
Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB 
Signaling in Synaptic Efficacy of CA3-CA1 Synapses

Pei-Yi Lin1, Ege T. Kavalali1, Lisa M. Monteggia1,2,*

1Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 
75390-9111, USA

2Lead Contact

SUMMARY

Brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor 

kinase B (TrkB), regulate long-term potentiation (LTP) in the hippocampus, although the sites of 

BDNF-TrkB receptors in this process are controversial. We used a viral-mediated approach to 

delete BDNF or TrkB specifically in CA1 and CA3 regions of the Schaffer collateral pathway. 

Deletion of BDNF in CA3 or CA1 revealed that presynaptic BDNF is involved in LTP induction, 

while postsynaptic BDNF contributes to LTP maintenance. Similarly, loss of presynaptic or 

postsynaptic TrkB receptors leads to distinct LTP deficits, with presynaptic TrkB required to 

maintain LTP, while postsynaptic TrkB is essential for LTP formation. In addition, loss of TrkB in 

CA3 significantly diminishes release probability, uncovering a role for presynaptic TrkB receptors 

in basal neurotransmission. Taken together, this direct comparison of presynaptic and postsynaptic 

BDNF-TrkB reveals insight into BDNF release and TrkB activation sites in hippocampal LTP.

In Brief

Lin et al. directly compare a role for presynaptic and postsynaptic BDNF and TrkB receptors in 

hippocampal LTP. They find that LTP induction is mediated by anterograde BDNF-TrkB 

signaling, while both anterograde and retrograde BDNFTrkB signaling persists presynaptically 

and postsynaptically for LTP maintenance.
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INTRODUCTION

Brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin 

receptor kinase B (TrkB), regulate certain forms of synaptic plasticity including long-term 

potentiation (LTP) and effect synaptic transmission (Hohn et al., 1990; Park and Poo, 2013; 

Thoenen, 1995). The induction of LTP refers to the transient events serving to trigger the 

formation of LTP. The maintenance of LTP refers to the persisting biochemical signal that 

lasts in the cell (Sweatt, 1999). Early studies have shown that homozygous and heterozygous 

BDNF knockout mice exhibit significant deficits in LTP at CA1 hippocampal synapses 

(Korte et al., 1995; Patterson et al., 1996), which could be rescued with exogenous BDNF 

(Patterson et al., 1996) or viral expression of BDNF (Korte et al., 1996). These lines of 

evidence suggest that the LTP deficits are not due to developmental defects but rather point 

to a functional role of BDNF in hippocampal LTP (Korte et al., 1996). To specifically dissect 

a role of BDNF in LTP of adult brain, we previously generated an inducible BDNF knockout 

mouse line in which BDNF is selectively deleted in adult forebrain and found significant 

impairments in hippocampal LTP as well as learning and memory deficits (Monteggia et al., 

2004). While loss of BDNF in hippocampus impairs hippocampal LTP, the effects on basal 

synaptic transmission have not been as consistent (Korte et al., 1995; Patterson et al., 1996). 

Homozygous BDNF-null mice have been reported to have impaired induction of high-

frequency transmission coupled with a significant reduction in the number of docked 

vesicles at active zones in the CA1 region (Pozzo-Miller et al., 1999). Previous studies have 

also shown that loss of TrkB function in hippocampus impacts LTP. For example, blocking 

TrkB activation with TrkB antiserum (TrkB-Ab) has been shown to attenuate LTP in the 

hippocampus (Kang et al., 1997). Characterization of conditional TrkB knockout mice, in 

which the gene was deleted during postnatal development in forebrain, revealed deficits in 

hippocampal LTP (Minichiello et al., 1999). While these data established critical roles of 

BDNF-TrkB in hippocampal LTP, the origin of BDNF release and the site of TrkB activation 

for hippocampal LTP have been controversial.

BDNF and TrkB are expressed in presynaptic CA3 and postsynaptic CA1 neurons (Baj et 

al., 2012; Minichiello, 2009). Previous work using mutant mice that lack BDNF in CA3-

CA1, or selectively in CA1, revealed that high-frequency stimulation (HFS)- and theta burst 

stimulation (TBS)-induced LTP require presynaptic BDNF release from CA3 (Zakharenko 

et al., 2003). However, similar LTP induction protocols failed to evoke LTP in a BDNF 

mutant mouse in which dendritic BDNF was absent from CA1 dendritic localization (An et 

al., 2008). BDNF can enhance basal synaptic strength through TrkB activation potentially 

via presynaptic and postsynaptic mechanisms, although there have been conflicting data on 

how this occurs (Kang and Schuman, 1995a; Levine et al., 1995; Magby et al., 2006; 
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Minichiello, 2009; Park and Poo, 2013). In regard to TrkB, concurrent blockade of 

presynaptic and postsynaptic of TrkB-mediated PLCγ signaling produces a similar 

impairment in LTP (Gärtner et al., 2006), as exhibited by conditional TrkB knockout mice 

(Minichiello et al., 1999). Nevertheless, blockade of either presynaptic or postsynaptic 

TrkB-mediated PLCg signaling alone did not interfere with LTP (Gärtner et al., 2006).

While there is evidence for both presynaptic and postsynaptic release for BDNF (Dieni et 

al., 2012; Matsuda et al., 2009) coupled with a concurrent presynaptic and postsynaptic role 

for TrkB (Alder et al., 2005; Chen et al., 1999) in LTP, there has not been a direct 

comparison examining the selective loss of BDNF in the CA3 or CA1 region with mice 

lacking TrkB in either presynaptic or postsynaptic neurons. In this study, we use a viral-

mediated approach to genetically delete BDNF or TrkB selectively in either the CA3 or CA1 

and examine its impact on synaptic plasticity and basal neurotransmission. This approach 

allows for the identification of the origin of BDNF release and its site of TrkB action in 

hippocampal LTP.

RESULTS

Localized Region-Specific Deletion of BDNF and TrkB in Subregions of Hippocampus

To examine the site of BDNF release in the hippocampus during LTP and basal synaptic 

transmission, and to identify the role of presynaptic and postsynaptic TrkB receptors during 

these processes, we performed stereotaxic injection of adeno-associated virus (AAV) 

expressing Cre recombinase tagged to GFP (AAV-GFP-Cre) bilaterally into either the CA3 

(presynaptic neurons) or the Placements of the stereotaxic injections were verified in each 

mouse at the completion of experiments by checking GFP expression in hippocampal slices 

(Figures 1A–1C and S1), and BDNF or TrkB protein expression in CA3 or CA1 via western 

blotting. Only mice with targeted CA3 or CA1 placements were included in the analysis. 

Western blot analysis showed that BDNF protein expression was significantly reduced to 

30.1% ± 4.7% or 26.5% ± 4.9% in Bdnffl/fl mice injected with AAV-GFP-Cre in the CA3 or 

CA1, compared to that of their respective AAV-GFP-injected controls (Figure 1D). The 

Ntrk2fl/fl mice injected with AAVGFP-Cre displayed a significant reduction to 22.2% ± 

7.0% or 18.3% ± 5.5% in TrkB protein expression in the CA3 or CA1 region as compared to 

that of the respective AAV-GFP-injected mice (Figure 1E). CA1 (postsynaptic neurons) of 

the Schaffer collateral pathway in the dorsal hippocampus of 12-week-old Bdnffl/fl mice 

(Rios et al., 2001) or Ntrk2fl/fl mice (Luikart et al., 2005) (Figures 1A–1C). Littermate 

Bdnffl/fl or Ntrk2fl/fl mice injected with AAV-GFP bilaterally into either the CA3 or CA1 

regions served as controls. Animals were utilized 3 weeks after surgery for 

electrophysiology and behavioral experiments, a time point in which Cre-mediated 

recombination occurs in brain (Adachietal.,2017;Bertonetal.,2006).Using this method, we 

specifically deleted BDNF or TrkB bilaterally in either the CA3 or CA1 subregion of adult 

hippocampus to precisely target the endogenous gene and avoid the potential confound of 

developmental defects.
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Impact of Localized Deletion of BDNF or TrkB on LTP

To assess LTP and basal synaptic transmission, the CA3-CA1 Schaffer collateral afferents 

were stimulated and field excitatory postsynaptic potentials (fEPSPs) were recorded from 

hippocampal sliced of the CA1 region in mice 3 weeks after stereotaxic surgery (Figure 2A). 

In mice with deletion of BDNF in the CA3 region, HFS induced a stable induction of LTP in 

hippocampal slices with a significant decrease in the magnitude of LTP compared to GFP-

injected control slices (Figure 2B). In contrast, selective BDNF deletion in the CA1 region 

resulted in post-stimulus potentiation indistinguishable from that of GFP-injected mice; 

however, it was not maintained following the induction phase (Figure 2C). There were no 

differences in fEPSPs slopes induced by each pulse during HFS from mice with BDNF 

deletion in either the CA3 or CA1 region compared to GFP-injected mice, demonstrating 

that the deficits in LTP were not associated with altered glutamatergic neurotransmission 

(Figure S2). Taken together, these data suggest presynaptic (CA3) BDNF contributes to the 

induction of LTP while postsynaptic (CA1) BDNF is required for the maintenance of LTP at 

CA3-CA1 synapses.

To examine the function of presynaptic or postsynaptic TrkB receptors in hippocampal LTP, 

we performed similar electrophysiological analysis in hippocampal slices from stereotaxic 

injected mice in which the CA3-CA1 afferents were stimulated and fEPSPs recorded from 

the CA1 region (Figure 3A). Mice with selective deletion of TrkB in the CA3 region 

displayed an initial induction of LTP but a failure to maintain it compared to GFP-injected 

mice (Figure 3B). In contrast, selective deletion of TrkB in the CA1 region resulted in an 

attenuated induction and maintenance of LTP compared to GFP control-injected mice 

(Figure 3C). Similar to the BDNF findings, selective deletion of TrkB from either the CA3 

or CA1 subregion did not alter the slope of fEPSPs induced by each pulse during HFS of 

hippocampal slices compared to GFP-injected mice, suggesting that the LTP deficits were 

not due to alterations in baseline glutamatergic neurotransmission (Figure S3). Collectively, 

these data show that presynaptic (CA3) TrkB is required for LTP maintenance, while 

postsynaptic (CA1) TrkB signaling is essential to fully induce LTP.

Loss of Presynaptic TrkB Results in Decreased Neurotransmitter Release Probability

To assess basal neurotransmission, we applied paired-pulse stimulation to hippocampal 

slices from mice with a selective deletion of BDNF or TrkB in either the CA3 or CA1 region 

and plotted paired-pulse ratios (response to the second stimulus/ response to the first 

stimulus [P2/P1]) (Figure 4A). Synaptic responses to a pair of closely spaced stimuli can 

show facilitation or depression depending on the initial neurotransmitter release probability. 

We found mice with selective deletion of BDNF in either the CA3 or CA1 had 

indistinguishable paired-pulse ratios (PPRs) compared to the GFP-injected controls (Figure 

4B). Previous work reported that BDNF homozygous and heterozygous knockout mice 

display reductions in maximal fEPSP slope and paired-pulse facilitation (PPF), suggesting 

that loss of BDNF impairs basal neurotransmission (Patterson et al., 1996). To reconcile our 

current findings with the previous literature, we applied paired-pulse stimulation to 

hippocampal slices from an inducible Bdnf knockout mouse line in which BDNF is reduced 

~70% throughout the hippocampus and cortex (Monteggia et al., 2004). The inducible Bdnf 

knockout (KO) mice exhibited a significantly higher PPR than littermate controls (Figure 
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4C) suggestive of a decrease in release probability, which is in agreement with prior work 

with homozygous and heterozygous BDNF KO mice (Patterson et al., 1996). To examine 

whether the findings obtained with the inducible Bdnf KO mice were impacted by 

developmental compensation, we injected AAV-GFP-Cre in both the CA1 and CA3 regions 

of adult Bdnffl/fl mice and found enhanced PPR compared to GFP-injected mice, indicating 

a reduction of presynaptic release probability (Figures 4D and S4). Collectively, these data 

demonstrate that loss of BDNF in both presynaptic and postsynaptic neurons results in 

alteration in release probability while sparing BDNF expression in either presynaptic or 

postsynaptic neurons compensates for the regulation of basal neurotransmission.

We next applied paired-pulse stimulation to mice with a localized deletion of TrkB in the 

CA3 or CA1 of the hippocampus. The selective loss of TrkB in the CA3 region resulted in a 

significant enhancement in PPR, suggesting a decrease in presynaptic release probability 

(Figure 4E). In contrast, the loss of TrkB in the CA1 region did not alter the PPR compared 

to GFP-injected mice (Figure 4D). To explore a potential role for presynaptic TrkB receptors 

in neurotransmitter release, we perfused MK-801, a use-dependent blocker of NMDA (N-

methyl-D-aspartate) receptors, onto hippocampal slices and measured NMDA receptor-

mediated fEPSPs (Figure 4F). In this experimental paradigm, a lower release probability 

would be expected to lead to a slower block of NMDA receptor-mediated responses by 

MK-801 (Hessler et al., 1993). We found a selective loss of TrkB from the CA3 region 

resulted in a significant reduction in the rate of NMDA-fEPSP block by MK-801 (Figure 

4G). Collectively, data from the paired-pulse experiments and the MK-801 studies 

demonstrate that presynaptic TrkB receptors are required to maintain normal presynaptic 

release probability.

Deletion of Presynaptic TrkB Unveiled a Presynaptic Component of LTP

We next examined potential changes in neurotransmitter release before and after LTP by 

applying paired-pulse stimulation before and after LTP and analyzing the PPRs (Figure 5A). 

Changes in PPR suggest the involvement of presynaptic components in LTP (Schulz et al., 

1994). GFP-injected mice in either the CA3 or CA1 subregion showed no alterations in the 

PPRs before or after LTP, showing that this experimental protocol does not shift baseline 

synaptic transmission (Figures 5B and 5E). PPR was also not altered after LTP induction in 

CA3 or CA1 BDNF deletion hippocampal slices compared to the ratios before LTP (Figures 

5C and 5D). In contrast, after LTP, the selective deletion of TrkB in the CA3 region 

significantly reduced the PPRs (Figure 5F), which was elevated during basal conditions 

(Figure 4D). Thus, while our data show that loss of presynaptic TrkB leads to a decrease in 

baseline presynaptic release probability, the induction of LTP under the same conditions 

appears to augment release and partially rescue this phenotype. In mice with a selective 

deletion of TrkB in the CA1, there was no difference in PPRs before or after LTP, further 

corroborating the regional differences of presynaptic and postsynaptic TrkB in LTP (Figure 

5G).

Deletion of TrkB from CA3 or CA1 Results in Impaired Hippocampal-Dependent Memory

Our data to this point identified a rather surprising role of presynaptic TrkB receptors in 

synaptic transmission. Therefore, we examined whether the deletion of TrkB selectively in 
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CA3 impacts hippocampal-dependent learning and memory. We also tested mice with a 

selective deletion of TrkB in CA1, given the importance of postsynaptic TrkB in LTP 

induction. Mice were assessed in behavior 3 weeks following surgery. Locomotor activity 

was assessed as the total number of horizontal beam breaks during a 60-min testing period. 

There was no difference in ambulation across the 60-min testing period between the mice 

with CA3 or CA1 TrkB deletion and controls with GFP injection (inset, Figure 6A). We 

further analyzed the locomotor activity data in 5-min time intervals and found no significant 

difference in the number of beam breaks at any of the time points examined (Figure 6A). To 

assess hippocampal-dependent learning and memory, we tested mice in the fear conditioning 

paradigm and the novel object recognition task. In the fear conditioning paradigm, mice 

lacking TrkB in CA3 or CA1 displayed similar baseline freezing compared to GFP-injected 

mice (data not shown). Twenty-four hours after training, we examined context-dependent 

fear-conditioned response and found no significant difference in freezing behavior in mice 

with a selective loss of TrkB in CA3 or CA1 compared with GFP-injected mice (Figure 6B). 

Similarly, cue-dependent fear-conditioned responses assessed 4 hr later in a novel context 

with tone only was not altered across different groups (Figure 6B). The deletion of TrkB in 

CA3 or CA1 did not alter responses to footshock intensities compared to GFP-injected mice 

(data not shown). We also assessed mice in the novel object recognition task, a single-trial 

memory test that examines the ability to discriminate a novel object from a familiar object 

(Bevins and Besheer, 2006). There was no difference in the total amount of time spent with 

the objects during the familiarization period for all groups of mice (data not shown). The 

following day, one of the familiar objects was replaced with a novel object. Deletion of TrkB 

in CA3 or CA1 resulted in less preference (lower discrimination index) for the novel object 

relative to the familiar object compared to GFP-injected mice, suggesting a deficit in novel 

object recognition (Figures 6C and 6D).

DISCUSSION

In this study, we selectively deleted BDNF or TrkB from the CA3 or CA1 subregions of the 

hippocampus of adult mice to examine the role of presynaptic and postsynaptic BDNF or 

TrkB in synaptic plasticity. It is well established that BDNF-TrkB signaling regulates 

synaptic plasticity (Waterhouse and Xu, 2009); nevertheless, the site of BDNF release and 

the location of TrkB receptors in the process remain controversial. Stereotaxic injections of 

AAV expressing GFP-Cre recombinase into either the CA3 or CA1 resulted in a robust 

reduction of BDNF or TrkB protein expression specifically in these hippocampal subregions. 

The deletion of BDNF in CA3 or CA1 led to differing LTP deficits in hippocampal slices, 

suggesting that presynaptic and postsynaptic BDNF are both required, yet contribute 

separately in LTP. These data reveal that presynaptic BDNF is involved in the induction 

events regulating the strength of LTP while postsynaptic BDNF contributes to LTP 

maintenance. Moreover, the loss of presynaptic or postsynaptic TrkB receptors also leads to 

distinct deficits in LTP in which presynaptic TrkB is required to maintain LTP while 

postsynaptic TrkB is essential to fully induce LTP.

These results reveal a potential induction mechanism of LTP mediated by anterograde 

BDNF-TrkB signaling, and suggest that after induction, both anterograde and retrograde 

BDNF-TrkB signaling persist in presynapses and postsynapses for LTP maintenance. The 
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findings from this study also uncovered a presynaptic role for TrkB in basal 

neurotransmission. The loss of presynaptic TrkB significantly diminishes release probability 

under basal conditions similar to the phenotype observed in inducible BDNF KO 

hippocampal slices, suggesting that BDNF signaling augments basal neurotransmission 

through presynaptic TrkB receptors. Additionally, the deletion of presynaptic TrkB resulted 

in increased release probability following LTP, suggesting the potential involvement of a 

presynaptic TrkB component in LTP. To determine whether these changes impact 

hippocampal-dependent learning and memory, we tested mice in the novel object 

recognition test and found TrkB deletion in either CA3 or CA1 resulted in significant 

deficits. Taken together, these data provide further information on the role of presynaptic and 

postsynaptic effects of BDNF and TrkB in synaptic plasticity and basal neurotransmission.

Previous studies have established that BDNF-TrkB signaling plays a role in LTP and 

measures of synaptic plasticity. However, little is known about whether BDNF is secreted 

from presynaptic or postsynaptic terminals and how presynaptic or postsynaptic TrkB are 

individually involved in LTP formation. The disparity in the literature stems from differing 

patterns of synaptic activity used in individual studies and differences of in vivo or in vitro 
preparations without a direct comparison for the roles of BDNF and TrkB in this process. 

Our study was designed to directly compare the contributions of presynaptic and 

postsynaptic BDNF and TrkB in hippocampal LTP. The choice of a viral-mediated approach 

to delete BDNF or TrkB in adult animals and then examine LTP 3 weeks later was to avoid 

potential developmental confounds; however, this may not fully reflect the acute action of 

BDNF-TrkB.

We found that the absence of presynaptic or postsynaptic BDNF resulted in differing LTP 

deficits, demonstrating that the site of BDNF release confers specific function in HFS-

induced LTP formation. Our data are in agreement with a previous study that reported 

deletion of BDNF in the CA3 region, the presynaptic side, impaired the presynaptic 

component of LTP (Zakharenko et al., 2003). A potential role for BDNF in postsynaptic 

neurons has also been shown in a prior study that reported tetanic stimulation leading to 

postsynaptic depolarization in hippocampal cultures triggers BDNF release from 

postsynaptic terminals (Hartmann et al., 2001). Another study has shown induction and 

maintenance stages of LTP require BDNF-TrkB signaling (Pang et al., 2016), although this 

work did not address presynaptic or postsynaptic BDNF release or the role of presynaptic or 

postsynaptic TrkB receptors in the process. A separate paper reported a role for perisynaptic 

glia in the perirhinal cortex in recycling and release of BDNF to activate TrkB receptors in 

the maintenance phase of LTP (Vignoli et al., 2016). We examined the parallel comparison 

of presynaptic and postsynaptic BDNF-TrkB signaling in LTP in the Schaffer collateral 

pathway, in which circuitry organization and cell composition could be different from that in 

perirhinal cortex. Our findings regarding a role for postsynaptic BDNF in LTP maintenance 

is similar to data from a BDNF mutant mouse in which dendritic BDNF was absent and the 

impairments in LTP were found at the Schaffer collateral-CA1 synapses (An et al., 2008). 

Additionally, a recent study showed that postsynaptic TrkB activation during structural LTP 

depends on autocrine postsynaptic BDNF; however, additional mechanisms include other 

sources of BDNF such as presynaptic and paracrine secretions (Harward et al., 2016). In our 

study, deleting presynaptic BDNF reduces the strength of LTP (Figure 2B), and lack of 
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postsynaptic BDNF impacts the maintenance of LTP but preserves a similar level of post-

stimulation potentiation as in control slices (Figure 2C). These results suggest HFS-induced 

BDNF release from the presynaptic terminal produces post-stimulation potentiation and 

controls the initial strength of LTP while BDNF release from postsynaptic terminal induced 

by HFS acts to prolong LTP maintenance.

While there have been several studies examining the role of BDNF in LTP, there has been 

little focus on the role of TrkB in this process. Rather, many studies have extrapolated 

inferences on TrkB signaling from BDNF findings. However, BDNF is a secreted protein 

and its release site may be different from the site of TrkB receptor signaling. The current 

study allowed the individual involvement of presynaptic or postsynaptic TrkB in LTP 

induction to be assessed and provided direct evidence of distinct roles of TrkB receptors in 

the CA3 or CA1 region. We found that presynaptic (CA3) TrkB is required for LTP 

maintenance while postsynaptic (CA1) TrkB is essential for LTP formation. Prior work has 

shown that mice with a selective deletion of TrkB in the CA1 subregion show no alteration 

in postsynaptic depolarization induced LTP, suggesting that presynaptic BDNF-TrkB 

signaling in CA3 afferents or interneurons mediates LTP (Xu et al., 2000). However, BDNF 

facilitates spike-timing-dependent LTP (tLTP) (Lu et al., 2013) via binding to postsynaptic 

TrkB receptors (Edelmann et al., 2015), suggesting the involvement of postsynaptic TrkB in 

long-term synaptic changes. Moreover, previous studies suggested that a restricted time 

window is critical for BDNF-TrkB action on LTP maintenance. A prior study showed that 

endogenous BDNF release for 8–12 min after stimulation is required for LTP maintenance 

in perirhinal cortex (Aicardi et al., 2004). Another study reported that blockade of TrkB 

phosphorylation by NMPP1 from 1 to 40 min after stimulation prevented late LTP formation 

in the CA1 region (Lu et al., 2011). In our work, when deleting BDNF from the CA1 region, 

HFS-induced potentiation dropped rapidly in the first 10 min post-stimulation and no late 

LTP formed 60 min after HFS (Figure 2C); additionally, deletion of TrkB from CA1 region 

blocked LTP formation (Figure 3C), suggesting that postsynaptic BDNF-TrkB action with a 

restricted temporal expression is essential for long-term synaptic plasticity.

Changes in BDNF-TrkB signaling can lead to alterations in basal synaptic transmission. 

Prior work demonstrated that applying BDNF to neuronal cultures enhances synaptic 

strength through TrkB (Kang and Schuman, 1995a; Levine et al., 1995; Magby et al., 2006). 

Intriguingly, TrkB KO mice exhibit normal basal neurotransmission as assessed with PPRs 

(Minichiello et al., 1999). In our study, hippocampal slices from inducible BDNF KO mice, 

which have a broad forebrain deletion, and mice in which we selectively deleted BDNF from 

both CA1 and CA3 regions, showed a significant increase in the PPR, supporting previous 

studies that suggested BDNF regulates basal neurotransmission and synaptic efficacy (Kang 

and Schuman, 1995a; Patterson et al., 1996). However, selective deletion of presynaptic or 

postsynaptic BDNF did not alter the PPR or input-output curves (data not shown), indicating 

that BDNF secreted either presynaptically or postsynaptically triggers adaptations that 

maintain basal synaptic strength.

BDNF homozygous and heterozygous KO mice have reduced PPR as well as a decrease in 

the maximum fEPSP response slope (Patterson et al., 1996), suggesting that reduced BDNF 

expression alters basal neurotransmission. Interestingly, conditional TrkB KO mice exhibit 
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no alterations in PPR and fEPSP slope (Minichiello et al., 2002), suggesting there is a 

network regulation rather than an oversimplified dichotomy between BDNF and TrkB 

signaling. We found that the deletion of presynaptic TrkB resulted in increased PPR (Figure 

4D) and reduced the decay of NMDA activity as assessed by application of MK-801 

(Figures 4E and 4F). The implication that TrkB signaling mediates a presynaptic 

modification during plasticity (Kang and Schuman, 1995b) was corroborated by our results 

showing that presynaptic TrkB regulates presynaptic release probability. Our results 

unmasked a presynaptic component mediating LTP formation in slice when TrkB is deleted 

presynaptically; however, this potentiation gradually depressed over time, suggesting a 

regulatory pathway between presynaptic TrkB signaling and postsynaptic changes that 

sustain long-lasting LTP.

Conditional TrkB KO mice have been reported to exhibit impairments in hippocampal-

dependent long-term memory (Minichiello et al., 1999); however, the individual impact of 

presynaptic or postsynaptic TrkB deletion in learning and memory has not been previously 

explored. While deficits in LTP appeared in hippocampal slices for all TrkB gene 

manipulations, there were significant deficits in novel object recognition with no effect on 

fear memory. In our work, the regions of BDNF or TrkB deletion are restricted, implying 

that BDNF or TrkB expression in the hippocampus may be required to reach a minimum 

reduction threshold in CA1 or CA3 to achieve impairment in fear memory at the behavioral 

level. Alternatively, the coordinates used in our stereotaxic surgeries specifically targeted to 

dorsal CA1 or CA3 subregions of the hippocampus; therefore, it is possible that dorsal and 

ventral expressions of BDNF or TrkB may be redundant for fear memory performance. It is 

known that amygdala and hippocampus contribute differently in cue and contextual fear 

conditioning, in which amygdala is required for both cue and contextual fear conditioning, 

and hippocampus is involved in contextual fear conditioning (Phillips and LeDoux, 1992); 

furthermore, BDNF-TrkB signaling in amygdala is critical for fear conditioning (Penzo et 

al., 2015). In contrast, mice displayed significant deficits in novel object recognition, which 

is a more dorsal hippocampal-dependent memory (Goulart et al., 2010). During the novel 

object recognition test, animals distinguish a novel object from a familiar object, which 

indicates “recognition” of the previously explored object, as well as detection of differences 

between the objects. This recognition, by definition, requires intact memory of the 

previously explored object. Thus, this task is a useful tool for assessing the behavioral and 

neural processes mediating storage and/or subsequent recall of a long-term memory (Bevins 

and Besheer, 2006). The mechanism underlying these processes may require long-lasting 

LTP. The correlation between impaired LTP maintenance, which is commonly observed in 

hippocampal slices with TrkB deletion in either CA1 or CA3, and the recognition deficit of 

the novel object 24 hr after training in mice in the absence of CA1 or CA3 TrkB, supports 

the physiological relevance of presynaptic TrkB or postsynaptic TrkB in memory encoding. 

However, considering the complex role of presynaptic or postsynaptic TrkB in LTP and 

basal neurotransmission, further behavioral experiments will be necessary to precisely 

dissect their function in various learning and memory tests.

In this study, we identified distinct roles of presynaptic and postsynaptic BDNF and TrkB in 

LTP. We also report a role for presynaptic TrkB in release probability, highlighting a role for 

presynaptic TrkB receptors in basal neurotransmission. Moreover, the loss of presynaptic or 
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postsynaptic TrkB impacted performance in the novel object recognition task, suggesting a 

link to learning and memory. Taken together, these results provide insight into the role of 

BDNF and TrkB receptors in hippocampal synaptic plasticity processes.

EXPERIMENTAL PROCEDURES

Animals

Mice were housed in a vivarium on a 12-hr light/dark cycle with access to food and water ad 

libitum. The Bdnffl/fl (Rios et al., 2001) and Ntrk2fl/fl (Luikart et al., 2005) mice were 

generated as previously described and maintained as homozygous crosses. Since LTP varies 

across the estrous cycle (Warren et al., 1995), 3-month-old male mice were utilized. 

Electrophysiological recordings and behavior were performed 3 weeks after surgery. 

Inducible Bdnf KO mice were generated as previously described (Monteggia et al., 2004). 

All animal procedures were approved by the Institutional Animal Care and Use Committee 

at The University of Texas Southwestern Medical Center in compliance with US Public 

Health Service guidelines.

AAV

AAV expressing Cre recombinase tagged to GFP (AAV-GFP-Cre) and the control virus 

AAV-GFP were obtained from the Penn Vector Core; AAV-GFP-Cre and AAV-GFP are 

AAV2/1.CMV.HI.GFP-Cre.SV40 and AAV2/ 1.CMV.PI.EGFP.WPRE.bGH, respectively. 

Previous work using AAV-GFP-Cre has shown that GFP does not interfere with Cre 

recombinase activity (Adachi et al., 2008).

Stereotaxic Surgery

The Bdnffl/fl and Ntrk2fl/fl mice were anesthetized with ketamine (100 mg/kg, 

intraperitoneally [i.p.])/xylazine (10 mg/kg, i.p.) and then mounted on a stereotaxic 

apparatus. Using a drill, bilateral holes were made above the target injection sites. The 

coordinates relative to bregma for CA1 and CA3 were as follows: CA1, anteroposterior, 

−2.4 mm; lateral, −1.5 mm; dorsoventral, −1.7 mm; and CA3, anteroposterior, −1.7 mm; 

lateral, −3.5 mm; dorsoventral, −1.9 mm at a 10 angle. A total of 1 μL of virus was 

bilaterally infused with a 33G Hamilton syringe over a 4-min period. The syringe was left in 

for an additional 5 min to ensure diffusion of the virus. Mice were injected with AAV-GFP 

or AAV-GFP-Cre. The use of GFP allowed the visualization of the infected neurons.

Hippocampal Slice Electrophysiology

Three weeks after the stereotaxic surgery, mice were anesthetized with isoflurane and 

decapitated. Brains were removed and immersed in ice-cold dissection buffer containing the 

following (in mM): 2.6 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 5 MgCl2, 212 sucrose, 

and 10 glucose for 2–3 min. Hippocampi were dissected and then cut with a vibratome into 

400-mm-thick transverse sections in ice-cold dissection buffer continuously aerated with 

95% O2 and 5% CO2. Area CA3 was surgically removed and collected for western blot 

analysis from each slice immediately after sectioning. Sections were recovered in 

oxygenated artificial cerebrospinal fluid (ACSF) containing the following (in mM): 124 

NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 2 MgCl2, and 10 glucose, pH 7.4 
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(continuously equilibrated with 95% O2 and 5% CO2) for 2–3 hr at 30C. Hippocampal slices 

were transferred to the recording chamber and perfused with ACSF at a rate of 2–3 mL/min 

at 30C. fEPSPs were evoked by inserting a concentric bipolar stimulating electrode (FHC) to 

Schaffer collateral/commissural afferents. Extracellular recording electrodes filled with 

ACSF (resistance, 1–2 MΩ) were inserted into the CA1 area proximally below the molecular 

layer. Baseline responses were collected every 30 s using an input stimulus intensity that 

induced 30%–40% of the maximum response. PPF was elicited by paired-pulse stimulations 

at decreasing interstimulus intervals (ISIs) of 500, 400, 200, 100, 50, 30, and 20 ms and 

analyzed by dividing the fEPSP slope of pulse 2 (P2) by pulse 1 (P1). Paired-pulse 

stimulation was applied before and after LTP. LTP was induced by HFS composed of four 

trains at 100-Hz pulses for 1 s. The initial slopes of the fEPSPs were expressed as 

percentages of the preconditioning baseline average; the time-matched, normalized data 

were averaged across experiments. After recording, the CA1 region was dissected from 

slices for western blot analysis.

To examine release probability, NMDA receptor (NMDAR) field potentials (NMDA-

fEPSPs) were recorded in solution containing the following: 124 mM NaCl, 2 mM KCl, 3 

mM CaCl2, 0.1 mM MgCl2, 10 μM glucose, 1.2 μM NaH2PO4, 26 mM NaHCO3, 10 mM 

glycine, 20 μM DNQX (6,7-dinitroquinoxaline-2,3-dione), and 50 μM picrotoxin. After a 

20-min stable baseline recording, stimulation was paused for 10 min to equilibrate while 20 

μM (+)-MK-801 was added to the bath. One hundred stimuli at 0.1 Hz produced a decay 

curve of NMDA-fEPSP amplitudes with (+)-MK-801 perfusion.

Western Blot Analysis

CA1 and CA3 tissue were lysed in radioimmunoprecipitation assay (RIPA) buffer (50 mM 

Tris, pH 7.4, 1% NP-40, 0.1% SDS, 0.5% Na deoxycholate, 4 mM EDTA, 150 mM NaCl, 

protease and phosphatase inhibitors [cOmplete mini tablets (Roche)], 10 mM sodium 

pyrophosphate, 50 mM NaF, and 2 mM sodium orthovanadate). Total protein concentration 

was quantified by BCA (bicinchoninic acid) protein assay. Twenty micrograms of total 

protein per well was loaded on SDS-PAGE gels and transferred to nitrocellulose blots, and 

then placed in blocking solution for 60 min at room temperature. Blots were incubated in 

anti-BDNF (1:2,000; Abcam), anti-TrkB (1:2,500; Abcam), or anti-GAPDH (1:50,000; Cell 

Signaling) antibodies at 4°C overnight. HRP-conjugated anti-mouse secondary antibody was 

used for BDNF (1:2,000), and anti-rabbit secondary antibody for TrkB (1:2,000) and 

GAPDH (1:10,000). Bands were developed with enzymatic chemiluminescence (ECL) and 

detected by UVP Biospectrum imaging system. Image files were analyzed with ImageJ. 

BDNF or TrkB signals were normalized to their respective GAPDH signals and expressed as 

percentage to the control group.

Behavioral Overview

Mice recovered for 3 weeks following stereotaxic surgeries before behavioral testing, a time 

point sufficient to induce gene recombination (Adachi et al., 2008). Mice were habituated to 

the behavior rooms for at least 1 hr prior to testing, which was conducted during the light 

cycle. Behavioral tasks were performed such that mice were tested in one paradigm per day, 

from least to most stressful (locomotor activity, novel object recognition, and fear 
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conditioning). In all experiments, mice were age matched and groups balanced by genotype, 

and testing performed by an individual blind to group/treatment assignment.

Locomotor Activity

Mice were placed in a new home cage under red light for 1 hr, and ambulation was assessed 

by the number of photocell beam breaks, with signals digitized by PAS software (San Diego 

Instruments).

Novel Object Recognition

Mice were placed in a 44 × 22-cm2 open field under dim lighting for 10 min to habituate to 

the testing arena. On day 2, mice were reintroduced to the arena containing two of the same 

objects (familiar objects). Mice interacted with the familiar objects for 30 s, or after a 10-

min exposure in the testing arena, whichever took place first, were returned to their home 

cage. On day 3, one familiar object was switched to a new object (novel object), and mice 

were allowed to explore in the arena for 10 min. An experimenter blind to treatment scored 

the time the animal spent interacting with the familiar and novel object. The discrimination 

index was calculated as the difference between time spent exploring the novel object and the 

familiar object divided by the total exposure time exploring both two objects ([time spent on 

novel object time spent on familiar object]/total time).

Fear Conditioning

Mice were placed in individual fear conditioning chambers (Med Associates). During the 

acquisition phase, mice were habituated to the chamber for 2 min, and then received three 

trains of a 30-s loud tone (90 dB) followed immediately by a 0.5-mA footshock for 2 s with 

a 1-min intertrain interval. Mice remained in the chamber for an additional 1 min before 

being returned to their home cages. For context-dependent fear conditioning, 24 hr later 

mice were returned to the chambers for 5 min without a tone or shock, and the amount of 

time spent freezing was determined. Freezing behavior was defined as no movement except 

for respiration. Cue-dependent fear conditioning was assessed 4 hr later. Mice were 

habituated in a novel environment scented with vanilla without any tone or shock for 3 min 

followed by a 3-min tone. The amount of time spent freezing during the 3-min tone period 

was determined. The following day, the animals’ response to shock was assessed by 

exposing the mice to increasing footshock intensities (0.05–0.45 mA).

Statistical Analysis

Electrophysiological data are presented as mean ± SEM and analyzed using two-way 

ANOVA. Sidak’s multiple-comparisons test were used for post hoc analyses if significant 

interaction effects were found. The decay rate constant of NMDA-fEPSP amplitudes was 

analyzed using Student’s t test.

Behavioral data are presented as mean ± SEM. Statistical significance was determined by 

one-way ANOVA. Turkey’s multiple-comparisons test was used for post hoc analysis. In all 

experiments, p < 0.05 was considered statistically significant.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Presynaptic BDNF and postsynaptic TrkB are involved in LTP induction

• Postsynaptic BDNF, as well as both presynaptic and postsynaptic TrkB, 

contributes to LTP maintenance

• BDNF in both presynaptic and postsynaptic terminals modulates basal 

neurotransmission

• Presynaptic TrkB regulates presynaptic release probability
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Figure 1. Localized Deletion of BDNF or TrkB in the Hippocampus
(A and B) Representative images of GFP-expressing neurons in the (A) CA3 (presynaptic 

terminal of Schaffer collateral pathway) or (B) CA1 (postsynaptic area of Schaffer collateral 

pathway) of Bdnffl/fl mice or Ntrk2fl/fl mice.

(C) Schematic diagram of the approximate injection site in the CA1 and CA3 regions.

(D and E) Representative western blot images of mature BDNF and TrkB expression in 

Bdnffl/fl or Ntrk2fl/fl mice injected with AAV-GFP or AAV-GFP-Cre. (D) BDNF protein 

expression in CA1 (n = 8) or CA3 (n = 7) of AAV-GFP-Cre-injected Bdnffl/fl mice was 
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significantly reduced to 26.5% ± 4.9% and 30.1% ± 4.7% of AAV-GFP-injected Bdnffl/fl 

mice (n = 8 and n = 9, respectively). (E) TrkB protein expression in CA1 (n = 9) or CA3 (n = 

8) of AAV-GF-PCre-injected Ntrk2fl/fl mice was significantly reduced to 18.3% ± 5.5% and 

22.2% ± 7.0% of AAV-GFP-injected Ntrk2fl/fl mice (n = 8 for each).

Data are mean ± SEM.
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Figure 2. Region-Specific Deletion of BDNF Impairs LTP
(A) Experimental protocol for recording field excitatory postsynaptic potential (fEPSP) from 

CA1 while stimulating the CA3-CA1 Schaffer collateral afferents. Baseline responses were 

collected for 20min.Pairedpulse stimulation was applied to harvest the ratio of the response 

to the second stimulus over response to the first stimulus (P2/P1 in Figures 4 and 5). Paired-

pulse stimulation was applied before baseline recording and after 1-hr LTP recording.

(B) LTP induced by HFS (filled triangle) in hippocampal slices (n = 7) with deletion of 

BDNF in the CA3 region was stable but significantly smaller than in hippocampal slices (n = 
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9) of AAV-GFP-injected Bdnffl/fl mice (two-way ANOVA: F(153, 2,156) = 26.43, p < 0.0001 

for group, Sidak’s post hoc tests for least 10 min: p < 0.001). Inset, representative 

waveforms from AAV-GFP- and AAV-GFP-Cre-injected slices recorded baseline (1) and 

after HFS (2).

(C) HFS induced a similar level of post-tetanic potentiation in hippocampal slices (n = 8) 

with CA1 BDNF deletion immediately following HFS, compared to AAV-GFP-injected 

Bdnffl/fl mice, but responses decreased drastically in the following 10 min, and potentiation 

was not maintained during the rest of the 40- to 50-min recording (two-way ANOVA: 

F(143, 2,011) = 15.91, p < 0.0001 for group, Sidak’s post hoc tests for last 10 min: p < 0.001). 

Inset, representative waveforms from AAV-GFP-and AAV-GFP-Cre-injected slices recorded 

baseline (1) and after HFS (2).

Data are mean ± SEM.

Lin et al. Page 20

Cell Rep. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Region-Specific Deletion of TrkB Affects LTP Formation
(A) Experimental protocol.

(B) HFS (filled triangle) initiated the same level of potentiation in hippocampal slices (n = 8) 

with deletion of TrkB in the CA3, compared to Ntrk2fl/fl mice injected with AAV-GFP (n = 

8). However, this potentiation was not maintained. Responses were gradually decreased after 

HFS with a significant difference in the responses in the last 10 min of recording between 

hippocampal slices from AAV-GFP and AAV-GFP-Cre CA3-injected Ntrk2fl/fl mice (two-

way ANOVA: F(150, 2,114) = 18.93, p < 0.0001 for group; Sidak’s post hoc tests for least 10 
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min: p < 0.001). Inset, representative waveforms from AAV-GFP- and AAV-GFP-Cre-

injected slices recorded baseline (1) and after HFS (2).

(C) Compared to LTP induced in hippocampal slices (n = 8) of AAV-GFP-injected Ntrk2fl/fl 

mice (GFP), deletion of TrkB from CA1 (n = 9) nearly blocked LTP formation (two-way 

ANOVA, F(154, 2,325) = 14.45 for group, p < 0.0001, Sidak’s post hoc tests for the last 10 

min: p < 0.001). Inset, representative waveforms from AAV-GFP- and AAV-GFP-Cre-

injected slices recorded baseline (1) and after HFS (2).

Data are mean ± SEM.
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Figure 4. Deletion of Presynaptic TrkB Alters Release Probability
(A) Experimental protocol.

(B) Compared to GFP controls, paired-pulse ratio (PPR) (P2/P1) before LTP was not altered 

by deletion of BDNF in either CA1 or CA3 (two-way ANOVA: F(2,192) = 12.21, p = 0.3474 

for group; F(7,192) = 22.1, p < 0.0001 for interstimulus interval).

(C) PPR was increased in hippocampal slices (n = 7) of Bdnf knockout (KO) mice, 

compared to littermate CTLs (n = 7) (two-way ANOVA: F(1,88) = 24.78, p < 0.0001 for 
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group; F(7,208) = 12.81, p < 0.0001 for interstimulus interval; Sidak’s post hoc tests: CTL 

versus KO, 20 ms, p = 0.0388; 30 ms, p = 0.0006; 50 s, p = 0.0054; 100 ms, p = 0.0491).

(D) Deletion of BDNF in both CA1 and CA3 regions increased PPR (two-way ANOVA: 

F(1,184) = 40.97, p < 0.0001 for group; F(7,184) = 22.23, p < 0.0001 for interstimulus interval: 

Sidak’s post hoc tests: GFP versus GFP-Cre, 20 ms, p < 0.0001; 30 ms, p = 0.0046; 50 ms, p 

= 0.0194) before LTP. Representative traces show pulse 1 following by pulse 2 with 20-ms 

interstimulus interval.

(E) Compared to GFP controls, deletion of TrkB in CA1 had no impact on PPR before LTP; 

however, selectively deleting TrkB from CA3 enhanced PPR (two-wayANOVA: F(2,208) = 

57.4, p < 0.0001 for group; F(7,208) = 35.64, p < 0.0001 for interstimulus interval; Sidak’s 

post hoc tests: CTL versus GFP-Cre Ntrk2fl/fl -CA3, 20 ms, p = 0.0003; 30 ms, p = 0.0001; 

50 ms, p < 0.0001; 100 ms, p < 0.0001; 200 s, p = 0.0008) before LTP. Representative traces 

show pulse 1 following by pulse 2 with 20-ms interstimulus interval.

(F) Top, To measure release probability, NMDA-fEPSP was recorded from the CA3-CA1 

Schaffer collateral pathway, using 0.1-Hz stimulation, before and afterMK-801 bath 

application. Traces show responses of the 1st and the 15th stimulus. NMDA-fEPSP 

amplitudes evoked every 10 s in the presence of MK-801 decayed slower in slices with 

deletion of TrkB in CA3 (n = 7) compared to GFP (n = 8).

(G) Rate constant of NMDA-fEPSP amplitudes in the presence of MK-801 was significantly 

lower in slices with deletion of TrkB in CA3 than GFP (t(13) = 3.631, p = 0.003).

*p < 0.05. Data are mean ± SEM.
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Figure 5. Deletion of Presynaptic TrkB Unmasks a Presynaptic Component of LTP
(A) Experimental protocol.

(B) PPF was unaltered before and after LTP in hippocampal slices of AAV-GFP injected 

Bdnffl/fl mice (F(1,88) = 0.3372, p = 0.5625).

(C and D) No difference was found before and after LTP in the hippocampal slices of either 

(C) AAV-GFP-Cre CA3-injected Bdnffl/fl mice (F(1,56) = 3.332, p = 0.0703) or (D) AAV-

GFP-Cre CA1-injected Bdnffl/fl mice (F(1,48) = 1.471, p = 0.2276).

Lin et al. Page 25

Cell Rep. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E and G) There was no significant difference between PPR before and after LTP in (E) 

AAV-GFP-injected Ntrk2fl/fl controls (F(1,88) = 0.2463, p = 0.6203) or (G) AAVGFP-Cre 

CA1-injected Ntrk2fl/fl mice (F(1,64) = 0.2967, p = 0.5867).

(F) However, a significant reduction of PPR after LTP was observed in hippocampal slices 

of AAV-GFP-Cre CA3-injected Ntrk2fl/fl mice (F(1,56) = 28.56, p < 0.0001, post hoc tests: 

before versus after LTP, 30 ms, p = 0.0418; 100 ms, p = 0.0136; 200 ms, p = 0.0361). 

Representative traces show pulse 1 following by pulse 2 with 20-ms interstimulus interval.

*p < 0.05. Data are mean ± SEM.
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Figure 6. Mice with Deletion of TrkB from CA1 or CA3 Exhibit Deficits in Hippocampal-
Dependent Memory
(A) Deletion of TrkB from CA1 or CA3 did not alter locomotor activity. The total number of 

beam breaks (inset) was similar between Ntrk2fl/fl mice receiving AAV-GFP (CTL, n = 10) 

or AAV-GFP-Cre into either CA1 (n = 9) or CA3 (n = 10) (F(2,26) = 0.07179, p = 0.9310). 

There was also no significant difference in ambulation measured over the 1-hr testing period.

(B) Context-dependent fear conditioning was tested 24 hr after training, and cue-dependent 

fear was assessed 4 hr after contextual fear conditioning. Deletion of TrkB from CA1 or 

CA3 did not result in significant deficits (F(2,52) = 1.781, p = 0.1777).

Lin et al. Page 27

Cell Rep. Author manuscript; available in PMC 2020 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Ntrk2fl/fl mice that received AAV-GFP-Cre into either CA1 or CA3 spent less time 

exploring the novel object compared to GFP controls in the novel object recognition test.

(D) A significant reduction of discrimination index([time spent on novel object – time spent 

on familiar object]/total time) was found in the mice with deletion of TrkB in either CA1 or 

CA3 compared to GFP controls (F(2,26) = 4.66, p = 0.0186; post hoc tests: CTL versus CA1, 

p = 0.0383; CTL versus CA3, p = 0.0345).

*p < 0.05. Data are mean ± SEM.
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