camera non-idealities in the recognition processing
chain, we propose a 3D object recognition approach using a feature-based object descriptor
and compare its recognition performance for various combinations of test and training
data as well as different preprocessing steps in the classification data flow.

2. Related Works

3D object recognition is a fundamental research topic in image processing. Most of the
recognition approaches are still based on 2D visual images and thus do not fully exploit the
shape information of the objects. Depth cameras allow to measure 3D information of the
scene and thus enable 3D perception of the objects. However, 3D measurements result in
unstructured point cloud data and are thus highly unorganized, requiring more complex
and computational demanding approaches [9].

3D recognition approaches can be categorized into deep-learning or feature descriptor
methods. Novel deep-learning approaches are based on 3D CNNs to extract abstract
features from the objects regarding their belong class. There are several CNN approaches for
3D recognition, like PointNet [10], VoxNet [11], 3DYolo [12] or SPNet [13]. However, these
approaches are highly computational and memory demanding. In addition, they require
extended and structured training datasets, making it difficult to implement them in a real
recognition application with small datasets, hardware and memory resources.

Feature descriptor approaches, instead, rely on previous expertise to extract the key
set of object features to maximize the class separability. The approaches can categorized
in methods using global features and local features. Local features describe the local
geometry around the key points of interest. Thus, they require the previous selection of
valid key points and specialized classifiers to handle multiple feature vectors per object [6].
However, they are robust to clutter and occlusions and thus can be used for 3D object
recognition in cluttered scenes. There is a large variety of approaches based on local
features, such as scale-invariant feature transform (SIFT) [14], signature of geometric
centroids (SGCs) [15], signature of histograms of orientations (SHOTS) [16] or rotational
contour signature (RCS) [17]. Local key point detection requires a detailed object resolution
in order to extract the key points, leading to poor descriptiveness and computational
demanding approaches [18]. As a result, the mentioned descriptors show weak results
when using consumer depth cameras due to their image resolution limitations [19].

Global features, instead, encode the whole object shape information as a single fea-
ture vector. They require previous object segmentation as a processing step in order to
isolate the object and compute the feature descriptor [20], but they are efficient in terms
of computational cost and memory consumption [21], achieving good results and popu-
larity [9]. There is an extensive set of approaches based on global 3D features, like spin
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images (SI) [22], view point feature histogram (VFH) [23], fast point feature histogram
(FPFH) [24], ensemble of shape functions (ESF) [25], the novel voxelized fractal descriptor
(VFD) [6], the globally aligned spatial distribution (GASD) [19] or the triple local coordinate
images (TriLCI) [18]. Another popular 2D-based global descriptor is the histogram-of-
oriented-gradients (HOG) [26] which has been extended to 3D (3DHOG) [27–29]. However,
3DHOG tends to generate higher dimensionality features and thus requires to include
dimensionality reduction methods [28,30]. In addition, existing 3DHOG evaluations use
synthetic dataset to compare the descriptor performances [30].

None of the described approaches have so far been evaluated regarding a real appli-
cation using 3D camera data, which is the intention of this study. Our previous results
using a 3DHOG descriptor-based processing pipeline are compared with other methods
in Vilar et al. [8] using the ModelNet10 synthetic dataset as a common reference. This
showed, that our approach can achieve comparable results while limiting the processing
effort and duration. In this publication, we extend the previously tested pipeline in order
to handle both synthetic and real data and evaluate if such a combination can leverage the
need for extensive real datasets. To achieve this, we switch from ModelNet10 to a subset of
ModelNet40 dataset for the synthetic training data and additionally generate a custom test
dataset by capturing 3D data using a depth camera. The switch is needed in order to be
able to have corresponding objects in both the synthetic and training dataset. As a result,
this does not allow a direct comparison of the results with other existing methods because
we use different datasets. In addition, other methods do not consider partial 3D shapes
and thus do not include any additional preprocessing to allow us to use synthetic data
for training. However, by first evaluating our pipeline on ModelNet10, then switching to
ModelNet40 and finally evaluating the combination of synthetic and real data, we try to
ensure comparability for others.

3. Methodology

The processing steps for the training and classification data flows are summarized
in Figure 1. The training data flow starts by performing different data preprocessing
options for each synthetic object (shown as red blocks). For each object, we compute the
3DHOG object descriptor to generate a 3DHOG feature matrix. Then, we compute the
principal components (PCs) of the feature matrix and the training data are projected onto a
reduced subset of PCs. As a result, the feature matrix has a smaller dimensionality while
maintaining most of the data variance. Finally, an object classifier is trained to estimate
the object classes. The classification flow starts by measuring the real objects using a
depth camera. Objects are segmented from the point cloud data by removing the GP
and a clustering processing step. Additionally, segmented objects require preprocessing
according to the one performed in the training flow. From each object, the 3DHOG object
descriptor is computed to generate the feature vector. Then, each feature vector is projected
onto the same reduced subset of PCs used during the training process and the object’s class
is estimated using the same previous trained classifier.

Figure 1. Training and classification data flows.
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3.1. Training Dataset and Data Preprocessing

We use a subset of the synthetic Princeton ModelNet40 dataset [7] to train the object
recognition chain. It contains 3D volumetric images of 40 different object classes with
separate sets for training and testing. However, we limited the evaluation to 10 classes
choosing those classes where it is possible to capture enough real data. The selected object
classes and the number of objects per class (NObjects) are listed in Table 1. Due to the
differences between the synthetic data used for training and the 3D data captured by the
depth camera, we experimented with 5 different preprocessing options for the training
data in order to determine the limitations when using a synthetic dataset for training.
The preprocessing options are summarized as:

1. No preprocessing. The object descriptor is computed directly for each object from the
training dataset.

2. Subset of training objects. We selected a subset of synthetic objects from the training
dataset in order to train the recognition data flow. We evaluated all the training
dataset objects at 203, 303 and 403 voxel grid resolutions in order to discard those
not having enough resolution. In order to determine the objects with a too low
resolution, we manually evaluated each object one-by-one. The main criteria for the
selection were that the object shows qualitatively distinctive features from the class it
belongs to. Consequently, the evaluation contained all the objects at different voxel
grid resolutions.

3. Dataset augmentation. We perform a dataset augmentation by rotating each synthetic
object from the training dataset along the Z axis. Hence, we generate multiple views
of the same object as in Figure 2. We assume therefore, that the objects are always
aligned on the X and Y axes. Otherwise, additional rotations on the X and Y axes
are required.

Figure 2. Training dataset augmentation by rotating each object along the Z axis 0°, 45°,
90°, 135°, 180°, 225°, 270°, 315°.

4. Frontal projection. Due to the lack of a complete 3D object shape captured by a depth
camera, synthetic objects are preprocessed to compute the frontal projection according
to the camera position described in Figure 3.

Figure 3. Training dataset augmentation by rotating each object along the Z axis 0°, 45°,
90°, 135°, 180°, 225°, 270°, 315°including only the frontal projection of the object with
respect to the camera position.

5. Pose alignment. Each synthetic object from the training dataset is aligned using the
PCA-STD method described in Vilar et al. [30] before computing the object descriptor
in order to achieve rotational invariance.
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Table 1. ModelNet40 object classes selected and number of objects per class for the synthetic and real datasets.

Dataset Bottle Bowl Chair Cup Keyboard Lamp Laptop Monitor Plant Stool NObjects

Training 335 64 889 79 145 124 149 465 240 90 2580

Augmentation.
Training 2680 512 7112 632 1160 992 1192 3720 1920 720 20,640

Sub.&Augmentation.
Training 816 448 1096 288 560 472 536 712 648 528 6104

Synthetic
Test 99 19 99 19 19 19 19 99 99 19 510

Camera
Test 64 48 64 64 48 48 48 48 48 48 528

3.2. Preparation of the Real Dataset

Our experimental object acquisition setup is shown in Figure 4. The depth camera
is placed on a tripod tilted down 20 degrees. The objects are placed on a flat surface or
ground plane (GP). Camera distance with respect to the objects is adjusted according with
the size of the objects. As a result of the lack of a complete object shape measurement, it is
required to perform a dataset augmentation by physically rotating the objects along the Z
axis, Figure 5.

Figure 4. Evaluation setup, RGB image, depth map and object representation in voxels.

Figure 5. Real dataset augmentation by rotation of each object along the Z axis 0°, 45°, 90°, 135°, 180°,
225°, 270°, 315°.

Other axis rotations are not considered for this experiment. The camera data are
preprocessed in order to segment the objects from the point cloud data. All preprocessing
stesp are shown in Figure 1 and summarized as follows:

1. Point cloud conversion. The depth map image captured by the camera (Figure 4)
is converted to a cloud of non-structured points in 3D space. The conversion is
performed using the Application Programming Interface (API) software functions
provided by the camera manufacturer.

2. Ground plane removal. As a first object segmentation step, the point cloud points
belonging to the GP are segmented and removed using the M-estimator sample-
consensus (MSAC) algorithm [31]. In addition, the estimated GP points are used to
align the remaining point cloud data with respect to the GP. This alignment is per-
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formed first by computing the principal component analysis (PCA) of the estimated
GP points and later by performing an affine transformation of the remaining point
cloud data in order to rotate it according with the measured angles (ϕ, α) (1) of the GP.
Angle measurements are performed considering that the principal components on
the Z axis (

−−→
PC3) are equivalent to the normal vector (

−→
N ) of the GP, Figure 6.

Figure 6. Pointcloud data alignment by computing the principal component analysis (PCA) of the
estimated ground plane (GP).

α = − arcsin |PC3(y)| ϕ = arccos |PC3(x)| (1)

3. Clustering. Point cloud data above the GP are segmented into clusters based on the
Euclidean distance. Minimum Euclidean distance parameter is chosen according to
the experimental results.

4. Pose alignment. In the same way as described for the training dataset, the segmented
objects are preprocessed to normalize their pose using the PCA-STD method described
in [32] in order to achieve rotational invariance.

5. Voxelization. Point cloud data from the segmented cluster are then converted into
a voxel-based representation. This conversion is performed first by normalizing the
data size according with the voxel resolution grid, and later by approximating each
point form the point cloud to the nearest voxel integer value.

3.3. Object Descriptor and Dimensionality Feature Reduction

We used a handcrafted object descriptor in order to extract the key features from
the objects regarding their respective class. The descriptor is based on a 3D voxel-based
extension of the histogram-of-oriented-gradients (3DVHOG) [27] and was developed
originally to detect hazard situations due to the presence of dangerous objects in a 3D
scene. The descriptor parameters and feature dimensionality for each voxel grid analyzed
are summarized in Tables 2 and 3 and can be computed as is shown in Vilar et al [32].

Table 2. 3D histogram-of-oriented-gradients (3DHOG) and feature dimensionality for 203, 303, 403

voxel grids.

Voxel Grid 203 303 403

NBlocks 1 8 27
NCells 8 8 8

NFeatures 1296 10,368 34,992

Table 3. Descriptor configuration parameters.

Parameter Value

ϕBins 18
θBins 9

CellSize 6
BlockSize 2
StepSize 2
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According to the descriptor parameters shown in Table 3, NFeatures has a high dimen-
sionality, demanding therefore higher computational and memory resources. In order to
solve this limitation, we propose to reduce the feature dimensionality by computing the
principal component analysis (PCA) of the feature matrix and select a reduced subset of
PCs which contains most of the initial data variance. However, this dimensionality reduc-
tion method is especially difficult when dataset augmentation is performed. Additional
data leads to an extremely high dimensionality feature matrix, demanding therefore a
considerable additional training time.

3.4. SVM Classifier

In our previous work [8], we choose a multiclass support vector machine (SVM)
classifier in order to learn the object classes from the feature matrix. The goal of that study
was to compare the recognition performances with respect to other related approaches.
To chose a suitable classifier, we evaluated different classifiers and different configuration
parameters in that work and use the best option identified there for this study. Data
parameters and configuration of the SVM classifier are shown in Table 4.

Table 4. Support vector machine (SVM) classifier configuration parameters.

Parameter SVM Classifier

Type Multiclass
Method Error correcting codes (ECOC)
Kernel function Radial basis function
Optimization Iterative single data (ISDA)
Data division Holdout partition 15%

4. Results and Analysis
4.1. Experimental Flow

In order to evaluate the effect of the depth camera non-idealities and the different
preprocessing and dataset options defined in Sections 3.1 and 3.2, we defined the next
sequence of experiments, Table 5.

Table 5. Experiments definition (Exp.), experimental flow and maximum recognition accuracy (Acc) achieved.

Exp. Training Dataset Test Dataset Acc. Results

1 Synthetic No preprocessing Synthetic No preprocessing 91.5%
2 Synthetic PCA-STD alignment Synthetic PCA-STD align. 90%

3 Synthetic No preprocessing Real No preprocessing 65%
4 Synthetic PCA-STD alignment Real PCA-STD align. 21%

5 Synthetic Dataset augm. Real No preprocessing 75.7%
6 Synthetic Dataset augm. + Frontal view Real No preprocessing 73.7%
7 Synthetic Dataset augm. + Frontal view + Subset Real No preprocessing 81.5%

4.2. Acquisition of Real World Data

We choose the active stereo-camera Intel RealSense D435: Intel, Santa Clara, CA, USA
as a depth camera, Figure 7. Depth is measured directly in the camera by computing the
pixel disparity using a variant of the semi-global matching algorithm on a custom ASIC
processor. Hence, it is not required to include an additional processing task to measure
the depth. The camera has a non-visible static infrared (IR) pattern projector to allow
measuring the depth at dark-light conditions and also when the scene’s texture is too low.
The Intel RealSense D435 camera uses a global shutter enabling robotic navigation and
object recognition applications on a moving environment [30]. It has also a small size,
making it suitable to be embedded into a robot or vehicle’s frame easily. In addition, the
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Intel RealSense D435 camera also integrates an RGB camera. However, we limited our
research to depth images. Main camera specifications are summarized in Table 6.

Figure 7. Intel RealSense D435 depth camera.

Table 6. Intel RealSense D435 active stereo-camera specifications.

Technology Active IR Stereo

Sensor Technology Global shutter, 3 × 3 µm

Depth Field-of-View 86◦ × 57◦

Depth Resolution up to 1280 × 720 pixels

RGB Resolution 1920 × 1080 pixels

Depth Frame Rate up to 90 fps

RGB Frame Rate 30 fps

Min Depth range 0.1 m

Max Depth range 10 m

Dimensions 90, 25, 25 mm

4.3. Experiment 1

In experiment 1, we use a synthetic dataset for both training and classification data
flows, without including any additional data preprocessing, Figure 1. The experiment goal
was to verify previous recognition results using the ModelNet10 [7] synthetic dataset [8]
and also determine the maximum ideal recognition accuracy defined as the averaged class
accuracy (ACCClass):

ACCClass =
1
N

N

∑
i=1

(TpC + TnC )

(TpC + TnC + FpC + FnC )
(2)

where TpC are the class C true positives, TnC the class C true negatives, FpC the class C false
positives, FnC the class C false negatives and N the number of classes.

Recognition accuracy for 203,303,403 voxel resolutions and average of 3 different
measurements are shown in Figure 8. Recognition results agree with previous research.
The maximum ACCClass is 91.5% using 100 PCs and a 403 voxel grid. In addition, the dif-
ferences in ACCClass between the different voxel grids analyzed are small.

4.4. Experiment 2

In experiment 2, we use a synthetic dataset for both training and classification data
flows and additionally included the PCA-STD pose-normalization preprocessing [32] to
achieve rotation invariance. The experimental goal was to verify its performance using a
new synthetic dataset with respect previous research. Experimental results show (Figure 9)
equivalent results to the experiment 1, achieving a maximum ACCClass of 91% using 100 PC.
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Figure 8. Experiment 1. Recognition accuracy without including preprocessing using a syn-
thetic dataset.

Figure 9. Experiment 2. Recognition accuracy including pose normalization using a synthetic dataset.

4.5. Experiment 3

In experiment 3, we use a synthetic dataset for training and the real dataset as test
dataset. This dataset contains captures of real objects using the Intel RealSense D435 depth
camera to evaluate the recognition performances. This experiment does not include any
additional data preprocessing for both datasets. The experimental goal was to evaluate the
recognition performance using real data from the depth camera without the requirement
of generating a training dataset with real data. Our results show a maximum ACCClass
of 68% using a voxel grid of 303 voxels, Figure 10. In addition, ACCClass results without
performing PCA are lower than in previous experiments, especially for the lowest voxel
grid analyzed (203 voxels).

4.6. Experiment 4

In experiment 4, we use the same datasets as in experiment 3 for training and testing.
However, the experiment includes the PCA-STD pose-normalization preprocessing [32] in
order to achieve rotation invariance. The experimental goal was to verify the classification
performance using real objects captured by the depth camera. Experimental results show a
maximum ACCClass of 20% using 100 PCs without differences between the voxels grids
analyzed, Figure 11.
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Figure 10. Experiment 3. Average recognition accuracy without including preprocessing using a real
dataset for classification.

Figure 11. Experiment 4. Average recognition accuracy including pose normalization using a real
dataset for classification.

4.7. Experiment 5

In order to improve the results of experiments 3 and 4 when using a real dataset,
we perform a training dataset augmentation by rotating each object around the Z axis,
Figure 3. Experimental results show an improvement with respect to the previous experi-
ments, achieving a maximum ACCClass of 75.7% using a 403 voxel grid, Figure 12. However,
ACCClass is lower for the other voxels grids analyzed, especially for the 203 grid.

4.8. Experiment 6

In experiment 6, we evaluated the effect of not having a complete 3D object shape
in the synthetic training dataset. Hence, we removed the voxels not belonging to the
frontal projection for each object of the training dataset, Figure 3. Experiment results show
a maximum ACCClass of 75.7% using a voxel grid of 403 voxels and 500 PCs, Figure 13.
In addition, higher voxel grids and thus high resolution objects perform better. However,
it is required a significant higher number of PCs with respected previous experiments to
achieve the best ACCClass.
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Figure 12. Experiment 5. Average recognition accuracy on a real dataset using a synthetic training
dataset including dataset augmentation preprocessing.

Figure 13. Experiment 6. Average recognition accuracy on a real dataset using a synthetic training
dataset including frontal projection and dataset augmentation preprocessing.

4.9. Experiment 7

In our last experiment, we redo experiment 6, but we modified the training dataset in
order to remove the objects not having enough resolution after the voxel format conversion.
The removed objects require using higher voxel grids than 403 voxels in order to capture
enough details to identify their class and therefore they do not match with the object
resolution of the real dataset. Experimental results show an improvement with respect
to results from experiment 6, achieving a maximum ACCClass of 81.5% using a 403 voxel
grid, Figure 14. However, it is required to use 300 PCs and thus a higher number of PCs in
comparison with experiments 1 and 2. Other lower voxel grids analyzed achieve lower
ACCClasss, especially for the 203 grid. Additionally, we compute the confusion matrix for
the best case analyzed result, Table 7. All the objects classes are relatively well classified
except for the classes 8 (Monitor) and 10 (Stool).
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Figure 14. Experiment 7. Average recognition accuracy results including dataset augmentation,
frontal projection and a subset of synthetic training objects.

Table 7. Normalized confusion matrix using 300 principal components (PCs) and synthetic training
dataset and a 403 voxel grid with frontal view and a subset of objects.

Es
ti

ma
te

d
Cl

as
s

1 0.98 0 0 0.04 0.02 0 0.02 0.02 0 0
2 0 0.98 0.03 0 0 0 0 0 0 0
3 0 0 0.86 0 0 0 0 0 0.02 0.2
4 0.01 0 0 0.86 0 0.14 0 0 0 0
5 0 0 0 0 0.95 0 0 0 0 0.02
6 0 0 0.01 0.04 0 0.85 0.04 0.12 0 0.04
7 0 0.02 0 0 0.03 0 0.73 0.18 0 0.04
8 0 0 0.09 0.05 0 0 0.15 0.60 0 0.40
9 0.01 0 0.01 0.01 0 0.01 0.06 0.06 0.85 0
10 0 0 0 0 0 0 0 0 0.13 0.30

1 2 3 4 5 6 7 8 9 10
Input Class

5. Discussion
5.1. Synthetic Dataset

In experiments 1, Figure 8, and 2, Figure 9, we evaluated the recognition performance
of the 3DVHOG using a subset of classes of the ModelNet40 dataset. In both experiments,
recognition accuracy is up to 90% and thus comparable to the state-of-the-art 3D recog-
nition approaches as well as our previous results [8]. The best results are achieved using
the highest voxel grid (403), but the other voxel grids analyzed also achieved equivalent
recognition results while reducing considerably the computational cost and memory re-
quirements. However, a synthetic test dataset does not allow to evaluate the 3DVHOG
descriptor in a real application due to the camera limitations and differences between
synthetic and real objects.

5.2. Real Dataset

In experiment 3, Figure 10, we evaluated the recognition accuracy when a depth cam-
era is used to capture 3D objects instead of using a synthetic test dataset. As expected, the
results show lower recognition accuracy than previous experiments due to the differences
between both synthetic and real objects. The main problem is the limitation to a partial
object shape when using the real data due to occlusion. This and other differences require to
include some additional data preprocessing. In addition, results show that it is required to
use higher voxel grids in order to improve the recognition results when using a real dataset.
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Higher voxel grids capture more object details and therefore the 3DVHOG descriptor is
able to capture enough information to allow the SVM classifier to estimate the object’s class.
Hence, one solution to solve the problem of having partial object shapes when using the
3DVHOG descriptor is to increase the object´s resolution of the synthetic training dataset.
This can be achieved by using higher voxel grids but also by increasing the level of detail
captured by the 3DVHOG descriptor, i.e., by using higher resolutions for angle bins (ϕBins,
θBins). This solution is therefore equivalent to use a local descriptor instead of a global
one. However, the computational cost and memory requirements are increased cubically
making it, as consequence, not suitable for a real object recognition application.

5.3. Rotational Invariance Data Preprocessing

The first data preprocessing analyzed is the PCA-STD method in order to achieve
rotational invariance for the 3DVHOG descriptor, Figures 9 and 11. When it is used with a
synthetic test dataset, PCA-STD performs correctly, but when a real test dataset is used, the
method fails. The reason for these bad results is that the real objects have only partial shapes
in comparison to the synthetic ones due to the limitations of the camera measurement.
Thus, object shapes and object geometry are different in both datasets and thus the standard
data deviation for each class. Consequently, it is required to explore alternative methods
for rotational invariance when dealing with partial object shapes and thus real data.

One method for rotational invariance, explored in experiment 5, Figure 12, is to
perform a training dataset augmentation by rotating each object along the Z (vertical)
axis to generate additional objects which contain most of the data variance, Figure 8.
Results show a significant recognition accuracy increment with respect to experiment 4.
However, they are not comparable with those in experiments 1 and 2, when a synthetic
test dataset is used. In addition, a lower voxel grid performs worse in all cases analyzed.
Despite the partial object shapes, it is required to increase the level of object´s detail in order
to capture local object features regarding their class. In addition, a dataset augmentation
leads to increase exponentially the size of the training dataset and therefore to extend
exponentially the required time for training the classifier.

5.4. Frontal Projection Data Preprocessing

In experiment 6, Figure 13, we added another preprocessing step for the synthetic
objects of the training dataset to compute the frontal projection in order to increase the
recognition accuracy when using a real test dataset. However, results show a relatively
small recognition accuracy improvement with respect to experiment 5, Table 5. In addition,
voxel grids of 303 and 403 achieve the same recognition results contradicting our initial
results, that higher resolutions are required to capture enough details. We then analyzed
the objects in the synthetic training dataset to check for potential problems and differences
in the data used for training and test.

5.5. Subset of Synthetic Training Objects

Finally, in experiment 7, Figure 14, we continue exploring the idea to adapt as much
as possible the training dataset to the real dataset by selecting the synthetic training objects
according with those used in the real dataset, Table 1. Results show an increment of the
recognition accuracy, but are still not comparable with the results achieved in idealistic
experiments 1 and 2. Confusion matrix (Table 7) for the best case analyzed shows relatively
well classified objects, except for the classes 8 (Monitor) and especially for 10 (Stool).
After reviewing some the objects of classes 8 and 10, Figure 15, it is possible to identity the
next error sources:

1. Glossy and no-reflective surfaces. Monitors have some areas where the structured IR
light pattern is not reflected back to the camera. This error depends on the relative
angle between the monitor and the camera. Thus, at certain angles, the camera can
not capture the object and therefore compute any depth. As a result, it appears as a
blank area in the depth computation, causing a complete distortion of the original
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object shape. In addition, the same effect occurs on glossy surface areas where the IR
light pattern of the camera is reflected back in multiple directions.
This camera drawback is specially relevant for robotic applications where it is re-
quired to detect and track surrounding objects or humans. Light absorbent materials
(e.g., dark clothes) and light reflective materials can distort the depth measurement
and thus limit their application scope when camera uses active illumination [30].

2. Segmentation errors. Object segmentation relies on the GP’s flatness and the MSAC
algorithm to estimate the GP points. Noise and depth computation errors can lead
to an incomplete removal of the GP from the point cloud data. As a consequence,
objects in the scene are not segmented correctly causing a distorsion of the original
object shapes.

3. Depth artifacts. Sharp and narrow edges in the camera image lead to shadow errors
in the 3D point cloud generation and thus distort completely the object shape mea-
surement.

Figure 15. Example of objects in class 8 (Monitor) and class 10 (Stool) captured by the Intel Re-
alSense D435.

5.6. Response Time

Although 3DHOG response time is out of the scope of this paper, we consider it
relevant to discuss the timing constraints for a real-time implementation. We measured the
response times of experiment 2, using a synthetic dataset, and experiment 7, using a real
dataset, for the best results in terms of recognition accuracy and required number of PCs,
Table 8. Our results show that when a real dataset is used, the significantly higher number
of PCs (300) to achieve equivalent recognition accuracy results increases, as a consequence,
the response time. The response time is increased because the classifier requires more time
(tClass = 180 ms) to process the higher dimensionality of real data with respect the synthetic
dataset (tClass = 38 ms). The other measured response times, the pose normalization time
(tN), the 3DHOG computation time (t3DHOG) and the projection time onto the PC (tPC)
are shorter or equivalent in all cases. As a consequence, the main limitations to achieve a
real-time performance are the 3DHOG dimensionality and the number of required PCs to
improve the recognition accuracy. The goal should be to reduce the feature dimensionality
while maintaining the recognition accuracy at the same time. We believe that, due to lack
of completed 3D shape, the intra-class object variability is higher in comparison with the
synthetic dataset, requiring a higher number of PCs and thus higher response times.

For real-time applications, this requires a careful balancing between accuracy and
dimensonality or the evaluation of alternative approaches to recognize the objects. This is
even more important since the measured times will increase further, since the current
evaluation did not include the image acquisition and object segmentation required for the
real data pipeline.
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Table 8. Response times for a 403 voxel grid (1) using the synthetic dataset and 100 PCs, (2) using a
real dataset and 300 PCs.

Test NFeatures PC Acc tN t3DHOG tPC tClass tTotal
Dataset (%) (µs) (ms) (ms) (ms) (ms)

Synthetic 34,992 100 90 9 11.5 6 20.5 38
Real 34,992 300 81.5 — 12 4 180 196

Custom test datasets do not allow a side-by-side comparison of different approaches,
especially with small datasets. We instead summarize some of the approach specifications
and results in Table 9.

Table 9. Summary of the 3DHOG descriptor and results comparison with respect to other 3D object
recognition approaches.

Training Test 3DApproach Method Dataset Dataset Sensor Accuracy GPU TTotal

3DHOG Global ModelNet40 Real Custom Stereo 81.5% No 196 ms
3DHOG [32] Global ModelNet10 ModelNet10 – 84.91% No 21.6 ms
VoxNet [11] CNN ModelNet10 ModelNet10 – 92% Yes 3 ms
PointNet [10] CNN ModelNet10 ModelNet10 – 77.6% Yes 24.6 ms
3DYolo [12] CNN KITTY KITTY Lidar 75.7% Yes 100 ms
SPNet [13] CNN ModelNet10 ModelNet10 – 97.25% Yes –
VFH [23] Global Real Custom Real Custom Stereo 98.52% – –
SI [22,23] Global Real Custom Real Custom Stereo 75.3% – –
VFD [6] Global ModelNet10 ModelNet10 – 92.84% No –
RCS [17] Local UWA UWA – 97.3% No 10–40 s
TriLCI [18] Local BL BL – 97.2% No 10 s

The 3DHOG results show a recognition accuracy slightly lower than the state-of-
the art CNN object recognition approaches but still in line with them. Regarding the
timing, our approach shows higher values than the CNN-based approaches. This results
from the required increased feature dimensionality to handle real data and corresponds
to the results in Simon et al. [12] that uses Lidar data. Other global approaches show a
similar performance, even if training and test datasets consist of real data. The 3DHOG
response time is lower than the local approaches. These approaches require around 10 s
per classification and are thus infeasible for real-time applications.

In addition, our approach is currently not optimized for execution performance, since
we use a single thread in order to estimate single core embedded timing. This results
in further optimization potential in order to reduce the response times and enhance our
approach. At this stage, our approach shows that it is possible to use synthetic data for
training a processing pipeline that is afterward dealing with real data while maintaining a
reasonable classification accuracy and response time.

6. Conclusions

In this paper, we aimed to analyze which steps are needed to transfer an existing
3DHOG-based recognition approach from synthetic data to work with real data. To address
the challenge of a limited dataset during the design phase of the system, we propose to
continue using synthetic data for training and real data for testing the classifier. Synthetic
data have an advantage for the training as it is easier to generate an appropriate number of
samples from complete object models. Due to the differences between synthetic data and
real data, the proposed preprocessing data flow needs several adjustments.

Our experimental works show that the 3DVHOG performs correctly when real data
are used for the test and a synthetic dataset for training, showing that this approach
is applicable to other 3D recognition tasks as well. However, it is required to include
additional data preprocessing steps on the training dataset as well as adapted processing
steps for the real data in order to maximize the recognition accuracy. The PCA-STD method
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for 3DVHOG rotational invariance is not suitable when evaluating with real data due to
the object differences between both datasets. Instead, it is required to perform a training
dataset augmentation to achieve rotation invariance. The evaluated preprocessing data
flow improves the recognition performances, but requires to use higher resolution of the
voxel grid and a significantly high number of PCs compared to an ideal case with synthetic
data only. Despite that, our recognition results show that most of the classes are well
classified except for the classes “Stool” and “Monitor” due to segmentation errors and
camera measurements artifacts.

In order to further improve the recognition results, we propose to reduce the intra-class
data variability of the synthetic training dataset, especially for the classes “8—Monitor”
and “10—Stool” and include additional preprocessing to compensate the non-idealities in
the camera measurements and thus match the synthetic and real objects datasets.

Author Contributions: Conceptualization, C.V. and S.K.; methodology, C.V.; software, C.V.; valida-
tion, C.V., S.K. and M.O.; formal analysis, C.V.; investigation, C.V.; resources, M.O.; data curation,
C.V.; writing—original draft preparation, C.V.; writing—review and editing, C.V., S.K. and M.O.;
visualization, C.V.; supervision, S.K. and M.O.; project administration, M.O.; funding acquisition,
M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Mid Sweden University.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carvalho, L.E.; von Wangenheim, A. 3D object recognition and classification: A systematic literature review. Pattern Anal. Appl.

2019, 22, 1243–1292. [CrossRef]
2. Papazov, C.; Haddadin, S.; Parusel, S.; Krieger, K.; Burschka, D. Rigid 3D geometry matching for grasping of known objects in

cluttered scenes. Int. J. Robot. Res. 2012, 31, 538–553. [CrossRef]
3. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.;

et al. KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.
[CrossRef]

4. Aleman, J.; Monjardin Hernandez, H.S.; Orozco-Rosas, U.; Picos, K. Autonomous navigation for a holonomic drive robot in an
unknown environment using a depth camera. In Optics and Photonics for Information Processing XIV; International Society for
Optics and Photonics: Bellingham, WA, USA, 2020; p. 1. [CrossRef]

5. Zhi, S.; Liu, Y.; Li, X.; Guo, Y. Toward real-time 3D object recognition: A lightweight volumetric CNN framework using multitask
learning. Comput. Graph. (Pergamon) 2018, 71, 199–207. [CrossRef]

6. Domenech, J.F.; Escalona, F.; Gomez-Donoso, F.; Cazorla, M. A Voxelized Fractal Descriptor for 3D Object Recognition. IEEE Access
2020, 8, 161958–161968. [CrossRef]

7. Wu, Z.; Song, S. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1912–1920.

8. Vilar, C.; Krug, S.; Thornberg, B. Processing chain for 3D histogram of gradients based real-time object recognition. Int. J. Adv.
Robot. Syst. 2020, 13. [CrossRef]

9. He, Y.; Chen, S.; Yu, H.; Yang, T. A cylindrical shape descriptor for registration of unstructured point clouds from real-time 3D
sensors. J. Real Time Image Process. 2020, 1–9. [CrossRef]

10. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 19–25 June 2017; pp. 77–85.

11. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In Proceedings
of the International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 922–928.

12. Simon, M.; Amende, K.; Kraus, A.; Honer, J.; Samann, T.; Kaulbersch, H.; Milz, S.; Gross, H.M. Complexer-YOLO: Real-time 3D
object detection and tracking on semantic point clouds. In Proceedings of the Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 18–20 June 2019; pp. 1190–1199. [CrossRef]

13. Yavartanoo, M.; Kim, E.Y.; Lee, K.M. SPNet: Deep 3D Object Classification and Retrieval Using Stereographic Projection.
Lect. Notes Comput. Sci. 2019, 11365, 691–706.

http://doi.org/10.1007/s10044-019-00804-4
http://dx.doi.org/10.1177/0278364911436019
http://dx.doi.org/10.1145/2047196.2047270
http://dx.doi.org/10.1117/12.2568163
http://dx.doi.org/10.1016/j.cag.2017.10.007
http://dx.doi.org/10.1109/ACCESS.2020.3021455
http://dx.doi.org/10.1177/1729881420978363
http://dx.doi.org/10.1007/s11554-020-01033-3
http://dx.doi.org/10.1109/CVPRW.2019.00158


Sensors 2021, 21, 910 17 of 17

14. Bayramoglu, N.; Alatan, A.A. Shape index SIFT: Range image recognition using local features. In Proceedings of the International
Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 352–355. [CrossRef]

15. Tang, K.; Member, S.; Song, P.; Chen, X. 3D Object Recognition in Cluttered Scenes With Robust Shape Description and
Correspondence Selection. IEEE Access 2017, 5, 1833–1845. [CrossRef]

16. Salti, S.; Tombari, F.; Stefano, L.D. SHOT: Unique signatures of histograms for surface and texture description q. Comput. Vis.
Image Underst. 2014, 125, 251–264. [CrossRef]

17. Yang, J.; Xiao, Y.; Cao, Z. Aligning 2.5D Scene Fragments With Distinctive Local Geometric Features. IEEE Trans. Circuits Syst.
Video Technol. 2019, 29, 714–729. [CrossRef]

18. Tao, W.; Hua, X.; Yu, K.; Chen, X.; Zhao, B. A Pipeline for 3-D Object Recognition Based on Local Shape Description in Cluttered
Scenes. IEEE Trans. Geosci. Remote. Sens. 2020, 1–16. [CrossRef]

19. Do Monte Lima, J.P.S.; Teichrieb, V. An efficient global point cloud descriptor for object recognition and pose estimation.
In Proceedings of the 29th Conference on Graphics, Patterns and Images (SIBGRAPI), Sao Paulo, Brazil, 4–7 October 2016;
pp. 56–63. [CrossRef]

20. Aldoma, A.; Tombari, F.; Di Stefano, L.; Vincze, M. A global hypotheses verification method for 3D object recognition. In
Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 511–524.

21. Li, D.; Wang, H.; Liu, N.; Wang, X.; Xu, J. 3D Object Recognition and Pose Estimation from Point Cloud Using Stably Observed
Point Pair Feature. IEEE Access 2020, 8. [CrossRef]

22. Johnson, A.E.; Hebert, M. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. IEEE Trans. Pattern Anal.
Mach. Intell. 1999, 21, 433–449. [CrossRef]

23. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D recognition and pose using the viewpoint feature histogram. In Proceedings
of the IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 18–22 October 2010;
pp. 2155–2162. [CrossRef]

24. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D registration. In Proceedings of the International
Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2009; pp. 3212–3217. [CrossRef]

25. Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3D object classification. In Proceedings of the International Conference
on Robotics and Biomimetics (ROBIO), Karon Beach, Thailand, 7–11 December 2011; pp. 2987–2992.

26. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

27. Dupre, R.; Argyriou, V. 3D Voxel HOG and Risk Estimation. In Proceedings of the International Conference on Digital Signal
Processing (DSP), Singapore, 21–24 July 2015; pp. 482–486.

28. Scherer, M.; Walter, M.; Schreck, T. Histograms of oriented gradients for 3d object retrieval. In Proceedings of the 18th International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 1–4
February 2010; pp. 41–48.

29. Buch, N.; Orwell, J.; Velastin, S.A. 3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban
scenes. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 7–10 September 2009. [CrossRef]

30. Vilar, C.; Thörnberg, B.; Krug, S. Evaluation of Embedded Camera Systems for Autonomous Wheelchairs. In Proceedings of the
5th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Crete, Greece, 3–5 May 2019;
pp. 76–85. [CrossRef]

31. Torr, P.H.S.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image
Underst. 2000, 78, 138–156. [CrossRef]

32. Vilar, C.; Krug, S.; Thornberg, B. Rotational Invariant Object Recognition for Robotic Vision. In Proceedings of the 3rd
International Conference on Automation, Control and Robots (ICACR), Shanghai, China, 1–3 August 2019; pp. 1–6.

http://dx.doi.org/10.1109/ICPR.2010.95
http://dx.doi.org/10.1109/ACCESS.2017.2658681
http://dx.doi.org/10.1016/j.cviu.2014.04.011
http://dx.doi.org/10.1109/TCSVT.2018.2813083
http://dx.doi.org/10.1109/TGRS.2020.2998683
http://dx.doi.org/10.1109/SIBGRAPI.2016.017
http://dx.doi.org/10.1109/ACCESS.2020.2978255
http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/IROS.2010.5651280
http://dx.doi.org/10.1109/robot.2009.5152473
http://dx.doi.org/10.5244/C.23.15
http://dx.doi.org/10.1177/1729881420978363
http://dx.doi.org/10.1006/cviu.1999.0832

	Introduction
	Related Works
	Methodology
	Training Dataset and Data Preprocessing
	Preparation of the Real Dataset
	Object Descriptor and Dimensionality Feature Reduction
	SVM Classifier

	Results and Analysis
	Experimental Flow
	Acquisition of Real World Data
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	Discussion
	Synthetic Dataset
	Real Dataset
	Rotational Invariance Data Preprocessing
	Frontal Projection Data Preprocessing
	Subset of Synthetic Training Objects
	Response Time

	Conclusions
	References

