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Systematic characterization 
of human response to H1N1 
influenza vaccination 
through the construction 
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Margherita Coccia3, Duccio Medini2,6 & Emilio Siena2*

Gene expression data is commonly used in vaccine studies to characterize differences between 
treatment groups or sampling time points. Group-wise comparisons of the transcriptional 
perturbations induced by vaccination have been applied extensively for investigating the mechanisms 
of action of vaccines. Such approaches, however, may not be sensitive enough for detecting changes 
occurring within a minority of the population under investigation or in single individuals. In this 
study, we developed a data analysis framework to characterize individual subject response profiles 
in the context of repeated measure experiments, which are typical of vaccine mode of action 
studies. Following the definition of the methodology, this was applied to the analysis of human 
transcriptome responses induced by vaccination with a subunit influenza vaccine. Results highlighted 
a substantial heterogeneity in how different subjects respond to vaccination. Moreover, the extent 
of transcriptional modulation experienced by each individual subject was found to be associated 
with the magnitude of vaccine-specific functional antibody response, pointing to a mechanistic link 
between genes involved in protein production and innate antiviral response. Overall, we propose that 
the improved characterization of the intersubject heterogeneity, enabled by our approach, can help 
driving the improvement and optimization of current and next-generation vaccines.

Seasonal influenza is a human respiratory disease, caused by influenza virus infection, which severity ranges 
from mild symptoms to hospitalization and death1–3. To date, annual vaccination represents the most effective 
intervention for containment of this disease4,5.

To foster the development of new and more effective influenza vaccines, several systems biology studies tried 
to characterize the mechanisms of immunogenicity of these vaccines by searching for biomarkers of both humoral 
and cellular immune responses6–10. Despite the general success in identifying molecular signatures of increased 
vaccine immunogenicity, these studies highlighted the fact that establishing causality in the chain of reactions 
triggered by vaccination is not trivial. This is due, at least in part, to the pervasive heterogeneity that characterizes 
the human population, which results in distinct individuals to respond differently to the same vaccine11. Such 
heterogeneity is likely the result of both heritable (genetic) and non-heritable factors (microbiome, age, diet, 
etc.), all of which can have a remarkable impact on the immune response to vaccination12. A further layer of 
complexity is introduced by the fact that the immune system is a complex apparatus, with different cells, tissues 
and organs dynamically interacting with each other over time13. This further impairs our ability to understand 
which immune components should be targeted by a vaccine in order to achieve a broadly protective response.

In contrast to the pervasive heterogeneity characterizing the immune response among different individuals, 
conventional approaches to the analysis of immunological data are based on group-wise comparisons between 
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groups of individuals (treatment vs control, treatment “A” vs treatment “B”, etc.) and on the resulting identification 
of signals that are consistently found in most individuals within a study group. Student’s t-test and analysis of vari-
ance are two examples of approaches falling in this category. While these represent powerful tools for assessing 
differences at a group level, they are not suited for capturing subtle signals in noisy datasets or changes occurring 
in only a small fraction of the study population. For this reason, there have been attempts to explore alternative 
approaches for characterizing the heterogeneity of biological systems. Among these, Menche et al.14 developed 
an approach to derive personalized transcriptome response profiles in individuals affected by either asthma, 
Parkinson’s or Huntington’s disease. Their method allowed for the characterization of genes being modulated 
within individual subjects, based on the comparison with a healthy control group. Their approach proved to be 
more sensitive than conventional techniques in identifying transcriptional signatures associated to a particular 
disease and allowed to diagnose subjects affected by Huntington’s disease with 100% accuracy.

Inspired by the work of Menche et al., we developed a new data analysis pipeline, for the characterization of 
individual subject response profiles, and applied it to investigate the transcriptional responses induced by the 
administration of a subunit influenza vaccine. Our approach identifies genes’ modulation within individual 
subjects based on the comparison with pre-immune levels. The framework also includes a bootstrap step for 
estimating the level of confidence in the calls for gene modulation.

Our findings highlighted a high degree of heterogeneity in the transcriptional response to influenza vaccine, 
both in terms of total number of modulated genes within each individual and in the consistency of modulation 
of a same gene across multiple study subjects. Despite this, however, genes involved in some key immune related 
functions showed a more robust response across the study population. Finally, we found the extent of tran-
scriptional perturbation experienced by individual subjects to be correlated with functional antibody response 
induced by vaccination, with genes involved in protein synthesis and antiviral response driving this association.

Overall, the present study establishes a new approach to the analysis and interpretation of vaccine response 
data, representing a promising strategy for improving our understanding of the human heterogeneity in vaccine 
responsiveness.

Results
Whole blood transcriptome response induced by influenza vaccination is highly heterogene-
ous.  We set out to analyze the transcriptional response to vaccination using publicly available data (Tsang 
et al. 2014) consisting in PBMC transcriptome responses derived from 63 healthy adults vaccinated with the 
seasonal and pandemic H1N1 subunit influenza vaccines. Conventional, group-wise comparisons identified 
a set of genes which were significantly upregulated at either 24 hours or 7 days following vaccination (Fig. 1a, 
Supplementary Fig. S1). Forty-three (43) and 14 differentially expressed genes (DEGs; absolute log2 fold-change 
from baseline ≥ 0.5 , adjusted p-value ≤ 0.05 , two-tailed Wilcoxon signed-rank test) were identified at 1- and 
7-days post-vaccination, respectively. A deeper assessment of transcripts abundance levels, however, revealed a 
substantial level of heterogeneity across different individuals. Despite the significant modulation observed at the 
group level, a substantial portion of the study population showed post-vaccination transcript abundance levels 
comparable (average ±1 standard deviation) with preimmune levels (Supplementary Table S1 and S2, Supple-
mentary Figure S2).

For exemplary purposes, we report the response levels for the gene encoding for CXCL10, a chemoattractant 
chemokine involved in the recruitment of T lymphocytes into sites of tissue inflammation15. Multiple vaccine 
studies have reported CXCL10 to be strongly upregulated in peripheral blood few hours after vaccination, with 
peak responses typically occurring after 24 h16. Consistently with that, we also found the CXCL10-encoding gene 
to be amongst the most strongly upregulated transcripts at the 24 hours’ time point (Fig. 1a; log2 fold-change 
= 0.96 , adjusted p-value = 7.5× 10−7 , two-tailed Wilcoxon signed-rank test). Despite the significant CXCL10 
upregulation observed at the group level, this response was not consistently found across all vaccinated subjects. 
Half of the study subjects (30 out of 60) showed a CXCL10 transcript abundance comparable (average µ± 1 
standard deviation σ ) to preimmune levels (Fig. 1b). Moreover, for 5 subjects the CXCL10 baseline abundance 
was found to exceed the average level measured 24 hours after vaccination, highlighting a considerable level of 
intersubject heterogeneity in the response of this transcript. Overall, results indicate that the peripheral blood 
transcriptome response to influenza vaccination is characterized by a pervasive intersubject heterogeneity.

Only 55% of day 1 differentially expresses genes are also found within individual subject 
response profiles.  To quantify the intersubject variation in PBMC transcriptome response, we computed 
individual subject response profiles. Briefly, each subject was tested individually against the distribution of the 
gene expression values from the control group. Genes were tested individually and when their expression level 
was different enough from the control distribution, they were defined as modulated. A bootstrap approach was 
used to limit the effect of outlying values and to assess the robustness of the response (Fig. 1c and methods). After 
computing the individual subject response profiles, we compared them to the list of DEGs identified through 
the Wilcoxon test-based group-wise analysis. Despite a substantial overlap, not all DEGs were confirmed by 
the individual profiles (Supplementary Fig.  S3). Among the 43 DEGs observed at day 1, an average of 55% 
[interquartile range (IQR): 37%-77%] was also captured by the individual profiles, while for day 7 (14 DEGs) 
the average overlap was 71% (IQR: 42%-100%). This suggests that the average responses captured by group wise 
analyses do not necessarily represent the behavior of each individual subject. For the day -7 and day 70 time 
points, which are unlikely to reflect any substantial vaccination-specific effect, the overlap was smaller [day -7 
(11 DEGs): 23% (IQR: 0-36%); day 70 (2 DEGs): 20% (IQR: 0-38%); Supplementary Fig. S3]. This is suggestive 
of the fact that the overlaps observed for day 1 and day 7 are reflective of a real biological perturbation induced 
by the vaccine stimulus.
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Figure 1.   Analytical framework for deriving individual transcriptome response profiles. (a) Group-wise DEGs 
analysis executed on day 1 / day 0 gene expression values (detected DEGs are shown in red). The dashed lines 
show the cutoffs for calling a gene differentially expressed: log2 fold-change ±0.5 (red lines), adjusted p-value 
< 0.05 (two-tailed, paired Wilcoxon signed-rank test, blue line). (b) Expression levels distribution for the 
CXCL10 gene. While the group-wise comparison suggests a global up-regulation (log2 fold-change = 0.96, 
adjusted p-value = 7.5× 10

−7 , two-tailed Wilcoxon signed-rank test), some individuals exhibit either absence 
of modulation or down-regulation. (c) Illustration of the proposed approach to derive individual transcriptome 
response profiles. Instead of comparing case and control groups, each subject is tested individually against 
the distribution of the gene expression values from the control group. Genes are tested individually and when 
the expression level is different enough from the control distribution, they are defined as modulated. For each 
subject an individual transcriptome response profile is generated.
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Individual response profiles from day 1 showed the highest number of modulated genes, with an average of 
717 genes. The first and third quartiles of that distribution were respectively 531 and 1114 (Fig. 2a,b), reflecting 
the different response magnitude experienced by the different study subjects. Individual profiles from all other 
time points showed less modulation, albeit the spread between the 1st and 3rd quartiles remained approximately 
two-fold (IQR day 7: 334-653; IQR day -7: 340-664; IQR day 70: 256-571). This same trend was also observed 
with the group-wise differential gene expression analysis (Supplementary Fig. S1).

An additional information gathered from individual transcriptome response profiles was the proportion of 
individuals in which each gene was found to be modulated. Surprisingly, no gene was found to be consistently 
modulated across the entire study population, regardless of sampling time point. As we have shown, the most 
robust response was observed at day 1. At this time point the number of genes found to be modulated in 20 
or more subjects, for example, was 587, compared to 84, 120 and 8 measured at days -7, 7 and 70, respectively. 
We also tested, for days 0, 1 and 7, the pairwise similarity between individual profiles by computing the Jaccard 
similarity metric and the number of commonly modulated genes (Fig. 2c,d). Both approaches confirmed that the 
day 1 response was the most consistent. In line with previous observations, however, the generally low similarity 
coefficients highlight substantial heterogeneity across individual profiles.

Overall, we showed that the individual transcriptome response profiles, generated through our approach, were 
able to capture vaccination-specific responses while also providing additional information about the consistency 
of such responses. Specifically, transcriptome responses were found to differ greatly across different subjects and 
no transcript was found to be consistently modulated across the entire study population.

Genes participating to immune functions show a more consistent modulation.  Next, we tested 
whether the observed heterogeneity in the transcriptome response is a ubiquitous characteristic or if there are 
specific biological functions showing a more consistent modulation. To this end, we functionally characterized 
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Figure 2.   Heterogeneity among individual transcriptome response profiles. (a) Number of genes modulated 
among subjects detected by our analysis. (b) Reverse cumulative distributions of number of modulated genes 
across subjects. (c) Jaccard similarity coefficients of pairwise subjects combinations calculated using individual 
subject transcriptome profiles. (d) Number of shared differentially expressed genes (DEGs) among pairwise 
subjects combinations.
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each individual transcriptome response profile by performing a pathway enrichment analysis. Briefly, we col-
lected a list of canonical pathways from the MSigDB database and tested, for each individual profile, whether 
the number of modulated genes within a given pathway was higher than random expectation. Through this 
approach, we could derive a list of enriched pathways from each subject. The level of conservation of such 
pathways could then be assessed as the proportion of subjects in which they were found to be enriched. A com-
prehensive listing of the results observed throughout the different time points is presented in Supplementary 
Tables S3-7.

Figure 3a,b lists the 10 most frequently enriched pathways across the study population for days 1 and 7, 
respectively. Consistently with previous observations from group-wise analyses6,9,10, 24 hours transcriptomes 
showed enrichment for genes involved in cytokine signaling and interferon-mediated antiviral response. Con-
versely, day 7 responses were enriched for protein transcription and cell proliferation functions, a pattern that is 
usually associated with B lymphocyte proliferation and differentiation into antibody-producing cells. Similarly 
to what was observed with individual genes, also the pathways activation was variable across subjects, with the 
most frequently enriched pathway at 24 h, cytokine signaling in immune system, being enriched in less than 50% 
of the study population (28 out of 60 subjects; Fig. 3a). Seven days post vaccination the response was generally 
less consistent and pathways were found to be enriched in up to 17 out of 57 subjects (less than 30% of the study 
population; Fig. 3b).

To test whether the observed functional enrichment was indicative of a true biological signal, the Jaccard 
pairwise similarity for modulated genes observed in each enriched functional pathway was compared to that of 
randomly selected gene pools. Genes belonging to the same functional pathway typically showed more robust 
modulation than randomly assorted genes (Fig. 3c-d and Supplementary Fig. S5-6). Overall, these results are 
indicative of the fact that, despite the substantial response heterogeneity across different subjects, there is a 
convergence towards more consistent modulation of genes participating to biological processes involved in the 
response to influenza vaccination.

Assessment of vaccination‑induced transcriptional modules shows that the intersubject 
response heterogeneity increases as a function of time.  Given the relatively high number of genes 
within the individual response profiles, there is the chance that genes may appear as modulated across differ-
ent subjects simply by chance. In the absence of a biological driver, it could be assumed a model of complete 
independence between subjects and expect the occurrence of perturbations across multiple subjects to follow 
a random expectation. Evidences collected so far, however, indicate that the vaccination stimulus induces tran-
scriptional perturbations pointing towards common functional disruptions and that a vaccine-induced gene 
module may exist. In order to characterize such transcriptional module, we applied a combinatorial model to 
compute the random probability of a modulated gene to appear in multiple subjects and compared it to the 
available experimental data.

The combinatorial model indicated that genes co-modulated in ≥ 25 and ≥ 19 subjects at days 1 and 7, 
respectively, are unlikely to appear randomly and could be reasonably attributed to a vaccine-related effect. This 
estimate produced a core-pool of 341 and 135 genes for day 1 and 7 responses, respectively (Fig. 4, Fig. S7 and 
Supplementary Data 1 and 2). From a functional perspective, the core pool of day 1 modulated genes included 
an abundance of genes participating in cytokine signaling, mainly related to type-I/II interferon response. The 
day 7 core pool, instead, was characterized by genes participating in mitotic cell division, likely reflecting B-cell 
proliferation and differentiation into plasmablasts (supplementary Data 3). Overall, the observed functional 
profiles are consistent with previously reported data6,9,10.

As a negative control, the same test was applied to samples collected before vaccination (day 0 and day -7). In 
both cases, no genes were found to exceed the identified random expectation thresholds. In line with previous 
observations, also within the identified vaccine-induced gene modules the modulation was found to be more 
robust at day 1 compared to day 7. For day 1, the median number of subjects in which a gene was modulated was 
30 (50% of the 60 subjects, IQR: 27-35), whereas at day 7 the median number was 25 (44% of the 57 subjects, 
IQR: 21-30).

The magnitude of day 7 transcriptome response is associated with functional antibody 
response.  Having identified the set of genes that are modulated by vaccination, we tested whether the extent 
of transcriptional modulation of these genes correlates with the humoral immune response. The percentage of 
modulated genes within each individual response profile was tested for correlation with subjects’ ability to pro-
duce functional antibodies using a receiver operating characteristic (ROC) curve. Subjects were stratified into 
high and low responders based on their day 70 influenza microneutralization titer response.

Overall, the modulation of vaccination-induced gene pools was 51% (median, IQR: 36%-72%) for day 1 
and 40% (median, IQR: 25%-68%) for day 7 (see Supplementary Figure S4). The ROC curve provided an area 
under the curve (AUC) of 0.53 and 0.81 respectively for day 1 and day 7 transcriptome response data (Fig. 5a), 
suggesting the existence of a correlation between the number of modulated genes at day 7 and the subsequent 
functional antibody production. Conversely, day 1 transcriptome data did not show any appreciable correlation. 
These evidences are in agreement with previous studies, which proposed that day 7 blood-derived signatures 
reflect the establishment of the humoral immune response9,17,18.

The correlation between the day 7 transcriptome response and subjects’ ability to produce neutralizing anti-
bodies is shown in Figure 5b (see Supplementary Fig. S8 for day 1 data). The median number of modulated genes 
in high responder subjects was 63% (IQR: 55%-86%), while in low responders this number dropped to 27% (IQR: 
20%-45%, Fig. 5c-d). This difference was statistically significant (p-value = 0.002, two-sided Kolmogorov-Smirnov 
tests followed by Benjamini-Hochberg correction for multiple testing). Further investigation identified 66 genes 
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Figure 3.   Functional characterization of individual subject response profiles. (a,b) Top ten immunological 
pathways that show enrichment in the highest number of subjects at days 1 and 7, respectively. X-axis: number 
of subjects in which a pathway is significantly enriched. (c,d) Most frequently enriched pathways at days 1 
and 7 respectively. Jaccard similarity coefficients represent the robustness of gene modulation for those genes 
belonging to a specific pathway (red line). For comparison, the robustness of gene modulation of non-in-
pathway, randomly selected genes (1000 bootstrap samplings) is also shown. Solid and dashed black lines 
represent the median and 95th percentile of the bootstrapped distributions. Gray shaded areas represent the 
95% confidence interval.
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for which the modulation was significantly more frequent among the high responders than low responders 
(Fisher exact test, one sided, p-value ≤ 0.05, Benjamini-Hochberg correction; see Supplementary Table S8). 
These included several genes participating in immune response functions. Overall, these data are indicative of 
the fact that subjects experiencing a higher transcriptional activity at day 7 are more likely to produce neutral-
izing antibodies.

To provide corroborative evidence in support to this finding we also tested whether the amount of vaccine 
specific IgG-secreting cells, measured using ELISpot assays targeted against the entire vaccine (seasonal or 
pandemic H1N1) 7 days post-vaccination, showed any correlation with the individual transcriptome response 
profiles. As observed with microneutralization titers, also the seasonal vaccine-specific B cell response showed 
association with day 7 transcriptome profiles (AUC = 0.74; supplementary Fig. S9). Conversely, the same trend 
was not observed with the pandemic H1N1-specific B cells (supplementary Fig.S10).

Finally, the same procedure was applied to evaluate the potential effect of subjects’ intrinsic characteristics 
(age, gender and pre-immune status) on their individual transcriptome response profile. None of the evaluated 
factors showed any appreciable effect (results relative to pre-existing vaccine-specific antibodies are shown in 
supplementary Fig. S11).

Identification of genes associated with functional antibody response.  In order to get further 
insights into which genes were driving the observed correlation between the day 7 transcriptome response and 
day 70 microneutralization titers, we applied a 5-fold cross validated Guided Random Forest (GRF)19. Briefly, the 
strategy was to classify subjects into high or low responders, without prior knowledge of their microneutralization 
response, using the gene modulation data of the day 7 vaccination-induced gene pool as input. This approach 
was able to predict subjects’ functional antibody production with an 80% correct classification rate (min-max: 
67%-100%, min-max AUCs: 70%-100%, Fig. 6a,b).
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Figure 5.   The day 7 vaccination-induced gene pool is associated with the magnitude of seroresponse detected 
through day 70 MicroNeutralization titers. (a) Smoothed ROC curves of the immunological response 
classification predictions inferred using the modulation percentages of the vaccination-induced gene pools 
calculated from the individual transcriptome response profiles. (b) Percentage of modulation in the day 7 
vaccination-induced gene pool shown in relation to the immunological response classification based on day 
70 Influenza MicroNeutralization titers. (c,d) Distributions of vaccination-induced gene pools modulation 
percentages grouped by immunological response classification.
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To understand which genes were most informative, the top 10 scoring genes from each of the five cross-
validations were selected for further analysis. Three of these genes were selected by all five models, 6 genes were 
present in four out of five models and 1 was found in three models (Fig. 6c). Ranking of these genes by their 
median decrease Gini across all five models (Fig. 6d) highlighted GLDC as the most informative gene. This gene 
encodes a mitochondrial glycine decarboxylase, which was described to confer survival advantage to T-cells in 
hypoxic environments such as sites of infection20,21. Another top performing gene was HIST1H3G, which codes 
for a replication-dependent histone protein which is generally active during the S-phase22. We also observed 
ZBP1, a cytosolic DNA sensor which induces the DNA-mediated interferon response23 and APOBEC3B, a cyto-
sine deaminase induced by viral infection24. Among these genes we also observed IRF4 and POU2AF1, both of 
which are involved in maturation and differentiation of T and B cells25–27, respectively.

Discussion
Human response to vaccination can be a heterogeneous phenomenon. While some of the factors contributing 
to this variation have been identified, others are still to be unraveled. Young and elderly individuals, for exam-
ple, usually show a suboptimal response to vaccination due to their immune system being not fully developed 
or aged, respectively28,29. Several latent factors have also been proposed to impact vaccine responsiveness, the 
mechanisms through which they mediate their effect, however, are still subject of research11. It is generally rec-
ognized that this lack of knowledge on how immune responses to vaccination are generated is a critical barrier 
to the development of vaccines that are effective across diverse populations30,31.

To cope with the molecular heterogeneity characterizing a set of systemic diseases, Menche and coworkers14 
devised a data analysis strategy for deriving personalized response profiles and overcome the inherent limitations 
of group-wise analysis methodologies. In this work, we presented an adaptation of this methodology, aimed at 
accommodating the analysis of datasets generated through repeated measures design studies and to provide an 
estimate of the robustness of the observed gene perturbations.

The individual-subject response profiles derived from healthy adults following influenza vaccination showed 
a high degree of heterogeneity, both in terms of total number of modulated genes within each individual and 
in the consistency of modulation of a same gene across multiple subjects. Day 1 individual response profiles 
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were generally more consistent than those observed 7 days post-vaccination. This may be explained by the fact 
that differences among subjects add up during the chain of events linking the innate and adaptive arms of the 
immune response. To our surprise, however, no gene was found to be consistently modulated in all study subjects, 
regardless of the sampling time point.

In principle, the high heterogeneity observed among different individuals could have arisen from technical 
variation, random noise or a combination of the two. In such case, functional enrichment analysis of the indi-
vidual response profiles would have failed in identifying molecular pathways that are consistently enriched across 
multiple individuals. Our results, instead, showed consistent enrichment of a number of molecular pathways, 
covering immune related functions, that were previously described to be involved in the immune response to 
influenza vaccination. These include cytokine signaling and Interferon-mediated antiviral response for day 1 
response profiles and transcripts involved in B lymphocyte proliferation and differentiation into antibody-pro-
ducing cells for day 7 profiles6,9. These evidences point to the conclusion that influenza vaccination consistently 
activates these biological processes, while the observed heterogeneity in the individual transcriptome response 
profiles represents the molecular diversity of such functional perturbations.

One of the main areas of interest for modern vaccinology studies is that of identifying early cellular or molecu-
lar biomarkers that are able to predict the quality and magnitude of the adaptive response to vaccination. After 
deriving subjects’ individual response profiles, we found that the number of modulated genes within each indi-
vidual subject 7 days post-vaccination was correlated with the magnitude of vaccine-specific functional antibody 
response. Given the functional analysis of day 7 transcriptome responses, which highlighted an enrichment of 
genes involved in B-cell and plasmablasts response, it could be assumed that the ability of the influenza vaccine 
to elicit a plasmablasts response at day 7 is linked with the downstream production of functional antibodies. We 
also investigated on which genes are most strongly associated with a high antibody response through a machine 
learning approach. This analysis identified genes involved in protein production (GLDC and HIST1H3G) and 
antiviral response (APOBEC3B and ZBP1). These evidences, which recall classical notions of immunology, 
represent a corroborative evidence for the relevance of our methodology. Importantly, results on the identified 
genes, which could potentially serve as predictive biomarkers, should be interpreted with caution until further 
validation through independent analyses or, ideally, experimental testing.

Overall, the present study allowed for a deeper characterization of the transcriptional response induced by 
influenza vaccination in humans. We argue that the improved characterization of the intersubject heterogeneity 
offered by this approach will help driving the improvement and optimization of both new and established vac-
cines. The ability to identify genes that are predictive of functional antibody production following vaccination, 
along with the fraction of subjects in which they are modulated, can allow for better predictions on the real-world 
effectiveness of vaccines. Furthermore, individual subject analysis approaches could help the improvement of 
vaccines targeting specific subpopulations, like the elderly or immunocompromised individuals.

Finally, we envision that the application of this methodology to multiple vaccine studies and datasets will be 
foundational to expand our understanding of vaccines’ mode of action. Our methodology was designed to be 
readily generalizable to all repeated measures experiments and adaptable to different types of data.

Methods
Study dataset.  The present study was based on data previously reported by Tsang et al. 2014. In that study 
(Clinicaltrials.gov NCT01191853), 63 healthy adults were vaccinated with a single dose of both the 2009 FLUVI-
RIN seasonal influenza (Novartis) and H1N1 pandemic (Sanofi-Aventis) vaccines, both without adjuvant. Pre-
processed Affymetrix microarray data were downloaded from the GEO database using the GSE47353 accession 
number. Control and non-protein coding probe sets were filtered out and probe sets mapping onto the same gene 
were collapsed by computing their geometric average fluorescence intensity. To limit the dataset dimensionality, 
the median absolute deviation across the dataset was computed for each transcript and the 5000 most variable 
ones were retained for further analysis. Antibody response data were collected from the original manuscript18.

Group‑wise transcriptome data analysis.  Group-wise comparisons of transcript abundance values 
were performed using a two-sided, paired Wilcoxon signed-rank test. p-values were corrected using the Ben-
jamini-Hochberg procedure. Genes showing an absolute log2 fold-change from baseline ≥ 0.5 and an adjusted 
p-value ≤ 0.05 were considered significantly modulated.

Analytical framework for deriving individual transcriptome response profiles.  Transcriptome 
response data were cleaned from any subject-specific effect through a mixed-effect model. Transcript abundance 
values (v) were set as the dependent variable, the sampling time points (t) as the fixed effect and the subject 
identity (s) as the random effect [lmer(v ∼ t + (1|s)) ]. Fitted random effect components were then subtracted 
from the original data.

Gene modulation in individual subjects was assessed by comparing the transcript abundance of each single 
gene at a specific time point to the respective abundance values observed in the study population before vaccina-
tion (reference sample). To limit the effect of outlying values and to assess the robustness of the response, this 
comparison was repeated 1000 times over bootstrapped reference distributions obtained by randomly selecting 
2/3 of the study subjects. If a test gene abundance differed from that of the reference distribution over a prede-
fined threshold (median ± 2.5 median absolute deviations), the gene was assumed to test positive. Genes testing 
positively over ≥ 75% of bootstrap iterations were regarded as being modulated by vaccination. Genes were tested 
for both up- and down-regulation from baseline. This approach produced individual transcriptome response 
profiles consisting of arrays of categorical gene modulation values ( 0 = no modulation, 1 = up-regulation, −1 = 
down-regulation). One response profile was generated for each subject and time point combination.
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Gene set Enrichment Analysis.  A curated list of canonical biological pathways (C2 collection, v6.1) was 
obtained from the Molecular Signatures Database https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp;32–34). 
Pathways with less than 10, or more than 200 mapped genes were excluded from the analysis, providing a total 
of 437 gene sets and 2369 mapped genes. Functional enrichment was computed using the Fisher’s exact test fol-
lowed by the Benjamini-Hochberg p-value correction for multiple testing. For each individual response profile, 
the proportion of modulated genes within a given pathway was compared with the proportion of modulation of 
genes not included in that pathway. Pathways scoring an adjusted p-value ≤ 0.05 were considered significantly 
enriched. The overall vaccination effect was then assessed by counting, for each pathway, in how many subjects 
it was found to be enriched.

To test whether the observed pathway enrichments were indicative of a true biological signal, as opposed 
to random observation, we tested whether genes within each given pathway were more consistently modulated 
than an equally sized set of randomly selected genes. The Jaccard similarity index35 was computed for all pairwise 
subject combinations to assess the proportion of genes being modulated across multiple subjects. This metric 
was computed twice, once using the genes belonging to a given pathway, and another time using an equally 
sized set of randomly selected genes (the test on the randomly selected genes was bootstrapped 1000 times). If 
genes’ modulation within a test pathway was more pervasive ( ≥ 95% quantile of the control values) than that of 
randomly selected genes, that signal was assumed to be biologically meaningful.

Definition of vaccination‑induced gene pools.  Starting from the individual response profiles, the pool 
of genes modulated by vaccination was determined based on the comparison with the random probability of a 
gene to be modulated across multiple subjects. This null probability was computed using a binomial distribution, 
according to a previously established approach14. Briefly, a null model is established where each subject has g 
modulated genes drawn randomly from all G genes. The probability for one gene to be modulated in k out of n 
subjects can then be calculated via the binomial distribution, where p =

g
G.

Setting g as the mean number of genes observed across the individual profiles at a given time point, it is possible 
to derive the histogram of the number of subjects in which a given gene is found to be co-modulated by random 
chance by multiplying G × (f ; n, p).

Based on this approach, we computed 1000 random binomial distributions using G = 5000 , n = number of 
available subjects for each specific time point and p =

g
G . For each iteration, the minimum number of subjects 

( Xmin ) in which the resulting number of commonly modulated genes was zero was retained, providing a pool 
of 1000 Xmin values. We then set the threshold number of subjects (X) for inclusion in the vaccination-induced 
gene pool as the 95th percentile of the Xmin values distribution. This allowed to identify genes with a probability 
� 5% of being co-modulated across ≥ X subjects. The resulting X values were 25 and 19 subjects for day 1 and 
day 7 responses, respectively. Therefore, genes found to be co-modulated in ≥ 25 subjects for day 1 and ≥ 19 
subjects for day 7 were regarded as being specifically modulated by vaccination.

Identification of transcriptional signatures associated with antibody response.  Subjects were 
classified into high and low responders based on their functional antibody response. The day 70 fold-increase in 
influenza MicroNeutralization titer, the maximum value across the different strains represented in the vaccine, 
was used as response measure. Subjects for which the response was above or below the median of the distribu-
tion were respectively tagged as high and low responders. The percentage of modulated genes within each individ-
ual response profile was then used as discriminant variable for high and low responder subjects using a receiver 
operating characteristic curve. The area under the curve was used as measure of the classification performance.

In order to identify those genes that were contributing the most to the high/low responder subjects’ classifica-
tion, we applied a guided random forest classifier (GRF)19 combined with a five-fold cross-validation. This task 
was performed using the RRF R package with the following parameters: ntree = 30000 and mtry = 4. The penalty 
score of the GRF19 was set to maximum ( γ = 1 ). Variables (genes) importance was imputed based on the mean 
decrease Gini score obtained across the five cross-validated GRF models.
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