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What is the relationship between mortality and satellite images as elucidated through the

use of Convolutional Neural Networks?

Background: Following a century of increase, life expectancy in the United States has

stagnated and begun to decline in recent decades. Using satellite images and street view

images, prior work has demonstrated associations of the built environment with income,

education, access to care, and health factors such as obesity. However, assessment

of learned image feature relationships with variation in crude mortality rate across the

United States has been lacking.

Objective: We sought to investigate if county-level mortality rates in the U.S. could be

predicted from satellite images.

Methods: Satellite images of neighborhoods surrounding schools were extracted with

the Google Static Maps application programming interface for 430 counties representing

∼68.9% of the US population. A convolutional neural network was trained using crude

mortality rates for each county in 2015 to predict mortality. Learned image features were

interpreted using Shapley Additive Feature Explanations, clustered, and compared to

mortality and its associated covariate predictors.

Results: Predicted mortality from satellite images in a held-out test set of counties was

strongly correlated to the true crude mortality rate (Pearson r = 0.72). Direct prediction

of mortality using a deep learning model across a cross-section of 430 U.S. counties

identified key features in the environment (e.g., sidewalks, driveways, and hiking trails)

associated with lower mortality. Learned image features were clustered, and we identified

10 clusters that were associated with education, income, geographical region, race,

and age.
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Conclusions: The application of deep learning techniques to remotely-sensed

features of the built environment can serve as a useful predictor of mortality in

the United States. Although we identified features that were largely associated with

demographic information, future modeling approaches that directly identify image

features associated with health-related outcomes have the potential to inform targeted

public health interventions.

Keywords: deep learning, satellite images, mortality, remote sensing, public health

INTRODUCTION

Life expectancy in the United States has increased dramatically
over the past century from 48 years in 1900 to 80 years in
2019. However, the United States has experienced a drop in
longevity over the past decade and now ranks 43rd in the
world (1–5). Within the United States, crude mortality rates
vary by more than 40%. Factors observed to be associated
with mortality rates within the United States include disparities
in socioeconomic status (6, 7) and health insurance coverage,
(8) as well as obesity, smoking (9, 10), and drug use/opioid
abuse (11).

Prior studies have attempted to infer characteristics of the

underlying communities by characterizing land use using

satellite imagery (12–14). Recent research has leveraged

deep learning approaches to link the built environment to

obesity (15, 16), socioeconomic status (17), poverty (18, 19),

and other demographic factors (20, 21) by integrating lower

level image features into higher order abstractions to make
predictions (22, 23). In addition, the potential for deep
learning-based image analysis to characterize a broad range of
health exposures was recently reviewed (24). However, there

is limited work that examines the relationship of mortality

with the built environment in the United States at a large

scale. The identification of information in satellite images
associated with mortality predictions could potentially unlock

previously unknown, yet related geographic and structural
community characteristics that may be used to predict
future mortality rates when demographic information is
unavailable or possibly inform optimal county/state public
health intervention strategies.

We hypothesized that county-scale level mortality rates could
be predicted from satellite images. The goals of this study
were to determine whether the analysis of satellite images by
Convolutional Neural Networks (CNN) could be used to predict
county-level mortality rates and uncover salient satellite image
features associated with mortality. We also sought to determine if
image features are related with county-level measures of income,
education, age, sex, race, and ethnicity. The main objective of
this study was to highlight a proof-of-concept deep learning
application that presents strong baseline performance, enabling
future work that can evaluate the potential for applying learnt
features to the design of public health interventions in the
built environment.

METHODS

Overview
Here, we will provide a brief overview of methods used to
train, validate, test, interpret, and compare the selected machine
learning models for the task of mortality prediction:

1. Data collection: We collected death certificate and county-
level covariate/demographic information from private
access census databases correspondent to 430 US counties,
partitioning counties into training, validation and test sets.
We downloaded 196 Google Maps satellite images per county.

2. Predictive Modeling: We trained, validated, and tested three
separate models for comparison:

a. A deep learning model which operates on images to
predict the county-level mortality rate for each image.
The predicted mortality rates for the images within each
county are averaged with a trimmed mean to yield the final
county-level mortality predictions.

b. A linear regression model which can predict county-level
mortality from county-level covariate information.

c. A hybrid deep learning approach which can combine
county-level covariates with image features to predict
image-specific mortality rates, averaged (trimmed mean)
across the county to yield county-level mortality rates.

d. Data Scaling Sensitivity Tests to identify the amount
of imaging information needed for optimal predictive
accuracy for the image-only deep learning model.

3. Interpretation Techniques to identify important and
potentially correspondent image and demographic predictors
of mortality, using:

a. Shapley additive explanations (SHAP) to generate a
heatmap over each of the images to locate mortality
associated image features.

b. Standardized regression coefficients and SHAP to identify
the most important demographic predictors of mortality
from the regression model.

c. Unsupervised dimensionality reduction to identify
correspondence between the demographics and
imaging predictors.

Graphical overviews of the aforementioned approaches may
be found in Figures 1, 2 and in the Supplementary Material,
section “Supplementary Overview of All Conducted Analyses.”
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FIGURE 1 | Method overview: (A) flow diagram depicting selection of counties and sampling scheme for images; 13 mortality bins created from 1,000 most populous

counties to capture diversity of mortality rates; (B) map of the United States colored by selection of training, testing and validation counties; (C) 4 sets of 1 × 1mile

grid of images (7 images by 7 images) were selected per each county, all images randomized and used to train deep learning model; visual depiction of deep learning:

filters slide across each image and pick up on key image features, pooling layers reduce spatial dimensions of image, and output layers of neural network output one

mortality rate prediction per image, ŷi ; histogram visualization to the right of the neural network represents the set of mortality rate predictions {ŷi | i ∈ {1, 2, . . . ,

195, 196}} corresponding to 196 images per county (49 images per school * 4 schools per county), which are averaged across using a trimmed mean to yield final

mortality rates ( ˆycounty =
∑

ŷi
N

); (D) SHAP is applied to neural network model and image to generate a heatmap of important image features across each image (red,

positively associated with mortality; blue, negatively associated with mortality); these visualizations are compared to important covariates from linear model for each

test county (visualized as force plot placed above the heatmap images; where presence of colors red/blue indicates positive/negative associations with mortality).

Data Collection
Extraction of County-Level Covariates
We used publicly available county-level mortality data. We
used the CDC Wonder database to collect all available death
data from 2015 for residents of the 50 United States and
the District of Columbia, and matched death data with 2015
county Census population data from the Bureau of Economic
Analysis, USDA ERS databases (25–27), and the Surveillance,
Epidemiology, and Ends Results (SEER) Program (28). Crude
mortality rates were calculated as the number of deaths in the
county divided by the population in the county. Additional
county level covariate information from 2015 was collected on
age, sex, Hispanic status, race, income, education, and region
(Supplementary Table 1).

Selection Criteria for Training, Validation, and Test

Sets
We selected 430 counties from among 3,142 total United States
counties in 2015 for inclusion in our study. This subset
of representative counties was selected to decrease the
computational burden and data storage resources. To reduce
the variance of the mortality estimate and to limit potential bias
from locale (e.g., rural, urban), we selected the top 1,000 most
populous counties (restricting to more urban environments)
and split these counties into 13 bins containing similar numbers
of counties rank ordered by mortality. We selected up to 40
of the most populous counties in each bin. These selection
criteria were developed to capture a greater proportion of
total deaths and represent wider variation in mortality rates,
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FIGURE 2 | Deep learning workflow: (A) ResNet50 model is first pre-trained on ImageNet images for the task of distinguishing 1,000 different everyday objects (e.g.,

farm, beach, firemen, whale); ResNet50 is comprised of multiple convolution and pooling layers (only one set shown for simplicity), which extract features and reduce

the spatial dimensions of the image, respectively, and fully connected layers which represents objects at multiple levels of abstraction using vectors; prediction is

compared to ground truth to estimate loss L; the gradient is backpropagated to update the model parameters; (B) transfer learning, where parameters from

pretrained model (red dashed box) serve as the initial parameters for training the country-level mortality prediction model; output layer has been replaced with a layer

to predict mortality; (C) training images pass through ResNet50 to predict county-level mortality, compared to true mortality to update model parameters; (D) during

training, ResNet50 model predicts mortality from images from validation counties to estimate validation loss, which is compared to training loss over training epochs to

determine when training should stop to avoid overfitting; (E) trained ResNet50 model predicts county-level mortality on 196 individual images (one mortality rate

prediction per image) from each test county; (F) for each test county, 196 image-level mortality rate predictions are averaged using a trimmed mean to infer the overall

county-level mortality rate; the overall county-level mortality rate is correlated to true county-level mortality rate; (G) image features from images of the test counties are

extracted from ResNet50 fully connected layers in the form of feature vectors, which are used to generate UMAP plots to demonstrate how mortality and other

corresponding covariates (extracted from the demographic data) separate/cluster based on the image features; Spectral Clustering is used to assign image features

to blue and red clusters, representing low and high mortality related images, respectively.

ultimately resulting in the selection of the aforementioned
430 counties (Supplementary Table 2; in-depth description in
Supplementary Figure 1). Of the selected counties, 279 counties
were randomly placed into the training set (65%), 65 in the
validation set (15%), and 86 in the test set (20%). The training
set was used to update the parameters of the trained model while
the validation set was used to limit the model from overfitting
to the training data (Figures 1A,B, 2A–D). The held-out test set
represents an application of the modeling approach to unseen
counties that had no role in the training of the model.

Acquisition of Imaging Data
Satellite imagery data was collected using the Google Static
Maps application programming interface (API) to build our deep
learning pipeline, similar to Maharana and Nsoesie (15). First,
four schools from each county were randomly selected to serve
as points of interest (POI) to sample nearby images. We used
schools because they are typically placed in densely populated
regions of the county (potentially serving as a representative
proxy for residential neighborhoods of each county) and to

reduce the computing space usage and required resources at our
local computing cluster. We acknowledge that the selection of
schools as a POI presents a limited view of the entire county.
We obtained geographic coordinates for the schools in our study
from the National Center for Education Statistics (29), and
divided the 1 square mile area surrounding each school into an
evenly spaced 7 images by 7 images grid (extracting 196 total
images per county) (Figure 1C). The zoom level for each image
was set to 17, and image dimensions were set to 400 pixels by
400 pixels to provide enough detail to make out street patterns
and cover the space between the selected images of the grid.
Eighty-four thousand two hundred eighty satellite images were
downloaded using the Google Static Maps API. Images were
downloaded between July and September 2019, representing a
collection of images acquired April 2018 to December 2018.

This study was exempt from institutional review board
approval as we accessed previously collected data and could not
identify individuals. Our study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
guidelines for cross-sectional studies where appropriate (30).
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Predictive Modeling
Deep Learning Model Training
Deep neural networks have been used in a wide range of health-
related applications (31, 32). Convolutional Neural Networks
(CNN) slide filters across images to pick up on low level features
such as edges or curves and then expand the visual field to
pick up higher-order constructs [(33); Figure 1C]. The particular
variant of CNN that was used to predict mortality on the satellite
images was ResNet-50 (34), pretrained on the ImageNet database
to recognize over 1,000 different objects (35), some of which
may have features corresponding with our satellite image set
(Figures 2A,B). We performed transfer learning, which applies
knowledge gained from ImageNet to initialize the parameters of
our model. These model parameters were updated to minimize
the divergence between the true and predicted mortality rates
using the negative Poisson log likelihood; training the model
with this objective (models the outcome as a rate) allowed
us to use each image to directly predict the mortality of its
respective county. Training images were randomly cropped,
rotated, resized, and flipped to improve the generalizability of
the approach (Figure 2C). Predicted mortality rates from the
individual images were averaged across the images for each
county using a trimmed mean to comprise the final county-
level prediction. A validation set of images from the validation
counties were used to select optimal hyperparameters (e.g.,
learning rate, weight decay, early stopping criterion) to avoid
memorization of the training data (Figure 2D). After a coarse
hyperparameter search, the validation set was used to terminate
the learning process at 5 training iterations and identify the ideal
learning rate for the model, 1e-4. After training our model on
images from 279 counties, we evaluated the model on images
from the remaining test counties and averaged the predicted
image-level mortality rates across each county using a trimmed
mean to derive county mortality estimates (Figures 2E,F). The
deep learning models developed using Python 3.6, utilized the
PyTorch 1.3.0 framework and were trained using K80 Graphics
Processing Units (GPUs).

Linear Regression on County-Level Covariates
A linear regression model to predict mortality using county
level demographic characteristics was fit to data from both the
training and validation sets, weighted by county population size
(to reduce the variance of the parameter estimates), and evaluated
on the test set as a comparison method versus the satellite image
approach (Supplementary Figure 2B). We note that the goal of
this study was to provide a benchmark for how well the CNN
could predictmortality and to use covariates to help contextualize
what the deep learning model is “seeing.”

Hybrid Image-Covariate Deep Learning Approach
We also combined demographic information with satellite
imagery data to test whether adjustment for covariates
can improve prediction of mortality from satellite images
(Supplementary Figure 2C, see Supplementary Materials

section “Covariate Adjustment During Deep Learning Model
Training and Evaluation”).

Data Scaling Sensitivity Tests
A sensitivity analysis was utilized to decide the ideal number
of schools and sampling area around the schools for the deep
learning model (Supplementary Figures 2E,F). Preliminary tests
from our modeling approach indicated that mortality prediction
performance increases with the number of schools and area
around the school sampled. However, performance saturates
as the number of images in each county approaches 196,
thereby warranting selection of images contained within a one-
mile square area around schools to maximize the potential
utility of assessing residential neighborhoods around schools
as a POI and limit the amount of noise created beyond
surveying neighborhoods in the immediate vicinity of schools.
See Supplementary Materials, section “Effects of Sampling
Larger Residential Areas Around Schools and Dataset Size
on Predictions.”

Model Interpretation
Image Interpretations With SHAP
Shapley additive feature explanations (SHAP) (36) is an analytical
technique that explains complex models using a simpler
surrogate model for each testing instance. We applied SHAP to
the images of the test counties to form pixel-wise associations
with increases or reductions in mortality; hotspots in these
images denote important mortality-associated objects that the
model has learned (Figure 1D). We also convolved learned
CNN image filters over select images to further demonstrate
which features of the built environment were utilized by deep
learning model.

Important County-Level Covariates With SHAP and

Standardized Regression Coefficients
SHAPwas applied to identify county-specific important covariate
predictors (Figure 1D) from the linear model, similar to how
the SHAP image approach could identify important image-
specific predictors. Overall effect estimates were reported using
unstandardized regression coefficients. Standardized regression
coefficients from the linear regression model served to explain
the overall top mortality predictors.

Unsupervised Dimensionality Reduction to Identify

Correspondent Demographic and Image Predictors
Correspondence between the covariate mortality predictors for
each county and the image information was assessed through
embedding of deep learning image features. Neural networks
compress high-dimensional image data into lower dimensional
representations in the process of making a prediction (Figure 2G
and Supplementary Figure 2D). The output of an intermediate
layer of the network was extracted from each image to
form embeddings—reduced dimensional representations of the
data in the form of vectors. These embeddings (represented
by 1,000-dimensional vectors) could demonstrate how overall
features of the images cluster and correspond with mortality or
other demographics. We applied UMAP (37), an unsupervised
dimensionality reduction technique, to visualize extract image
features and identify clustering by images using scatterplots
(one image is a point in the scatterplot). We overlaid the
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actual images themselves for each of the points, then true
mortality and other covariates such as education and aging to
visually demonstrate separation/clustering of important image-
associated demographic and mortality characteristics as learned
by the deep learning model. To examine specific associations
between the pertinent image features (i.e., embeddings), we
clustered image features using the Spectral Clustering approach
(38) and found 10 clusters of images. We averaged the covariate
information associated with each of the images across each
grouping to yield characteristic covariate descriptors for each
cluster. Weighted pairwise t-tests on mean differences between
select covariates between all pairs of clusters demonstrated
associations between extracted image features with covariate
mortality predictors. As a direct means for assessing the
relationship between deep learning predicted mortality and the
covariates, we also regressed the image predicted mortality
against each of these covariates.

RESULTS

The training, validation, and test counties included 1,721,052
deaths per 217,938,597 individuals in the 2015U.S. population,
a crude mortality rate of 7.90 deaths per 1,000U.S. residents
(Supplementary Table 1).

Predictive Modeling Results
Our deep learningmodel was able to accurately predict mortality,
with a Pearson correlation coefficient of 0.72 (R2 = 51%)
between the predicted and true mortality (Figures 3A,C,D)
on a held-out test set. The linear regression model using
county demographics also accurately predicted mortality;
the R2 was 90% (0.95 correlation) between covariates and
the mortality rate (Figure 3B). Our covariate adjusted deep
learning model appeared to improve mortality predictive
performance (Test Set Pearson r = 0.83, P < 0.001; Validation
Set Pearson r = 0.87, P < 0.001) but was unable to
surpass the performance achieved using only the demographic
characteristics (Supplementary Materials, section “Covariate
Adjustment During Deep Learning Model Training and
Evaluation”) Sensitivity analyses over the included number
of schools and area around schools indicated that mortality
predictive performance tends to increase with the number
of schools and area sampled around each school. However,
predictive performance appeared to level-off after selection of 75
images per county (3 schools per county; 25 images per school;
each image occupies 1

49 square mile) (Supplementary Materials,
section “Effects of Sampling Larger Residential Areas Around
Schools and Dataset Size on Predictions”).

Model Interpretation Results
Using SHAP to identify relevant features in satellite images
across these test counties, we noticed that the model was able
to associate common features associated with the socioeconomic
status of that community to reductions in mortality. Generally,
we were able to spot instances in which sidewalks, driveways,
curved roads, hiking trails, baseball fields, and light-colored roofs
were associated with reductions in mortality (Figures 1D, 4).
Conversely, we noticed instances where centerlines of large roads

and shadows of buildings and trees were positively associated
with mortality. To corroborate the evidence found using SHAP,
we plotted small images representing patterns that the first
convolutional layer had learned and then convolved each of these
patterns with three select images (Supplementary Figures 3–6).
Across three images fromCalifornia, Virginia, andGeorgia, filters
such as 12, 29, and 43 focused on bright cues and were able
to highlight driveways, sidewalks, walkways, and baseball fields,
while filters 13 and 46 were able to pick up on contours and
nuanced shape-based patterns.

From the county-level covariate linear model, we observed
a reduction in 13 deaths per 100,000 individuals for an
1% increase in the proportion of those who attend college
(regression coefficient β = −12.6 ± 0.8), and increase of
214 deaths per 100,000 individuals for 5-year increases in
average population age (β = 2.1 ± 0.1); these were the most
important predictors of county mortality (Figures 5A–C and
Supplementary Tables 3–6). Increased Hispanic (β = −6.6 ±

0.5), female (β = 42.5 ± 6.4), or Asian race proportions
(β = −7.8 ± 1.0), and living in the western United States
(β = −1.1 ± 0.3) as compared to the other regions, were
found to be protective county-level factors against mortality
(Figures 3A,B and Supplementary Tables 2–4). County-level
covariate mortality predictors are ranked in order of decreasing
importance in Figures 5A,B and Supplementary Tables 3–6.

We identified demographic and mortality-related sources
of significant variation between the 10 image feature clusters
(Figures 5C–E, 6A) established using UMAP and Spectral
Clustering (Figure 6B and Supplementary Table 7). Images in
cluster 7 were associated with the highest mortality rate of all of
the clusters (mortality rate of 11 deaths per 1,000 individuals) and
generally included counties from the southeastern United States
(Supplementary Figure 7). Income and educational status were
lower on average compared to the other clusters. We contrast
cluster 7 with cluster 2, a small cluster with the third
lowest mortality rates (6.6 deaths per 1,000 individuals) of
the 10 clusters (Figure 6 and Supplementary Figures 8–11 and
Supplementary Table 7) and identified variation within cluster
5; we include a brief discussion in the Supplementary Materials.
Many of the covariate mortality predictors across the test
set demonstrated strong associations with the deep learning
predicted county-level mortality rates (Supplementary Table 8).

DISCUSSION

Here, we demonstrated the feasibility of using deep learning
and satellite imagery to predict county mortality across the
United States, extending methods and approaches from prior
deep learning studies that linked the built environment and
health-related factors. Furthermore, we established clusters
of images that represented various demographic groups
and interrogate these learned patterns to find additional
corroborating evidence.

While the covariate model significantly outperformed our
deep learning model and identified important predictors that
corroborated with prior literature, the deep learning approach
identified meaningful built features of the environment,
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FIGURE 3 | Model results: (A) deep learning predicted vs. true mortality for each test county; (B) linear model predicted vs. true mortality for each test county;

(A,B) legend contains look-up dictionary for naming of US regions featured in the rest of the study; size of bubble is correspondent to population size of county;

(C) predicted mortality plotted geographically for test counties; (D) true mortality plotted geographically for test counties.

representing a benchmark for performance from which to
compare future applications (39, 40).

We only sampled neighborhood characteristics found around
schools. For instance, there is likely a greater number of sports
fields and playgrounds surrounding schools than in random
locations in the county. Inmany of the neighborhoods, regardless
of mortality rates, there is likely more green space surrounding
schools. While prior literature suggests green space is associated
with positive health factors (41), the fact that this green space
is nearly ubiquitous in neighborhoods near these schools may
cause our model to down-weight these urban design factors.
It also appeared that predictive performance increased by
sampling the surrounding neighborhood around each school,
suggesting that the surrounding neighborhood contains more
important information associated with mortality than utilizing
the schools alone.

The evidence of what our deep learning model found to
be indicative of mortality can be corroborated with existing
literature on associations of these image features with higher
socioeconomic status, decreased obesity, and greater designs in
urban planning (41–43). For instance, we found that sidewalks,

driveways, curvy roads, hiking trails and baseball fields, amongst
other factors, were related to lower mortality; these factors were
also uncovered from inspection of learned convolutional filters
(Supplementary Figures 3–6).

The assigned importance given to image features such as
baseball fields does not imply that these components are
necessary for urban design but does further elucidate a suite
of modifiable community factors to design interventions. For
instance, accessibility to trails, while indicative of a county with
high socioeconomic status (44, 45), provides a convenient means
to exercise but can also provide access to other portions of a
community, allowing more social mobility and access to health
care (46, 47).

Despite our strong findings, there were some limitations to
our study. The design of this study was ecological with sampling
at one time point for both images and mortality (cross-sectional).
This precluded our ability to show temporality and that the
built environment was causally associated with mortality. The
images also were taken in 2018 while we assessed mortality in
2015. While we do not expect areas surrounding schools to
change substantially, we cannot confirm the extent of land-use
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FIGURE 4 | SHAP image interpretations: (A,B) Shapley features extracted from both covariate and image models for select images from counties in Illinois and

Nebraska (FIPS codes IL201 and NE55, respectively); blue coloring indicates features associated with reductions in mortality, red indicates association with increased

mortality; additional image interpretations can be found in Figure 1D.

alterations between 2015 and 2018. We also acknowledge the
shortfalls associated with utilizing counties as the primary spatial
unit of analysis in this study. While county-level demographic
and mortality information are more widely and freely available,
mortality rates and demographic factors can vary widely within
counties; thus, counties may not always represent the best unit of
analysis for capturing the complete heterogeneity in population
demographics and mortality rates. In future work, longitudinal
image monitoring could be used to forecast increases in mortality
rate and help determine optimal intervention strategies that
complement county/state planning and development efforts. We
assessed county mortality rates using a small percentage of
schools from the county, making generalizations to counties
included in the study and counties not in our dataset. We

were able to predict crude mortality rates accurately within a
subsample of these counties. However, our primary modeling
approach could not delineate how much the corresponding
model-identifiable neighborhood features were intermediates
reflective of mortality associated demographics or were directly
associated with mortality. Additionally, the deep learning model
that combined county-level demographic and satellite imagery
data did not surpass the performance of the demographic-
only model. We incorporated county-level demographic data
into images that have varying degrees of importance for the
prediction of mortality; we suspect that adjusting and including
the images that are less predictive of mortality may partially
explain the performance of the demographic plus satellite
image model.
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FIGURE 5 | SHAP summary of covariate predictors and image embeddings. (A) SHAP summary plot for covariate model evaluated on test set, covariates ranked by

feature importance; (B) SHAP rankings of overall importance of covariates; (C–E) 2-D UMAP plot of image features derived from images using deep learning model:

(C) actual images overlaying 2-D coordinates; (D) colored by true county mortality; (E) colored by average college attendance; we note here that our model has been

explicitly trained to associate image features with mortality; the separability of college attendance over the image features is an artifact of the association between

education status and mortality.

Higher correspondence between predicted and true mortality
may be achieved by increasing the number of schools selected but
tapers off with a larger sampling area, which is also suggestive
that satellite images beyond a certain distance from a school
are not as predictive of mortality. In addition, we may be
able to identify more ubiquitous points of interest other than
schools from which to sample. While schools were selected as
a proxy for residential neighborhoods (prior research on impact
of surrounding neighborhood of schools on health disparities),
inclusion and exclusion of other points of interest (e.g., proximity
to fast-food establishments) may result in more accurate models,
which can potentially allow for in-depth hypotheses testing of
the impact of urban planning on mortality and health disparities.
Another opportunity is to integrate neighborhood land use
information (e.g., residential/commercial) into the selection
of images and adjustments during the modeling approach,

though such approaches require accurate up-to-date mapping
information (48–55).

While we acknowledge prior literature documenting the
potential for shadow effects to confound aerial imagery analysis,
we also note that our model was able to pick up on key factors
associated with mortality by utilizing learned filters with shape,
color, and intensity [(56, 57); Supplementary Figures 1–4].
Possible removal or augmentation of these shadows may cause
the model to focus on other important characteristics pertinent
to higher mortality prediction (56–58). Finally, although we
sampled counties randomly, our sampling scheme preferred
populous counties, and had assumed that these counties would
solely contain suburban and residential land-use patterns.
However, even populous counties contained rural areas that may
have obfuscated our ability to sample ubiquitous land-use regions
for the mortality prediction potentially biasing the results. Recent
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FIGURE 6 | Key covariate characteristics of found image clusters. (A) 2-D UMAP plots colored by cluster as estimated through Spectral Clustering; (B) averaged

covariate statistics for each image cluster; average population and income estimates rounded to thousands place; statistics average county-level covariates, weighted

by constituent images, covariates include: (1) average predicted mortality for the cluster, (2) average true mortality assigned to the cluster, (3) proportion female/male,

(4) proportion Hispanic, (5) proportion white, black, or Asian, (6) average population, (7) proportion attend college, (8) average household income, (9) average age of

population (in increments of 5-years per description in the Supplementary Materials; e.g., 7.9*5 years = 39.5 years old), (10) Absolute Residual between true and

predicted mortality, (11) number of images for cluster/size of cluster.

deep learning works have focused on grasping health factors such
as access to care in the rural setting (59) and could be employed
in the context of mortality in the future.

The deep learning approaches used were able to achieve
remarkable performance given technical challenges associated
with sampling images over large geographic regions. Nor
were covariate measures or temporality incorporated into the
model. Different sampling techniques (60), feature aggregation
measures, evaluating, or producing higher resolution images
(61), direct estimation of neighborhood demographic factors,
and segmentation of various land-use objects can potentially
provide more accurate and interpretable models for studying
health and disease (24, 62, 63). The images may have also
been sampled during various points throughout the year, thus
results may have been affected by seasonality, however, it is likely
that the images had been collected randomly with respect to
seasonality and the fact that the model was able to distinguish
mortality rates further attests of the ability to learn features
less tied to seasonality. Future applications could include deep
learning methodologies that are able to account for effects
of seasonality (64, 65). Transfer learning from other GIS-
corroborated data may also improve the model’s performance.
Regardless, our approach is scalable and uses open access data
enabling further exploration.

While the county-level covariate prediction model obtained
higher accuracy vs. the deep learning model, a major limitation
of the county-covariate approach pertains to evolving guidelines
on the reporting of sex and race in public health research

studies. County-level demographic characteristics were extracted
from the Surveillance, Epidemiology, and Ends Results (SEER)
Program, yet numerous publications have critiqued this
reporting system for failing to incorporate sexual and gender
minorities (e.g., gradations of sex identification, non-binary
sex, LGBTQ+) and racial minority groups (e.g., description of
individuals based on regional descent). Some of the criticisms
of such reporting standards are that they enforce socially
defined racial, ethnic, and gender divisions/constructs which
further separates such groups (potentially contributing to
health disparities they seek to study and reduce), disregards self-
reported identification that transcends social structure imbued by
support of such classifications, and reduces the potential to study
additional meaningful health disparities between these minority
groups (e.g., delineating health outcomes for individuals of
Southeast Asian descent versus that of Asian Americans as a
whole). These issues have made it difficult to study and document
health outcomes for these minority groups. Conversely, some
have pointed out that these reporting standards have still proven
useful for studying health disparities (e.g., allostatic load and
stress amongst minority groups and effect of segregation on
health care access) in order to devise policies to alleviate these
differences and that further subclassification may make it more
difficult to assess meaningful differences. In response, standards
have shifted toward asking multiple questions in demographic
surveys which provide further clarification on self-identity
and country of origin in addition to these coarse measures of
sex and race. Conversations around the inclusion of sex and
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race in medical research studies are especially pertinent given
persistent violence against minority groups that have more
recently prompted a national conversation on such issues. In
accordance with 2021 reporting standards on race and sex, we
acknowledge the limitations of our findings with respect to these
issues (using broad racial groups and binary sex identification),
as such limitations reflect 2015 survey standards. While it is
outside of the study scope to modify the analysis in response to
data limitations, we have included a number of citations for the
reader to explore facets of this important issue as part of a larger
conversation on the role of sex and race in public health research
studies (66–84).

Despite the study limitations, this approach to assess mortality
using CNNs has much external applicability and room for
improvement. Offshoots of this approach may further explore
how the built environment affects mortality in more precise
estimates, such as cities, or explore rural areas exclusively
(59). Additionally, our approach demonstrates that built image
features of the environment are correlated with demographic
characteristics. Future mortality research that lacks the ability
to attain particular covariate information due to feasibility or
expense costs, could thus infer mortality using images alone
or in combination with some known covariates. Applications
beyond assessing mortality as an outcome could benefit from this
approach and could use other landmarks as a sampling strategy
for prediction instead of schools. Sampling from landmarks such
as schools reduces the stochastic selection of images from large
areas and potentially obviate the need to select and download
huge swaths of images. However, if the researcher is able to
overcome the resources required to download all of the images
from within each county, future methodological advances should
consider methods to assign importance scores to each satellite
image or weight each county by their perceived macro-level
importance for improved mortality prediction. Combining such
methods with demographic information and contextualizing
satellite images by neighboring images may yield models that
ignore these demographic community factors. Ultimately, these
tools could then be used by epidemiologists and policy makers
to identify clusters of exposures or diseases such as cancer,
arsenic exposure, or infectious diseases for more targeted
interventions (24).

CONCLUSION

We found that mortality could be predicted from satellite
imagery. Future use of deep learning and satellite imagery

may assist in forming targeted public health interventions and
policy changes.
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