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Deep learning (DL) from electronic health records holds promise for disease prediction, but systematic methods for learning from
simulated longitudinal clinical measurements have yet to be reported. We compared nine DL frameworks using simulated body
mass index (BMI), glucose, and systolic blood pressure trajectories, independently isolated shape and magnitude changes, and
evaluated model performance across various parameters (e.g., irregularity, missingness). Overall, discrimination based on variation
in shape was more challenging than magnitude. Time-series forest-convolutional neural networks (TSF-CNN) and Gramian angular
field(GAF)-CNN outperformed other approaches (P < 0.05) with overall area-under-the-curve (AUCs) of 0.93 for both models, and
0.92 and 0.89 for variation in magnitude and shape with up to 50% missing data. Furthermore, in a real-world assessment, the TSF-
CNN model predicted T2D with AUCs reaching 0.72 using only BMI trajectories. In conclusion, we performed an extensive
evaluation of DL approaches and identified robust modeling frameworks for disease prediction based on longitudinal clinical

measurements.
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INTRODUCTION

Healthcare is undergoing a paradigm shift toward precision
medicine treatment decisions tailored to the individual’. This shift
has been enabled by large volumes of data accruing from a variety
of sources including electronic health records (EHRs), genomic
sequencing, telemetry, medical imaging, and medical devices.
Precision medicine aims to use such data to, for example, identify
individuals at risk of developing specific diseases or those likely to
respond to a particular treatment. Despite this promise, predictive
individualized models remain underutilized in clinical practice®™,
as accurate and reliable outcome predictions are rarely achieved.
Machine learning has the potential to revolutionize healthcare by
transforming large volumes of non-integrated data into knowl-
edge that can aid healthcare provider decision making®. When
appropriately developed, machine learning models enable
sophisticated and objective approaches to high-dimensional
multi-modal biomedical data®. Currently, there is no gold-
standard approach, and models of clinical data are developed
and evaluated for specific diseases. Although selecting a specific
model architecture should be data- and context-driven, using
simulated datasets to compare model performance can provide
an objective evaluation of model performance for specific
contexts, such as which models are more robust to missingness
and changes in trajectory shape. Identifying robust model
architectures for specific types of EHR data can help to expedite
and improve the development of predictive models.

A critical aspect of precision medicine is being able to predict a
disease accurately and precisely in its initial stages®3. To
accomplish this, it will be important to leverage all available data.
Most models do not take full advantage of longitudinal data
available in EHRs, instead using only a snapshot of the most recent
data®™®. Previous analyses demonstrated how longitudinal infor-
mation can contribute to risk estimation, e.g., how variability in

blood glucose levels can be used to inform risks of microvascular
complications in patients with type-2 diabetes®'.

Deep learning (DL)'" is a subfield of machine learning that is
focused on algorithms inspired by artificial neural networks'% In
recent years there has been an explosion of DL approaches,
including many that utilize longitudinal or time-series data for
prediction’*"'>, To compare these methods, it is necessary to
evaluate them on simulated data: (1) when real data are used, true
membership is unknown (e.g., a false positive may be someone
who has not yet been diagnosed). (2) simulated data provide
control over numerous statistical parameters (e.g., effect size, class
balancing, dispersion, data missingness). This enables assessments
of predictor performance dependencies on these parameters.
Developing simulated data that adequately represents real data of
interest is, however, challenging. Although simulated data have
been used to evaluate time series-based DL methods, these
simulated datasets were designed for audio and video signal
processing'®'’. EHR data often has correlation structures, non-
random missingness, and other characteristics that distinguish it
from previously simulated data'®. Previous studies have simulated
clinical event data from EHR data (e.g., diagnosis, medication,
procedure codes), but commonly used clinical measurements
such as laboratory tests or vitals have not been investigated'®2°.

Here, for the first time, simulated data based on real body mass
index (BMI) trajectories, glucose, and systolic blood pressure (SBP)
are used to rate how well DL approaches classify patients based
on trajectory changes in magnitude and shape. This enables
benchmarking methods across parameters, while maintaining a
correlation structure representative of EHR data. We evaluated the
performance of nine DL approaches for time-series classification
with three main architectures widely adopted for end-to-end DL
models:"" Multilayer Perceptron (MLP), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN).
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Fig. 1 Simulation study workflow. In the first step, longitudinal electronic health record (EHR) data were collected from six randomly selected
patients and used to generate reference body mass index (BMI) trajectories using weight and height measurements. Magnitude and shape
simulation cohorts were generated from the reference trajectories. Subsequently, simulation cohorts are used to train deep learning models
after Z-score normalization, missing value imputation, and partitioning data into training/test sets. Cohorts were randomly partitioned to have

training/validation, and test sets of 70%, 30% respectively.

We focused on models that use a supervised approach to
training. Here, the model learns by interrogating the mapping
between an input time series and the corresponding output to
make predictions. These models either have manually engi-
neered features or they are end-to-end models. The former
represents each time series as an image?' or a forest?? that is
then used by a DL classifier. The latter identifies the most
discriminative representation on its own?3. In recent years,
CNNs, MLPs, and RNNs have all shown promise as predictors of
disease risks from EHR'*2*25, Qur goal in this study was to
systematically compare their performances, and the dependen-
cies thereof on EHR data conditions, as such a study has not yet
been reported.

We approached this goal in two steps. First, we performed
simulations designed to identify DL models that are robust
under various conditions. Second, we evaluated the perfor-
mance of the best performing DL model on real EHR data to
predict pediatric type-2 diabetes (T2D). This study advances the
state-of-the-art by identifying a DL approach that accurately
classifies patient disease risks based on longitudinal clinical
measurements from EHR data.
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RESULTS
Simulated cohorts

Cohorts were simulated to study predictor performance depen-
dencies on trajectory differences in BMI, glucose, and SBP
magnitude and shape (Fig. 1), class distribution overlap, and
missingness, irregularity, and class imbalance.

Differences in trajectory magnitude. Models were evaluated based
on their ability to classify trajectories due to differences in
magnitude across a multitude of effect sizes, dispersions, and
fraction of data missingness. Overall, models performed similarly
at detecting differences in trajectory magnitudes (Fig. 2a). All DL
models, except for the relatively poor performance of the
Transformer model, had AUCs ranging from 0.76 to 1.00 across
simulations varying in magnitude, minimal differences were
observed between models for each magnitude-based simulated
scenario, demonstrating comparable performances to each other.
Nevertheless, TSF-CNN outperformed other approaches. Notably,
despite GAF-CNN still having relatively high accuracies in the
magnitude simulation cohort and being the best at detecting
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Fig. 2 Model predictive accuracies on simulated datasets by effect size, dispersion, and missingness. Cohorts include all class imbalance
ratios, with no irregularity present (a) Mean area under the receiver operating characteristic curve (AUC) of the test set for the simulated
magnitude cohort across BMI, SBP, and glucose cohorts. b Mean Test AUC for the simulated shape cohort across BMI, SBP, and glucose cohorts.
The x-axis represents different effect sizes, and the y-axis represents different measures of dispersion, categorized by % data missingness. The

colors are scaled by the mean AUC for each model.

differences in shape (described below), it was ranked 8th out of
the 9 models in the magnitude cohort (Fig. 2a).

Differences in trajectory shape. Substantial variation in model
performance was observed when trajectory shapes were modified
(Fig. 2b). Except for the GAF-CNN, all other models had at least
one AUC = 0.5, meaning performance was equivalent to random
assignment. TSF-MLP and Transformer were the worst performers
with multiple low AUCs when the missingness >0%, dispersion
<1.5, and effect size <1.25 (Fig. 2b). GAF-CNN and TSF-CNN clearly
outperformed other approaches. The GAF-CNN demonstrated the
best performance with AUCs >0.74 for the most conditions;

Published in partnership with Seoul National University Bundang Hospital

despite a few low AUCs ranging from 0.6 to 0.7 when
missingness = 50%, and effect size =0.25, where it still out-
performed other models. TSF-CNN was second-best with AUCs of
>0.77 when missingness is <25%; other models had at least one
AUC of under 0.7 under the same conditions.

Class overlap. Variations in distributional dispersion and effect
sizes resulted in a variety of distributional class overlaps for
evaluation. Classes with greater class overlap are expected to be
more difficult for the model to distinguish because more data
points are shared by the two distributions. The AUCs for all models
by extent of class overlap with 0% missingness and no irregularity
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Fig. 3 Model performance on simulated data by overfitting and training time. a Area under the receiver operating characteristic curve
(AUCQ) differences of train and test sets over different levels of missingness. b Training durations and iterations. ¢ Model overfitting was
evaluated by comparing the AUC differences for each deep learning method in the training sets and the test sets based on (c) changes in
trajectory magnitude and (d) changes in trajectory shape. e Critical difference plot to compare model’s performance based on their test AUC

(Lower CD value is better).

are depicted in Supplementary Fig. 11. In the magnitude
simulation cohorts, AUCs of models, except Transformer were
>0.94 when class overlapping is <90%. Transformer had AUCs of
>0.88 for the same condition. AUCs decreased from 0.95 to 0.86
(0.82 for Transformer) for magnitude cohorts that overlapped
between 90 and 100%.

For the shape cohorts, AUCs of models ranged from 0.85 to 1 for
100-0% distribution overlap. All models had AUCs of >0.99 for
overlaps of <40%, and AUC of >0.94 for overlaps of <90%.

Data missingness. We investigated the impacts of data missing-
ness on model prediction accuracies based on missingness of 0,
10, 25, and 50%. In the magnitude simulation cohort, all models,
with the exception of Transformer that had AUCs from 0.84 to
0.88, demonstrated similar AUCs of ~0.93 for all four categories of
missingness (Fig. 3a).
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In the shape simulation cohort, GAF-CNN was robust over
various degrees of missingness with AUCs of 0.93, 0.92, 0.90, 0.83
for missingness of 0%, 10%, 25%, and 50%, respectively. TSF-CNN
performed comparably with AUCs ranging from 0.93 0.91, 0.89,
and 0.81 for 0%, 10%, 25%, and 50% missingness (Fig. 3a). Models
that were the most detrimentally impacted by missingness were
Transformer, MLP, and ResNet with respective AUCs of 0.52, 0.55,
and 0.59 at 50% missingness

Data irregularity. We investigated the impacts of data irregu-
larity (i.e., irregular spacing between patient measurements) on
model prediction accuracies. In the magnitude simulation
cohort, with the exception of the transformer model, models
demonstrated similar accuracies across irregularity classifica-
tions, with AUCs ranging from 0.84 to 1.00 (Supplementary
Fig. 12).
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In the shape simulation cohort, GAF-CNN was robust over
various degrees of irregularity with lowest AUCs of 0.85, 0.82, and
0.82 for no, moderate, and high irregularity, respectively (Supple-
mentary Fig. 12). TSF-CNN demonstrated similar performance with
its lowest AUCs of 0.85, 0.81, and 0.80 for no, moderate, and high
irregularity, respectively. The RNN-FCN model also performed quite
well in this regard with its lowest AUCs of 0.85, 0.79, 0.76 for no,
moderate, and high irregularity, respectively. Models that were the
most detrimentally impacted by irregularity were TSF-MLP, MLP,
FCNN, CRNN, ResNet, and Transformer with respective lowest AUCs
of 0.59, 0.58, 0.65, 0.68, 0.62, 0.56 at high irregularity.

Class imbalance. Class proportions in EHR data are often
imbalanced, with fewer people having a record of the outcome
of interest. In our simulation dataset, we varied the class
imbalance class ratio from 1 to 0.25 representing the minority
class. As the imbalance ratio decreases (i.e, minority class is
smaller relative to the majority class), worse model performance is
expected due to the need to downsample the majority class to
have balanced model training. The AUCs for all models by extent
of class imbalance is depicted in Supplementary Fig. 13. In the
magnitude simulation cohorts, AUCs were >0.92 across all models
and for all four scenarios of class imbalance.

For the shape cohorts the GAF-CNN model demonstrated the
highest AUCs, with AUCs of 0.91, 0.91, 0.90, and 0.88 for 1, 0.75,
0.5, and 0.25 class imbalance ratios, respectively. TSF-CNN was the
second highest performing model with AUCs of 0.91, 0.90, 0.89,
and 0.86, respectively (Supplementary Fig. 13).

Overall accuracy. Overall model accuracy was determined using
a Friedman test to evaluate model AUCs across all simulated
conditions and is depicted as a critical difference plot (Fig. 3e).
TSF-CNN was ranked as the best model but was not statistically
significantly better than GAF-CNN, which was ranked second
(P>0.05). These models were followed by CRNN, LSTM-FNC,
FCNN, TSF-MLP, MLP, ResNet, and Transformer, respectively, and
these were all statistically significantly different from each other
(P <0.05) (Fig. 3e).

Model training time. We compared models based on average
training duration and average training iterations, stratified by
magnitude and shape cohorts (Fig. 3b). In the magnitude
simulation cohort, the TSF-CNN model learned fastest with a
mean duration of 0.24 min (14.4s) for each individual cohort
within the dataset. Other models except Transformer were also
fast learners with mean durations of <1 min. The longest training
time was observed with the Transformer which had a mean
duration of 2.17 min. In the shape simulation cohort, the fastest
model was the FCNN with a mean duration of 0.1 min (6s). MLP,
TSF-MLP, ResNet, TSF-CNN, and RNN-FCN were also fast learners
with mean durations <0.37 min (22.2s). Consistent with the
magnitude cohorts, the model with the longest training time
was the Transformer with a mean duration of 2.16 min (Fig. 3b).

TSF-CNN, RNN-FCN, ResNet, and FCNN had <100 iterations (i.e.,
epochs) in the magnitude cohort to meet the stopping criteria
(Fig. 3b). The maximum number of iterations was observed with
the Transformer, which had a mean of 500 iterations. In the shape
cohorts, FCNN and ResNet met the stopping criteria in <29
iterations (Fig. 3b). Other models met stopping criteria later but
with <400 iterations. Similar to the magnitude cohorts, the
Transformer did not meet the stopping criteria and reached the
maximum allowed 500 iterations.

Model overfitting. We calculated the difference in model AUCs
obtained in the test set and compared them to the training set for
each simulated cohort to determine the extent of model
overfitting. All DL models demonstrated similar accuracies
between the training and test sets in the magnitude cohorts
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(AUCs ~0.92). The difference in AUCs between the test and
training sets were negligible with the highest difference observed
with ResNet, which had a mean AUC difference of 0.0015 (Fig. 3c).
More substantial model overfitting was observed in the shape
cohort. TSF-CNN demonstrated the least model overfitting with a
difference in AUC of 0.0051, and RNN-FCN demonstrated the

greatest model overfitting with a difference in AUCs between
training and test cohorts of 0.0227 (Fig. 3d).

Real-world, pediatric type-2 diabetes prediction based on BMI

A total of 35,056 pediatric patients met our inclusion/exclusion
criteria based on their available EHR data (Fig. 4). A detailed
STROBE diagram showing the number of patients included/
excluded at each processing stage is shown in Supplementary Fig.
9. The final cohort was 45.8% female, with an average age of 5.4
years old at the first clinical record and an average age of 17.1
years old at the last clinical record. The average length of BMI
trajectories spanned 8.2 years. Overall, 41.3% and 24.7% of the
cohort met the criterion for obesity and overweight, respectively,
as defined by Centers for Disease Control 2000 growth curves®®.
The TSF-CNN outperformed other evaluated models in the
simulated cohorts, and for this reason, was used to predict
pediatric T2D. The detailed preprocessing steps are shown in
Supplementary Fig. 10.

A total of 2336 out of 35,056 patients (6.6%) met the criteria
for T2D and were labeled as positive cases. We investigated 51
different observation windows for predicting T2D depending on
the extent of patient data available (Supplementary Table 1). In
general, model performance improved when the observation
window included a wider range of ages, and the max age was
closer to the maximum of 12 years old (Fig. 5). The model with
the observation windows spanning 3-12 years old had the
highest accuracy (AUC = 0.72). However, models constructed on
ages 5-12 (AUC=0.71), 3-8 (AUC=0.69), 4-9 (AUC=0.69),
5-10 (AUC = 0.68) were not statistically different from the best
performing model (FDR P < 0.05) (Fig. 5). Models incorporating
fewer and younger ages performed worse with the observation
window spanning 2-4 demonstrating the lowest accuracy
(AUC = 0.50) (Fig. 5).

DISCUSSION

EHRs are contributing to an explosive growth in diverse long-
itudinal clinical data that will increasingly support population-level
analyses to extract similar patterns among patient records for
disease prediction. Predictive analytics represent an important
domain with goals that include early detection of diseases,
avoidable care, and clinical decision support. The performance of a
predictive model, represented by the AUC for categorical
endpoints, is a dominant focus, but there are other factors (e.g.,
overfitting, robustness to missingness, time to train) that will
dictate the overall utility of a model and thus whether it will be
adopted for clinical care. Although many systematic comparisons
of DL approaches using longitudinal data have been pre-
sented?’ 3!, to our knowledge, this is the first study specifically
evaluating DL models using longitudinal clinical data of lab
measurements or vital data. Patient clinical histories have different
correlation structures and specific challenges (e.g., missing data)
that may be best met by models that are different than those
applied to audio or video signaling data and other general forms
of time-series data that are typically used in model compar-
isons®’~?°, Simulation experiments where the true signal is known
are critical to evaluating method performance. Here we took a
semi-synthetic approach where the signal and noise in the data
were simulated, but the correlation structure was maintained>2,
This approach enables interrogation of method performance,
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normal weight, overweight, obese, and severe-obese according to Centers for Disease Control criteria, and were classified as those that
developed T2D or did not develop T2D according to the eMERGE criteria®®. Trajectories were then harmonized such that each trajectory
consisted of a single BMI record per year. Trajectories were truncated to exclude any records at or after the average age of pediatric T2D onset
and any records after a patient’s T2D diagnosis. Because deep learning models require uniform trajectory lengths, multiple datasets were
created across a variety of different age ranges. For each dataset a TSF-CNN model was tuned using 20% of the training set and trained using
tenfold cross-validation; the mean and standard deviation of validation and test AUCs were calculated. Subsequent modeling steps were
consistent with those shown in Step 2 of Fig. 1. b Depicts the observation and prediction window definitions. The observation window varied
from 2 years old to average age of T2D in pediatric patients (12.5 years old), and the prediction window was fixed from 13 to 18 years old.

while maintaining a simulated cohort that resembles what may be
observed clinically.

Based on the results of this study, we can provide guidance on
what DL approaches are best suited for predictions from
longitudinal EHR data from common clinical measurements, such
as clinical labs and vitals. If the goals are to predict based on
magnitude changes in trajectories, all models performed com-
parably well with >0.76 AUC across simulated cohorts (Fig. 2a),
with the TSF-CNN approach learning most efficiently (Fig. 3b).
Although, GAF-CNN still had relatively high AUCs for detecting
changes in magnitude, it ranked 8th out of the 9 models in this
category (Fig. 2a). As the overlap, irregularity, and class imbalance
ratio increase, discriminating the correct class for an input
trajectory becomes more difficult. For all models, discriminating
classes from distributions that overlapped by >90% was
comparably difficult with AUCs dropping to 0.82 with no missing
data or data irregularity (Supplementary Fig. 11). If differences in
trajectory shape are thought to be important predictive features
and data missingness is present, GAF-CNN stood out with the
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highest prediction accuracies when significant amounts of data
were missing, with AUCs of 0.90 and 0.83 with 25% and 50%
missingness, respectively (Figs. 2b, 3a). Although the GAF-CNN
approach performed best for the shape simulation, it was
followed closely by TSF-CNN, which were statistically equivalent
based on their AUCs across all simulated scenarios (P > 0.05) (Fig.
3e). The TSF transformation uses summary statistics of various
trajectory intervals (e.g., mean, standard deviation, slope) and
appears to be particularly well-suited for capturing information
from clinical measurement trajectories to form predictions
(Supplementary Fig. 4).

The number of training iterations required to reach an optimal
prediction accuracy provides insight into how efficiently a model
learns. This is important as EHRs can contain millions of patient
trajectories, and in these circumstances, efficient learning is
critical. Although the iterations were similar for the other models,
Transformer and GAF-CNN have the deepest and most complex
architecture, which required longer training durations. Although
GAF-CNN showed competitive performance to TSF-CNN, it
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Fig. 5 Performance of the TSF-CNN model to predict pediatric type-2 diabetes (T2D) in a real-world cohort. Different age ranges
incorporated in the model are shown with the horizontal bars. Mean and standard deviation of cross-validation (Val) AUCs and test AUCs are
shown. The third column represents the model area under the receiver operating characteristic curve (AUC when it is applied to the withheld
test set) with a green gradient indicating the accuracy of the prediction. The fourth column indicates the FDR P values of the Delong’s test for
each AUC compared to the best performing age range, ages 3-12, annotated with “REF” Models with a FDR P < 0.05 are shown in red.

suffered from time complexity, which becomes a significant
limiting factor for large cohorts. FCNN was overall the most
efficient learner across all simulation cohorts, followed closely by
ResNet RNN-FCN, and TSF-CNN (Fig. 3b).

Although the simulation cohorts utilized for this study were
designed to interrogate common clinical measurement data (ie.,
BMI, SBP, glucose), across various effect sizes, missingness,
dispersion, irregularity, and class imbalances, there were limita-
tions that present opportunities for future studies. We only
investigated a two-class problem, and although two classes
(disease/no-disease) are typical for clinical prediction models,
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there are other scenarios that could benefit from multi-class
prediction or prediction of continuous outcomes. In addition, the
data used in this study originated from a single, large integrated
health system. Future evaluations may benefit from using data
across multiple health systems to ensure the results are broadly
applicable. Although the names for many of the DL architectures
have remained consistent, the network architectures themselves
are evolving. As examples, MLP (Multilayer Perception) and VGG (a
CNN architecture) have recently evolved in ways that improve
their performance®>3*, Therefore, the conclusions to be drawn
from the current study may evolve over time.
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All models evaluated here require complete data (i.e, no
missing values) and uniform trajectory lengths. This is a challenge
because patients have clinical histories of different lengths and
have visits at different intervals. We addressed the missing data
limitation directly as part of our simulation strategy, and
approached the limitation of different lengths of trajectories in
the real-world data by training multiple models on different
patient observation windows (Fig. 4b, Supplementary Fig. 12). The
advantage of this approach is that predictive accuracy can be
evaluated based on the extent of data available for a patient, but
the disadvantage is that multiple models need to be developed to
accommodate a wide range of patients in an EHR. Notably, the
TSF-CNN model was able to predict risk of pediatric T2D based on
BMI alone with mean test AUCs of up to 0.72 using BMIs from 3 to
12 years old (Fig. 5). As expected, models incorporating BMIs at
later age ranges, and with larger cohort sizes, demonstrated
higher predictive accuracies. In this case, some of the longest
trajectories did not perform as well due to fewer patients having
medical histories spanning that many years. However, when
models trained on data when the prevalence of cases were >5%,
trajectories were more accurate when earlier data points were
included. For example, BMIs from 5 to 12 years old predicted T2D
with AUC = 0.72, whereas 10-12 years old predicted T2D with 0.68
(FDR P < 0.05). Previous studies showed that high childhood BMIs
are associated with adult type-2 diabetes and metabolic
syndrome®>3%, However, there are no systematically used predic-
tion models for pediatric T2D using EHR data. Additional work is
needed to leverage this approach, along with additional clinical
history and laboratory data, to optimize childhood T2D predictions
in clinical settings.

Here, we explored nine DL approaches to identify the most
robust approach for constructing predictive models from long-
itudinal clinical measurements from EHRs, such as BMI, glucose,
SBP. We evaluated performance dependencies on trajectory
shape, trajectory magnitude, effect size, dispersion, class overlap,
irregularity, class imbalance, and data missingness. From these
results, we identified TSF-CNN and GAF-CNN as promising
frameworks for using longitudinal clinical measurements in
predictions and illustrated this using longitudinal BMI trajectories
from pediatric patients to predict T2D onset.

METHODS
Simulated cohorts

To ensure the data accurately represented real-world data, we simulated
BMI, glucose, and SBP trajectories based on six real patient trajectories for
each group to ensure relevant correlation structures. The trajectories were
randomly selected from a pool of patients in the Cleveland Clinic EHR seen
between 2000 and 2018. If the selected trajectory was missing a yearly
measurement, the missing point was imputed with the mean of the
immediately preceding and succeeding values. Each trajectory was then
median normalized. We created separate cohorts to evaluate DL
classifications based on trajectory shapes or trajectory magnitudes.
Simulated magnitude cohorts were derived by random sampling from a
normal distribution of magnitudes of a corresponding mean (effect size)
and standard deviation (dispersion). Simulated shape cohorts were created
by fitting a polynomial regression model with ten coefficients on the
patient trajectory using poly function in R¥. We then determined the
model coefficient with the greatest influence on trajectory by permutating
each model parameter 1000 times and calculating the mean squared error
(MSE) between the new shapes and the original shape. The coefficient that
resulted in the greatest average MSE upon permutation was considered
the most influential for modifying the trajectory shape. Simulated shape
cohorts were then created by modulating this influential parameter by
random sampling from a normal distribution of coefficients of a
corresponding mean (effect size) and standard deviation (dispersion).
Simulation across each set of conditions resulted in 6336 magnitude
cohorts and 6336 shape cohorts representing variations in effect size,
dispersion, class overlap, irregularity, class imbalance, and missingness.
Each cohort consisted of two classes of up to 2000 trajectories in each class
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with a maximum length of 16 data points. Effect sizes were modulated by
differences in the means of the distributions (0.25-2.75, step size = 0.5).
The dispersion was modulated by changing the standard deviations of the
distributions (0.25-2, step size =0.35). Missingness was simulated by
randomly dropping varying numbers of data points along each trajectory
(i.e., 0, 10, 25, 50%). The distributional overlap between the two classes was
calculated as the proportion of trajectories that had values common to
both classes at all time points. Simulated missing values were then
imputed using the commonly utilized approach, last observation carried
forward (LOCF). If the initial observation was missing, then the last
observation carried backward (LOCB) was used. We investigated the
impact of data irregularity (i.e., random irregular spacing between patient
measurements) on model prediction accuracy. A beta distribution was
used to sample the number of missing data points applied to each
individual's trajectory. Irregularity was classified as no irregularity, meaning
all patient measurements were equally spaced, moderate irregularity,
meaning patients had between 0 and 3 missing measurements (mean = 1)
or high irregularity, meaning patients had between 2 and 5 missing
measurements (mean =4). The distribution of missing data points for
patients in the moderate and high groups, along with specific beta
distribution parameters, are provided in Supplementary Fig. 14. Moreover,
we analyzed the impact of class imbalance on model prediction accuracies.
We randomly down-sampled individuals from one class, while keeping
individuals from the other class the same, to create four levels of class
imbalance—0, 10, 25, and 50%. In this case, 0% is equally balanced and
50% means the size of one class is half the other class.

As part of standard data processing, the data were Z-score normalized
prior to model training except for the GAF-CNN model, which were min-max
normalized. Cohorts were then randomly partitioned into training/validation
(70%), and test sets (30%), respectively. We randomly selected 20% of the
training set to perform each model’s hyperparameter tuning. A workflow
depicting the process for developing the simulated cohorts is presented in
Fig. 1. To compare the performance of models, we consider two performance
metrics: 1—area under receiver operating characteristic curve (AUC) showing
how well a model can distinguish between classes and 2—training duration
calculated by the product of the training time per epoch and the number of
epochs needed to reach the desired level of accuracy. System specifications
used to train the models are provided below. Additional metrics such as the
F1-score (i.e., dice coefficient), precision, recall (sensitivity), and specificity are
available in Supplementary File 1.

Deep neural network models

Multilayer perceptron (MLP). We implemented a simple and traditional
MLP architecture, proposed in Wang et al. as the baseline approach for
time-series classification (Supplementary Fig. 1). This model consisted of
four layers, and was optimized using the Adadelta method®’. The final
layer has two neurons to accommodate a binary classifier with a softmax
activation function. The three hidden fully connected layers consisted of
500 neurons with a Rectified Linear Unit (ReLU) activation function. To
reduce overfitting, prior to each of the three hidden layers we included
dropout layers with respective rates of 0.1, 0.2, and 0.3. An important
aspect of the MLP is that the number of neurons does not depend on time-
series length; total weights do, however, depend on time-series length.

Fully convolutional neural network (FCNN).  FCNNs have been proposed for
classifying univariate time series?”. A CNN model is usually composed of
multiple convolutional layers followed by a few fully connected layers.
FCNN is a CNN without local pooling layers, which maintains the length of
the time series after each convolution. In addition, the final fully connected
layer is replaced with a global average pooling (GAP) layer, which
significantly decreases the number of parameters. We implemented the
architecture of Wang et al.2” which has three convolutional blocks with a
ReLU activation function, and 128, 256, and 128 filters with filter lengths
eight, five, and three, respectively (Supplementary Fig. 2). The GAP layer
averages the results of the last convolution layer over the entire time
dimension and feeds it into the softmax classifier in the fully connected
output layer. A major advantage of the FCNN approach is that the number
of parameters for four layers is invariant to time-series length due to the
inclusion of a GAP layer in the network.

Time series forest MLP (TSF-MLP). The time-series forest (TSF) algorithm
extracts statistical features from random periods of each time series to
engineer features prior to model training®2. TSF divides the time series into
small contiguous intervals that have a certain length and a random start
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position. From these intervals, the mean, standard deviation, and slope of
the random intervals are calculated and used as model features®’. An
advantage of this algorithm is that TSF is robust to time-series noise
because it uses a phase dependent discriminatory subseries instead of the
whole series, reducing the potential bias from noise in the trajectory?®. We
designed a classifier which leverages a MLP classifier and the TSF algorithm
(Supplementary Fig. 3). TSF outputs were used as features for a MLP model
with the architecture described above. Therefore, instead of training the
model directly on the time-series data, the model was trained on
engineered features from the TSF algorithm.

Time series forest CNN (TSF-CNN). Similar to the TSF-MLP described above,
we leveraged features engineered by the TSF algorithm and implemented a
CNN with six one dimensional convolution layers with 32, 32, 32, 32, 64, 128
filters, each with filter lengths of three with the ReLU activation function. A
max pooling layer with stride of two was implemented after the second and
fourth layers, which takes the maximum from each set of two values of the
input. There is a GAP layer that takes the results of the sixth layer and
performs averaging over the entire time dimension, feeding to a softmax
classifier in the fully connected output layer (Supplementary Fig. 4).

Gramian angular field CNN (GAF-CNN). Gramian angular field (GAF) is a
feature engineering approach. Encoding the time-series value as the
angular cosine and the time stamp as the radius transforms the time series
into images?'. The GAFs contain temporal correlations since time increases
as the position moves from top-left to bottom-right in the GAF matrix. The
main diagonal contains the original information needed to reconstruct the
time series from the high-level features learned by the deep neural
network. We built a hybrid CNN classifier that takes a GAF of the input time
series and has six 2D convolution layers with 32, 32, 32, 32, 64, and 128
filters with dimensions of 3 x 3. Also, there are two down sampling layers
and two max pooling layers with stride two after the 2nd and 4th layers.
Finally, a GAP layer is utilized before the last layer which is a softmax
classifier (Supplementary Fig. 5).

Residual network (ResNet). ResNets capture linear and non-linear depen-
dencies of time-series elements on both short- and long-term scales.
ResNet features the shortcut residual connection between consecutive
convolution layers which enables the flow of the gradient directly through
these connections with the aim of reducing the vanishing effect®®. The
architecture (proposed in Wang et al.?’) is relatively deep with 3 residual
blocks with 3 convolution kernels whose output is added to the residual
block’s input and then fed into the next layer. These three blocks are
followed by a GAP layer and a softmax layer with two neurons. The length
of filters in each residual block is set to 8, 5, and 3 for the first, second and
third convolution, respectively. The number of parameters in ResNet is also
invariant across different time-series lengths (Supplementary Fig. 6).
Although not done here, these features enable transfer learning for the
ResNet model, which means it is possible to fine tune a pre-trained ResNet
model for an unforeseen dataset.

Recurrent neural network—fully convolutional network (RNN-FCN). RNNs
are a DL model with complex architectures designed to predict an output
for time stamp in a time series using a gradient based method®. A RNN
model consists of a chain of modules in a row called long short-term
memory (LSTM). RNNs keep the history of all the past time-series elements
and use this information as they process an input sequence one element at
a time. A limitation of RNNs is that their high computational costs, which
may pose a significant challenge for certain applications. We implemented
a state-of-the-art LSTM architecture®® that is augmented by a fully
convolutional block followed by a dropout block. In this architecture, a
RNN and a CNN process the input series in parallel and their outputs are
joined using a concatenation layer (Supplementary Fig. 6). The fully
convolutional block consists of three stacked temporal convolutional
blocks with 128, 256, and 128 filters, and filter sizes of 8, 5, and 3,
respectively. Each block consists of a temporal convolutional layer, which is
accompanied by batch normalization followed by a RelLU activation
function. Finally, global average pooling is applied following the final
convolution block. The output layer consisted of a dense layer with two
neurons with a softmax activation function (Supplementary Fig. 6).

Convolutional-recurrent neural network (C-RNN). We developed a hybrid

network structure composed of both a RNN and a CNN to extract
comprehensive multifaceted patient information patterns. We designed
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the hybrid C-RNN by taking advantage of the CNN for extracting spatial
information and utilized the RNN structure for its ability to learn temporal
relevance in time-series data, as in Wang et al.*". This differs from the RNN-
FCN approach, which includes an LSTM layer that accepts raw time-series
features. Here, the LSTM layer accepts convolved features that may
improve its ability to track dependencies in time-series data. The CNN
structure included a 32-filter layer, followed by a 64-filter layer, with filter
lengths of 5 and 3, respectively. The output feature map is then fed into a
RNN structure, which consists of a LSTM block with 64 units and two
dropout layers set to 0.1 and 0.5, respectively. RNN outputs are then fed
into a softmax classification layer (Supplementary Fig. 7).

Transformer. Transformer is a DL model based on an attention
mechanism that was originally proposed for machine translation®2 It is a
method that draws global dependencies between input and output by
relying entirely on self-attention to compute representations of its input
and output without using sequence-aligned RNNs or convolution. We
implemented the base model of transformer architecture and applied it to
time-series instead of natural language. The model consists of an encoder
composed of a stack of 4 identical layers (N = 4). Each layer consists of two
sub-layers. The first is a multi-head attention and the second is a feed-
forward network. A residual connection is attached to each sub-layers
followed by layer normalization and a dropout to reduce the output tensor
size. The number of attention heads, head size, dropout amount, and the
number of neurons of feed-forward are determined in the hyperparameter
tuning process (Supplementary Fig. 8).

Hyperparameter tuning and model training

Cohorts were then randomly partitioned into training/validation and test
sets, representing 70% and 30%, respectively (Figs. 1, 2). We randomly
selected 20% of the training set to perform each model’s hyperparameter
tuning. We performed 3-fold cross-validation for simulated cohorts and
tenfold cross-validation for the real-world cohort. The mean and standard
deviations of the model training/validation AUCs for the simulated
cohorts can be found in Supplementary File 1 and for the real-world
cohorts in Fig. 5.

For all DL architectures presented here, we performed hyperparameter
tuning that considered multiple dimensions, including dropout and batch
size as general parameters, kernel size, kernel width, and number of
neurons in each layer for CNNs, dense size for MLPs, LSTM size for RNNs,
and the number of heads, head size and learning rate for the Transformer.
The bandit-based approach*® was used to search through the hyperpara-
meter space to tune parameters during up to 100 iterations (Supplemen-
tary Table 3).

We initialized the learning rate number of epochs with respective values
of 0.001, and 500. All models were optimized using the Adam method with
binary cross-entropy as their cost function. The detailed architectures for
all the described approaches are available in Supplementary Table 2. For all
models, the learning rate was reduced by an arbitrary factor of 0.92 each
time the model’s training loss was unimproved for three consecutive
epochs. Although the learning process for each classifier was permitted to
take up to 500 iterations, a stopping criterion was implemented across all
models; training was stopped if no improvement in model accuracy was
gained after 15 consecutive iterations. The model with the best
performance on the validation dataset was chosen for evaluation on the
test set. The statistical significance of each model’s performance was
evaluated using a critical difference plot and a non-parametric, Friedman
test across the AUCs from all simulated conditions in the test sets. Models
with a P<0.05 were considered to have performances that were
statistically significantly different from one another.

System specification

All models were generated using the Cleveland Clinic's High Performance
Computing Cluster (HPC). We issued multiple jobs which each one includes
process of training, tuning, validation, test of a DL model. For each job, we
allocated 48 cores consisting of Intel(R) Xeon(R) Platinum 8168 CPUs @
3.90 GHz 64 bits, with dedicated memory allocation of 128 GB RAM with
CentOS Linux v8 operating system.

Real-world cohort

The model that demonstrated the best performance across the simulated
cohorts was evaluated in a real-world pediatric (ages 2-18 years) cohort to
predict onsets of pediatric type-2 diabetes, prediabetes, and metabolic
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syndrome (Fig. 4a). The cohort consisted of 51,164 pediatric patients
(54.9% male and 45.1% female based on self-report in the EHR) seen at the
Cleveland Clinic between 1987 and 2020. Structured data, including
height, weight, demographic information, encounter diagnosis interna-
tional classification of disease (ICD) 9/10 codes, and medication records
were extracted from the EHR. Patients were considered to have T2D based
on the visit at which patients met the eMERGE criteria**. Patients without a
recorded encounter diagnosis or weight and height measurements were
excluded. BMI was calculated from height and weight measurements from
ages 2 to 12 years old or to the date of pediatric T2D diagnosis, whichever
came first. Twelve years of age was selected as the max for BMI records
because 12.5 years was the average age of a pediatric T2D diagnoses in
this cohort; data prior to the age that most pediatric patients are
diagnosed with T2D is desirable so that all models will be broadly
applicable to most patients. Patients must also have had at least one
encounter ICD code at or after the age of 18 to ensure they were still being
seen by providers in the Cleveland Clinic health system. Additional
selection criteria were implemented based on data availability and are
described in the Data Processing and Quality Control section below. This
study was approved by Cleveland Clinic Institutional Review Board (IRB
#20-1035) and complied with current ethical regulations, consent was
waived due to the retrospective nature of the study. The workflow for
cohort selection and data processing is depicted in Fig. 4.

Data processing and quality control. All data processing was performed
using R 4.1.137 and Python 3.7**. Quality control was performed at both the
cohort and the individual level. Individuals were excluded if they were
outside of the modified Z-score range as described by the Center for
Disease Control*®. According to these criteria, patients with either a body
weight Z-score <5 or >8, a height Z- score <5 or >4, or BMI Z-score <4 or
>8, were excluded. Implausible records, such as height of <25 inches or
>100 inches and weight of <5 or =1000 Ibs. were excluded, as previously
described by Boone-Heinonen et al.*’. Before calculating BMI trajectories,
weight and height trajectories were smoothed at the individual level using
local polynomial regression with an automatically selected smoothing
parameter, as in Tao et al.*8, Because all the evaluated model architectures
require a uniform matrix (i.e., same number of longitudinal data points
across all patients), we partitioned the BMI trajectories into disjoint 1-year
segments and each segment was assigned a BMI based on the mean of all
BMIs recorded within the segment. In addition, we created multiple
“observation windows” for different age ranges for which BMI values
would be used for prediction, which is needed since patients have varying
lengths of medical histories. Having models for multiple observation
windows provides performance metrics for prediction accuracies depend-
ing on the amount of data available (Fig. 4b). Linear interpolation was used
to impute missing records between the first record and the last available
record in the trajectory. Patients without a BMI trajectory covering the
observation window were excluded.

Predictive model development. Multiple TSF-CNN models, selected based
on performance in the simulated cohorts, were developed on multiple age
ranges (i.e., observation windows) of trajectories (Figs. 4B, 5). This was done
to evaluate model performance for different lengths of medical history. No
observation windows included BMI values from patient records >12.5 years
old (the mean age of pediatric T2D onset in this cohort). Cohorts were
partitioned into training/validation (70%), and test (30%) sets. Due to the
different age ranges for different models, each model was based on a
different cohort size (Supplementary Table 4). TSF-CNN models were
evaluated using tenfold cross-validation for each cohort to evaluate the
performance accuracy of the model in its stable state. The rest of the
model construction was consistent with that used for the simulated
cohorts (Fig. 1). We assessed the performance of each TSF-CNN model by
calculating the mean and standard deviation of tenfold cross-validation
AUC and test AUC. To determine whether the best performing model was
statistically significantly better at classifying patients with T2D, we applied
a two-sided Delong’s test to each model's AUC versus the best performing
model’'s AUC*. The resulting P values were corrected for multiple testing
using a false discovery rate (FDR) approach, and a FDR P < 0.05 was used as
the threshold for statistical significance®°.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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