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Purpose: To establish and verify a predictive model involving multiparameter MRI and
clinical manifestations for predicting synchronous lung metastases (SLM) in osteosarcoma.

Materials and Methods: Seventy-eight consecutive patients with osteosarcoma
(training dataset, n = 54; validation dataset, n = 24) were enrolled in our study. MRI
features were extracted from the T1‐weighted image (T1WI), T2‐weighted image (T2WI),
and contrast-enhanced T1-weighted image (CE-T1WI) of each patient. Least absolute
shrinkage and selection operator (LASSO) regression and multifactor logistic regression
were performed to select key features and build radiomics models in conjunction with
logistic regression (LR) and support vector machine (SVM) classifiers. Eight individual
models based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI+CE-T1WI, T2WI+CE-T1WI,
T1WI+T2WI+CE-T1WI, and clinical features, as well as two combined models, were built.
The area under the receiver operating characteristic curve (AUC), sensitivity and specificity
were employed to assess the different models.

Results: Tumor size was the most significant univariate clinical indicator (1). The AUC
values of the LR predictive model based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI
+CE-T1WI, T2WI+CE-T1WI, and T1WI+T2WI+CE-T1WI were 0.686, 0.85, 0.87, 0.879,
0.736, 0.85, and 0.914, respectively (2). The AUC values of the SVM predictive model
based on T1WI, T2WI, CE-T1WI, T1WI+T2WI, T1WI +CE-T1WI, T2WI +CE-T1WI, and
T1WI+T2WI+CE-T1WI were 0.629, 0.829, 0.771, 0.879, 0.643, 0.829, and 0.929,
respectively (3). The AUC values of the clinical, combined 1 (clinical and LR-radiomics)
and combined 2 (clinical and SVM-radiomics) predictive models were 0.779, 0.957, and
0.943, respectively.

Conclusion: The combined model exhibited good performance in predicting
osteosarcoma SLM and may be helpful in clinical decision-making.
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INTRODUCTION

Osteosarcoma is a highly prevalent primary bone malignancy.
Fortunately, complete ablation of nonmetastatic high-grade
osteosarcoma is possible in 60–70% of cases when treated with
adjuvant and neoadjuvant multiagent chemotherapies in
addition to surgery (1). However, the prognoses of
osteosarcoma patients with distant metastasis remain poor.
Among all forms of metastasis, lung metastasis is the most
common, occurring in over 80% of patients. Approximately
20% of osteosarcoma patients also exhibit metastasis at initial
diagnosis (synchronous metastases) (2, 3). The primary tumor is
more resistant to chemotherapy in patients with synchronous
metastases than in patients with localized disease at presentation
(4). Both the number of nodules and lobes are strong indicators
of survival (5). At present, the best indicators of survival are
tumor grade, tumor size, and distal metastases, which can be
detected from biopsies and microscopic evaluations (6).
Predicting individual and early metastases is essential to
osteosarcoma management, as it informs treatment strategies
and increases survival rates. Chest computerized tomography
(CT) has been the most commonly used imaging modality for
the detection of lung nodules. Although there have been great
advancements in imaging technology, particularly in enhancing
the sensitivity of detection, the specificity of the data remains
insufficient. Metastases cannot be properly distinguished from
benign tissue (5). When nodules are detected at diagnosis, it is
usually assumed that these nodules represent metastatic disease.
However, not all pulmonary nodules that develop during tumor
therapy are malignant, which poses additional challenges for
physicians. Hence, the goal of this study was to evaluate the
diagnostic abilities of two distinct classifiers (logistic regression
(LR) and support vector machine (SVM)) and radiomics features
retrieved from different magnetic resonance imaging (MRI)
parameters, including T1-weighted imaging (T1WI), T2-
weighted imaging (T2WI) and contrast-enhanced T1-weighted
imaging (CE-T1WI), and the combinations of two and three of
these parameters. We also developed and validated combined
models according to multiparametric MRI and clinical features
to predict synchronous lung metastases (SLM) in osteosarcoma.
MATERIALS AND METHODS

Our retrospective investigation was approved by the Institutional
Review Board. Participant informed consent was waived due to
the retrospective nature of the study.
Patient Selection
Overall, 360 patients who received MRI evaluations between
January 1, 2014, and December 30, 2020, were recruited for this
study. The following patients were included in the study: (i)
patients with no history of surgical or medical treatment
administered for suspected osteosarcoma; (ii) patients who
underwent multiparametric MRI, including T1WI, T2WI, and
CE-T1WI, prior to treatment; (iii) patients with a osteosarcoma
Frontiers in Oncology | www.frontiersin.org 2
diagnosis confirmed by surgical resection or CT/ultrasound-
guided needle biopsy and histopathological results; and (iv)
patients diagnosed with SLM according to follow-up chest CT
or confirmed by pathology. The patients in this study had lung
nodules, and the possibility of viral, bacterial or fungal infection
was ruled out. Three criteria were used to identify SLM lung
nodules on follow-up chest CT according to previous studies (7,
8): first, the presence of multiple round nodules with or without
changes in size or number; second, nodule size ≥5 mm and the
presence of calcifications or ossification that remained stable or
increased in size relative to the initial chest CT; third, changes in
size or morphology during chemotherapy. Fifteen and 18
patients with SLM were diagnosed by biopsy and follow-up
chest CT, respectively. The following patients were excluded
from this study: (i) patients who received biopsy and
locoregional therapy before MRI; (ii) patients with low-quality
images rendering analysis difficult (such as images with metallic
artefacts or motion artefacts); and (iii) patients with missing
images or relevant sequences. A schematic diagram of our
patient selection process is provided in Figure 1. After the
application of these criteria, 78 patients were eligible for this
study. The clinical characteristics of the 78 osteosarcoma patients
divided into non-SLM and SLM groups are shown in Table 1.
We next arbitrarily divided the patients into two populations: 54
patients were placed in the training cohort (TC) and 24 were
placed in the validation cohort (VC) based on the seed point set
obtained from programming. The clinical characteristics of the
78 osteosarcoma patients in the TC and VC are shown in
Table 2, and a further breakdown of the clinical characteristics
of these cohorts in terms of SLM and lack of SLM of
osteosarcoma are summarized in Table 3.

Patient clinical features, such as age, sex, tumor size,
pathological type, tumor location, bone destruction type, and
alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)
levels, were recorded.

MR Imaging
All MR imaging was conducted with 1.5- or 3.0-T
superconducting magnet systems. The imaging sequences
included axial T1WI, T2WI and CE-T1WI. The detailed scan
parameters of the four MRI scanners are described in Table 4.
Gadolinium contrast agent was intravenously administered via a
weight-based dosing protocol (0.1 mmol/kg) at an injection rate
of 2.5 mL/s. All the MR data were obtained from the picture
archiving and communication system (PACS) of our institutes
and stored in Digital Imaging and Communications in Medicine
(DICOM) format for additional analyses.

Preprocessing of MR Images
All the images were exported to ITK-SNAP software (version
3.8.0, http://www.itksnap.org/) for segmentation before
radiomics analysis. Lesion segmentation was performed by a
radiologist with over 5 years of MRI diagnostic experience, and
proper segmentation was further confirmed by a separate
radiologist with over 10 years of MRI diagnostic experience. If
disagreements arose about a specific image segmentation, a
revision was made by two radiologists after discussion. The
February 2022 | Volume 12 | Article 802234
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segmentation for 24 randomly selected patients was then
repeated by another radiologist (over 10 years of experience).
A separate region of interest (ROI) was manually selected for all
sequences on each axial T1WI, T2WI and CE-T1WI slice. All the
images were acquired without fat suppression. Delineation of the
ROI, including the entire tumor and necrotic areas, cyst
Frontiers in Oncology | www.frontiersin.org 3
degeneration, hemorrhage, periosteal reactions, and
peritumoral oedema, was carried out on the images from each
sequence. Figure 2 shows an example of a segmented MRI
image. Image intensity normalization was performed before
feature extraction, including image gray normalization to
uniform grayscale of 0‐255 and resampling to 1 mm ×1 mm×
FIGURE 1 | Flow chart of the study population with exclusion criteria.
February 2022 | Volume 12 | Article 802234
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1 mm voxel size using linear interpolation by AK software
(Analysis Kit; GE Healthcare).

Radiomic Feature Extraction
In total, 944 radiomic features, quantifying phenotypic
differences on the basis of shape (reflecting the size and shape
of tumors), first-order (measuring the signal intensity of different
tumors), and texture features (representing the relationship
between each tumor voxel and its surrounding environments)
(9), were automatically extracted from each segmented region of
interest by using in-house software written in Python
(Pyradiomics version: V 3.0; https://github.com/Radiomics/
pyradiomics) (10). All the features were calculated in 3D
directions within the whole-tumor volume and normalized by
transforming the data into standardized intensity ranges (z-score
transformation). Intraclass correlation coefficients (ICCs) based
on a multiple-rating, consistency, 2-way random-effects model
were calculated to assess the stability and reproducibility of
radiomic features. For both tumor ROIs, only features with an
ICC > 0.75 were considered to suggest good agreement and
retained for further radiomic feature selection.

Radiomics Feature Selection
Radiomics features were automatically calculated with the
noncommercial Analysis Kit (A.K. GE Healthcare). First, we
performed least absolute shrinkage and selection operator
(LASSO) regression on all features to grossly choose attributes
with discriminative ability. The goal was to reduce certain attribute
coefficients to zero by regulating parameter l. Subsequently, the
areaunder the receiveroperatingcharacteristic (ROC)curve (AUC)
could be determined versus log(l) by employing tenfold cross-
validation. The advantage of the LASSO technique is that it can
analyse a massive amount of radiomics characteristics from low
numbers of samples. Second, we applied multivariate logistic
regression to select the most predictive features.
Frontiers in Oncology | www.frontiersin.org 4
Machine Learning Model
This study used two machine learning classifiers: LR and SVM.

An SVM model was generated based on the established
optimal feature subsets of the TC dataset. The kernel, gamma,
degree, coef, and C parameters were set to ‘rbf’, 0.0, 3, 0.0, and
1.0, respectively.

The individual sequence models were constructed by T1WI,
T2WI and CE-T1WI.

Next, four combined models were generated via a combination of
features of dissimilar sequences, namely, T1WI+T2WI, T1WI+CE-
T1WI, T2WI+CE-T1WI, and T1WI+T2WI+CE-T1WI. Clinical
features were analysed by univariate analysis, and variables for
which P < 0.05 were entered into the clinical model.

Two combined models were constructed by combining the
best LR and SVM radiomics models with clinical features.

The models were conditioned with the TC using the repeated
10-fold cross-validation technique, and their performance was
assessed in the VC.

The radiomics framework of our study is shown in Figure 3.
Statistical Analysis
The t-test or Mann-Whitney U-test was employed for the
comparison of continuous variables, whereas the chi-squared test
or Fisher’s exact test was employed for the comparison of
intergroup categorical variables. All the statistical analyses were
two-sided, and a Bonferroni-corrected P value was employed to
determine the feature significance of multiple comparisons. ROC
curves were generated to assess the performance of the machine
learning models, and the sensitivity, specificity and AUC values
were calculated. The AUCs of each twomodels (clinical, radiomics
and combinedmodels) in the two cohorts were compared by using
theDeLong test.All the data analyseswere performed inR3.5.1 and
Python 3.5.6. A two-tailed P value <0.05 was set as the
significance threshold.
TABLE 1 | Clinical characteristics of 78 cases of osteosarcoma.

Characteristic Non-SLM SLM P value

Sex 0.412
Female 15 (33.33%) 14 (42.42%)
Male 30 (66.67%) 19 (57.58%)

Pathology 0.984
Osteoblastic 34 (75.56%) 25 (75.76%)
Others 11 (24.44%) 8 (24.24%)

Location 0.486
Femur 29 (64.44%) 17 (51.52%)
Tibia 8 (17.78%) 7 (21.21%)
Others 8 (17.78%) 9 (27.27%)

Bone destruction 0.067
Mix 21 (46.67%) 14 (42.42%)
Osteolytic 22 (48.89%) 12 (36.36%)
Osteoblastic 2 (4.44%) 7 (21.21%)

Age (years) 19.49 ± 13.86 16.45 ± 7.53 0.258
Tumor size (cm) 6.31 ± 1.32 8.09 ± 2.39 <0.001*
ALP (IU/L) 758.49 ± 2286.19 913.30 ± 1659.41 0.742
LDH (IU/L) 256.81 ± 105.03 347.63 ± 312.71 0.073
February 2022 | Volume 12 | Article
SLM, synchronous lung metastases; ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
*p < 0.05.
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RESULTS

Clinical Characteristics of the Patients
In total, 78 osteosarcoma patients (49 males, 29 females; between
15-83 years of age) were recruited. Based on our univariate
analysis, the tumor size was markedly different between the two
groups (P < 0.05) (Table 1). No obvious differences were
observed in age, sex, pathological type, tumor location, bone
destruction type, and ALP or LDH levels between the SLM and
non-SLM groups. Moreover, no marked differences were
observed between the TC and VC (Table 2). In addition, the
clinical features were not markedly different between the SLM
and non-SLM cohorts, except for age in the VC and tumor size in
the TC (Table 3).
Frontiers in Oncology | www.frontiersin.org 5
Performance of the Radiomics Models
Overall, 944 radiomics features were obtained from each of the
T1WI, T2WI and CE-T1WI images. A total of 702, 839 and 835
radiomics features from T1WI, T2WI and CE-T1WI were
included, respectively, with ICC greater than 0.75. The
radiomics features with the largest differences between the
models are summarized in Table 5.

In terms of a distinct sequence in the LR classifier, CE-T1WI
features displayed a stronger predictive performance (AUC= 0.87, 95%
CI, 0.655-0.965) than T2WI (AUC = 0.85, 95% CI, 0.699-0.981) and
T1WI (AUC= 0.686, 95%CI, 0.488-0.873) features in theVC. In terms
of combined features, T1WI+T2WI+CE-T1WI had a higher
performance (AUC = 0.914, 95% CI, 0.776-0.998) than T1WI+CE-
T1WI (AUC= 0.736, 95%CI, 0.533-0.902), T2WI+CE-T1WI (AUC=
TABLE 2 | The clinical characteristics of the 78 osteosarcoma patients in the training and validation cohorts.

Characteristic Training cohorts Validation cohorts P value

Sex 0.056
Female 24 (44.44%) 5 (20.83%)
Male 30 (55.56%) 19 (79.17%)

Pathology 0.291
Osteoblastic 39 (72.22%) 20 (83.33%)
Others 15 (27.78%) 4 (16.67%)

Location 0.322
Femur 34 (62.96%) 12 (50.00%)
Tibia 8 (14.81%) 7 (29.17%)
Others 12 (22.22%) 5 (20.83%)

Bone destruction 0.216
Mix 27 (50.00%) 8 (33.33%)
Osteolytic 20 (37.04%) 14 (58.33%)
Osteoblastic 7 (12.96%) 2 (8.33%)

Age (years) 16.52 ± 9.49 22.00 ± 15.00 0.109
Tumor size (cm) 7.25 ± 1.95 6.66 ± 2.19 0.241
ALP (IU/L) 679.24 ± 1335.34 1149.65 ± 3095.32 0.349
LDH (IU/L) 303.17 ± 250.44 277.36 ± 137.72 0.638
February 2022 | Volume 12 | Article
ALP, alkaline phosphatase; LDH, lactate dehydrogenase.
TABLE 3 | The clinical characteristics of these cohorts in terms of SLM and non-SLM of osteosarcoma.

Characteristic Training cohorts P Validation cohorts P

Non-SLM SLM Non-SLM SLM

Sex 0.667 0.615
Female 13 (41.94%) 11 (47.83%) 2 (14.29%) 3 (30.00%)
Male 18 (58.06%) 12 (52.17%) 12 (85.71%) 7 (70.00%)

Pathology 0.707 0.615
Osteoblastic 23 (74.19%) 16 (69.57%) 11 (78.57%) 9 (90.00%)
Others 8 (25.81%) 7 (30.43%) 3 (21.43%) 1 (10.00%)

Location 0.169 0.202
Femur 21 (67.74%) 13 (56.52%) 8 (57.14%) 4 (40.00%)
Tibia 6 (19.35%) 2 (8.70%) 2 (14.29%) 5 (50.00%)
Others 4 (12.90%) 8 (34.78%) 4 (28.57%) 1 (10.00%)

Bone destruction 0.261 0.125
Mix 17 (54.84%) 10 (43.48%) 4 (28.57%) 4 (40.00%)
Osteolytic 12 (38.71%) 8 (34.78%) 10 (71.43%) 4 (40.00%)
Osteoblastic 2 (6.45%) 5 (21.74%) 0 (0.00%) 2 (20.00%)

Age (years) 15.81 ± 10.49 17.48 ± 8.07 0.527 27.64 ± 17.10 14.10 ± 5.78 0.014*
Tumor size (cm) 6.47 ± 1.38 8.29 ± 2.14 0.001* 5.96 ± 1.12 7.64 ± 2.94 0.113
ALP (IU/L) 460.17 ± 455.98 974.52 ± 1963.01 0.164 1419.05 ± 4065.50 772.50 ± 582.77 0.625
LDH (IU/L) 256.58 ± 83.78 365.97 ± 366.54 0.173 257.30 ± 145.39 305.44 ± 128.21 0.411
8

SLM, synchronous lung metastases; ALP, alkaline phosphatase; LDH, lactate dehydrogenase. *p < 0.05.
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0.85, 95% CI, 0.699-0.981) and T1WI+T2WI (AUC = 0.879, 95% CI,
0.746-0.993) (Tables 6, 7 and Figures 4, 5).

Delong-test results in Table 8 showed that there were
significant differences between predictive performance of
T1WI-radiomic model and that of T1WI+T2WI+CE-T1WI
radiomic model in both cohorts.

In terms of a distinct sequence in the SVM classifier, T2WI
features were more enhanced (AUC = 0.829, 95% CI, 0.621-
0.950), compared to CE-T1WI (AUC = 0.771, 95% CI, 0.556-
0.916) and T1WI (AUC = 0.629, 95% CI, 0.409-0.815) features in
the VC. In terms of the combined features, T1WI+T2WI+CE-
T1WI had a higher performance (AUC = 0.929, 95% CI, 0.746-
Frontiers in Oncology | www.frontiersin.org 6
0.993) than T1WI+CE-T1WI (AUC = 0.643, 95% CI, 0.423-
0.826), T2WI+CE-T1WI (AUC = 0.829, 95% CI, 0.621-0.950)
and T1WI+T2WI (AUC = 0.879, 95% CI, 0.681-0.975) (Tables 9,
10 and Figures 6, 7).

Delong-test results in Table 11 showed that there were
significant differences between predictive performance of
T1WI-radiomic model and that of T1WI+T2WI+CE-T1WI
radiomic model in validation cohort.

Based on our univariate analysis, marked differences were
observed in tumor size between the non-SLM and SLM sets (P <
0.05). Thus, the clinical model was built using tumor size alone,
and this model performed well in the TC (AUC = 0.75, 95% CI,
TABLE 4 | The detailed scan parameters of four MRI scanners.

Sequence Imaging planes Category TR (ms) TE (ms) FOV (mm×mm) Matrix Intersection gap (mm) Slice thickness (mm)

T1WI Axial FSE 457-709 8.4-13.2 180×180~
380×380

320×128~
448×257

0 3-6

T2WI Axial FSE 3,640-7,904 83-95.2 180×180~
380×380

320×128~
448×257

0 3-6

CE-T1WI Axial FSE 457-709 8.4-13.2 180×180~
380×380

320×128~
448×257

0 3-6
February 2022 | Volu
MRI, magnetic resonance imaging; TR, repetition time; TE, echo time; FOV, field of view; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; FSE, fast spin echo; CE, contrast-
enhanced.
FIGURE 2 | An example of a segmented MRI image.
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0.613-0.858) and VC (AUC = 0.779, 95% CI, 0.564-0.921). When
tumor size was combined with radiomics features, the combined
model achieved enhanced prediction compared to the clinical
model. The first combined model involving LR-radiomics
features + clinical features had an AUC of 0.938 (95% CI,
0.838-0.986) in the TC and 0.957 (95% CI, 0.787-0.999) in the
VC. The second combined model based on SVM-radiomics
features + clinical features had an AUC of 0.944 (95% CI,
0.845-0.988) in the TC and 0.943 (95% CI, 0.766-0.997) in the
VC (Tables 12, 13 and Figures 8, 9).

Delong-test results in Table 14 indicated that there were
insignificant differences between predictive performance of
combined mode and that of clinical model, LR-Radiomic
model and SVM-Radiomic model in both cohorts. The
combined model 1 achieved equivalent AUCs compared to
combined model 2. Additionally, the combined model 1
performed better than the clinical model as indicated by AUCs
of borderline statistical significance (p = 0.0619) in the
validation cohort.
DISCUSSION

According to our univariate analysis, tumor size was the most
reliable indicator of SLM in osteosarcoma patients, which is in
accordance with prior findings (11–14). Huang et al (11)
performed a retrospective study examining the characteristics
of 1057 osteosarcoma patients. These authors reported that large
tumors (>5 cm) were at a substantially elevated risk of resulting
Frontiers in Oncology | www.frontiersin.org 7
in lung metastases in osteosarcoma patients. Munajat et al. (13)
also examined the correlation between lung metastasis and
tumor volume in a population of 70 osteosarcoma patients.
These authors reported that 33 patients (47%), who mostly
exhibited larger tumor volumes, also showed signs of lung
metastasis. However, in contrast to our study, these authors
primari ly concentrated on lung metastasis without
distinguishing synchronous and metachronous metastases. In
our study, we compared tumor size (in terms of diameter)
between the non-SLM (6.31 ± 1.32 cm) and SLM (8.09 ±
2.39 cm) groups and found that the tumor size in the SLM
group was significantly larger than that in the non-SLM group.

Tumor heterogeneity strongly modulates tumor invasion and
prognosis, and a radiomics profile can specifically reflect the
complicated histopathology of tumor (15, 16). Several MRI
radiomics studies conducted on osteosarcoma were recently
reported. Chen H et al. (17, 18) proved that a radiomics
signature based on MRI was useful for predicting the response
to neoadjuvant chemotherapy and early relapse. Zhao SL et al.
(19) showed that a radiomics signature extracted from diffusion-
weighted imaging (DWI)-MRI prior to treatment improved the
estimation of osteosarcoma.

T1WI, T2WI, and CE-T1WI are the most commonly used
MRI sequences for bone tumor. T1WI can be used to observe
anatomical structures, but sometimes it is difficult to distinguish
soft tissue masses from muscle tissues. T2WI can accurately
determine tumor margins and reveal, to a certain extent, the total
lesion cell density, whereas CE-T1WI can reveal lesion
vascularity, establish the degree of malignancy, and identify
FIGURE 3 | The radiomics framework of our study.
February 2022 | Volume 12 | Article 802234
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necrosis and solid components of tumor. Current research has
shown that multiple MRI sequences, such as DWI, T2WI/FS-
T2WI and CE-T1WI images, can enhance tumor information
extraction and thereby augment specificity, and such sequences
for bone and soft tissue tumor radiomics analysis yielded
favorable outcomes (20–23). In addition, several studies
revealed that classifiers originating from varying classifier
families exhibit differing performances for different forms of
tumors (24–28). We used two well-known machine learning
classifiers in this study. The first is LR, which is a machine
learning stratification algorithm used for the prediction of the
class probability of a given categorical dependent variable. The
second is SVM, which generates a decision margin between
two classes to facilitate label estimation from one or more
Frontiers in Oncology | www.frontiersin.org 8
feature vectors. Seven radiomics models using these three
sequences alone and combined were established in our study
(29). Differences in tumor vessel morphology affect tumor
vascular permeability (30). Increased vessel permeability may
accelerate cancer metastasis and spread; in the absence of blood
vessels, tumors cannot develop beyond a critical volume or
invade other organs (31). Enhancing MRI in neoplasms
represents regions of admixed vascularity and necrosis, in
which contrast permeability is elevated owing to damaged
vascular integrity (32). Among the seven radiomics modes, the
LR and SVM classifiers had excellent performance (AUC=0.914
and 0.929) in the model combining T1WI, T2WI and CE-T1WI.
The combination of T1WI, T2WI, and CE-T1WI allowed the
detection of morphological information and indirectly reflected
TABLE 5 | The most significant radiomics features of different models.

Model Radiomics features Coef.

T1WI Intercept -0.4597
T1WI_wavelet-LLL_glcm_Correlation 1.3060
T1WI_wavelet-LLL_gldm_GrayLevelNonUniformity 0.8114

T2WI Intercept -1.6745
T2WI_wavelet-LLL_glcm_Correlation 3.4374
T2WI_wavelet-HHH_firstorder_Mean -2.7065
T2WI_wavelet-HLH_glcm_MCC -3.5169
T2WI_wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis 2.1317

CE-T1WI Intercept -1.2416
CE-T1WI_wavelet-LLL_glcm_Correlation 1.6253
CE-T1WI_wavelet-LHL_firstorder_Mean -1.4719
CE-T1WI_wavelet-HHL_firstorder_Skewness -1.7320
CE-T1WI_wavelet-HLH_glcm_MCC -1.3359
CE-T1WI_wavelet-LHH_firstorder_Kurtosis 1.1668

T1WI+T2WI Intercept -1.0635
T2WI_wavelet-LLL_glcm_Correlation 2.2998
T2WI_wavelet-HHH_firstorder_Mean -1.5630
T2WI_log-sigma-1-0-mm-3D_ngtdm_Busyness 1.1750
T2WI_wavelet-HHH_gldm_SmallDependenceLowGrayLevelEmphasis -1.2490

T1WI+CE-T1WI Intercept -0.8489
T1WI_wavelet-LLL_glcm_Correlation 1.2206
CE-T1WI_wavelet-LHL_firstorder_Mean -1.6295
CE-T1WI_wavelet-HHL_firstorder_Skewness -1.1276

T2WI+CE-T1WI Intercept -1.6745
T2WI_wavelet-LLL_glcm_Correlation 3.4374
T2WI_wavelet-HHH_firstorder_Mean -2.7065
T2WI_wavelet-HLH_glcm_MCC -3.5169
T2WI_wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis 2.1317

T1WI+T2WI+CE-T1WI Intercept -1.2077
T2WI_wavelet-LLL_glcm_Correlation 2.4347
T2WI_wavelet-HHH_firstorder_Mean -1.6936
CE-T1WI_wavelet-HLH_glcm_MCC -1.5491
February 2022 | Volume 12 | Article
TABLE 6 | The ROC curve of different models of LR-classifier in the training cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

LR T1WI 0.795 0.663 - 0.893 0.565 0.806
T2WI 0.951 0.855 - 0.991 0.826 0.864
CE-T1WI 0.909 0.799 - 0.970 0.870f 0.871
T1WI+T2WI 0.937 0.836 - 0.985 0.783 0.903
T1WI+CE-T1WI 0.846 0.722 - 0.930 0.739 0.774
T2WI+CE-T1WI 0.951 0.855 - 0.991 0.826 0.864
T1WI+T2WI+CE-T1WI 0.940 0.840 - 0.986 0.913 0.903
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; LR, logistic regression.
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the permeability of tissue microvessels. Although the SVM
classifier in the T1WI, T2WI and CE-T1WI combined model
performed the best (AUC = 0.929), no obvious difference was
observed between the two classifiers of each radiomics model.

In addition, among all radiomics models, those including the
T2WI parameter (T2WI, T2WI+CE-T1WI, T1WI+T2WI, and
T1WI+T2WI+CE-T1WI) exhibited excellent performance
(AUC=0.829-0.929). We found that all of the final features that
included the T2WI parameter after selection contained
‘GLCM_Correlation’ and ‘firstorder_Mean’ features, which
Frontiers in Oncology | www.frontiersin.org 9
were high-dimensional features that could not be readily
interpreted by humans and included comprehensive tumor
information. Among these features, the mean, which is a first-
order feature, assesses the average grey level intensity within a
specified area of interest. The grey level cooccurrence matrix
(GLCM) is a second-order feature and is a summary of the
frequency of the various combinations of pixel brightness values
that occur between neighboring voxels in a given image. GLCM
represents the similarity of voxel values along a given direction,
whereas homogeneity represents regional grey level uniformity,
TABLE 7 | The ROC curve of different models of LR-classifier in the validation cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

LR T1WI 0.686 0.488 - 0.873 0.400 0.786
T2WI 0.850 0.699 - 0.981 0.600 0.750
CE-T1WI 0.870 0.655 - 0.965 0.500 0.786
T1WI+T2WI 0.879 0.746 - 0.993 0.700 0.929
T1WI+CE-T1WI 0.736 0.533 - 0.902 0.400 0.786
T2WI+CE-T1WI 0.850 0.699 - 0.981 0.600 0.750
T1WI+T2WI+CE-T1WI 0.914 0.776 - 0.998 0.700 0.929
Februa
ry 2022 | Volume 12 | Arti
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; LR, logistic regression.
FIGURE 4 | LR-classifier in the training cohort.
FIGURE 5 | LR-classifier in the validation cohort.
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and correlation establishes the consistency of image texture
(33, 34). In prior studies, these features established tumor
heterogeneity and were correlated with the histopathological
characteristics and prognosis of numerous tumors, such as
osteosarcoma, rectal cancer, thymic tumors, and breast cancer
(18, 25, 35–37).

Furthermore, we analysed seven discrete radiomics models,
two combined models and one clinical model in osteosarcoma
patients. The AUC of the clinical model (0.779) was lower than
that of the radiomics model. The prediction ability of the
combined model was markedly enhanced relative to that of
other models, namely, the clinical model and radiomics model,
which involved multiple and single sequences. As clinical
information may take into account only some aspects of
tumors, multiparametric MRI may better reflect of all tumor
information (38). Hence, once the clinical and radiomics
characteristics were combined, the performance greatly
improved. Based on our data, machine learning analysis
involving multiparametric MRI radiomics characteristics can
accurately and efficiently predict SLM in osteosarcoma.
Frontiers in Oncology | www.frontiersin.org 10
Our work encountered certain limitations. First, this work
was retrospective in nature. Radiomic features are heavily
influenced by differences in the acquisition and reconstruction
settings. In the present study, although the most commonly used
MRI sequences (T1WI, T2WI and CE-T1WI) were selected, MRI
image data were acquired from four distinct scanners, which can
also influence the acquired characteristics. Device inconsistency
within a dataset is a challenging issue, particularly in
retrospective analyses. Second, the sample size was quite small,
and all the obtained images were collected over several years. We
eliminated non-long bone extremity osteosarcoma and patients
who did not receive MRI and chest CT prior to surgery, which
accounted for the majority of the enrolled patients. In addition,
few osteosarcomas simultaneously met both the axial plane and
multiparametric MRI requirements. Due to our strict criteria for
patient eligibility, it was difficult to gather large datasets. Despite
a statistically insufficient sample size, the results of this study
may allow for the improvement of future clinical studies with
limited sample sizes. A large sample population with multicentre
validation is warranted to achieve high-level evidence for future
TABLE 9 | The ROC curve of different models of SVM-classifier in the training cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM T1WI 0.829 0.702 - 0.918 0.957 0.677
T2WI 0.973 0.888 - 0.998 1.000 0.838
CE-T1WI 0.935 0.834 - 0.984 1.000 0.871
T1WI+T2WI 0.930 0.826 - 0.981 0.957 0.839
T1WI+CE-T1WI 0.885 0.769 - 0.956 0.783 0.871
T2WI+CE-T1WI 0.973 0.888 - 0.998 1.000 0.839
T1WI+T2WI+CE-T1WI 0.938 0.838 - 0.986 0.957 0.903
Februa
ry 2022 | Volume 12 | Arti
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; SVM, support vector machine.
TABLE 8 | Delong Test between each two models of LR-classifier in the training and validation cohorts.

Radiomic model T1WI T2WI CE-T1WI T1WI+T2WI T1WI+CE-T1WI T2WI+CE-T1WI T1WI+T2WI+CE-T1WI

T1WI – 0.0063* 0.0725 0.0117* 0.4114 0.0063* 0.0110*
T2WI 0.1391 – 0.2395 0.6474 0.0318* 1.0000 0.6744
CE-T1WI 0.1048 0.7088 – 0.4144 0.1713 0.2395 0.3033
T1WI+T2WI 0.0695 0.5149 0.4838 – 0.0613 0.6474 0.8620
T1WI+CE-T1WI 0.6829 0.2054 0.2238 0.0771 – 0.0318* 0.0545
T2WI+CE-T1WI 0.1391 1.0000 0.7088 0.5149 0.2054 – 0.6744
T1WI+T2WI+
CE-T1WI

0.0465* 0.2542 0.3188 0.6750 0.0720 0.2542 –

Training cohort Validation cohort
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced. *p < 0.05.
TABLE 10 | The ROC curve of different models of SVM-classifier in the validation cohort.

Classifiers Model AUC 95% CI Sensitivity Specificity

SVM T1WI 0.629 0.409 - 0.815 1.000 0.429
T2WI 0.829 0.621 - 0.950 0.800 0.786
CE-T1WI 0.771 0.556 - 0.916 1.000 0.500
T1WI+T2WI 0.879 0.681 - 0.975 0.800 0.857
T1WI+CE-T1WI 0.643 0.423 - 0.826 0.800 0.500
T2WI+CE-T1WI 0.829 0.621 - 0.950 0.800 0.786
T1WI+T2WI+CE-T1WI 0.929 0.746 - 0.993 0.900 0.857
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; AUC, area under curve; 95% CI, 95% confidence interval; SVM, support vector machine.
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FIGURE 6 | SVM-classifier in the training cohort.
FIGURE 7 | SVM-classifier in the validation cohort. Figures 4–7 The ROC curve of different models and classifier in the training and validation cohorts.
TABLE 11 | Delong Test between each two models of SVM-classifier in the training and validation cohorts.

Radiomic model T1WI T2WI CE-T1WI T1WI+T2WI T1WI+CE-T1WI T2WI+CE-T1WI T1WI+T2WI+CE-T1WI

T1WI – 0.0084* 0.1247 0.1305 0.2795 0.0084* 0.0956
T2WI 0.0928 – 0.2589 0.1822 0.0449* 1.0000 0.2545
CE-T1WI 0.2519 0.4948 – 0.8594 0.3360 0.2589 0.9250
T1WI+T2WI 0.0306* 0.4472 0.2551 – 0.3718 0.1822 0.5620
T1WI+CE-T1WI 0.8981 0.1217 0.1746 0.0203* – 0.0449* 0.2863
T2WI+CE-T1WI 0.0928 1.0000 0.4948 0.4472 0.1217 – 0.2545
T1WI+T2WI+
CE-T1WI

0.0079* 0.1404 0.0912 0.3870 0.0125* 0.1404 –

Training cohort Validation cohort
Frontiers in Oncology | w
ww.frontiersin.o
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T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced. *p < 0.05.
TABLE 12 | The ROC curve of clinical features, radiomic, clinical features + radiomic model in the training cohort.

Model AUC 95% CI Sensitivity Specificity

Clinical model 0.750 0.613 - 0.858 0.696 0.839
LR-radiomic 0.940 0.840 - 0.986 0.913 0.903
SVM-radiomic 0.938 0.838 - 0.986 0.957 0.903
Combined 1
(clinical+LR-radiomic)

0.938 0.838 - 0.986 0.957 0.903

Combined 2
(clinical+SVM-radiomic)

0.944 0.845 - 0.988 0.956 0.900
me 12 | Art
AUC, area under curve; LR, logistic regression; 95% CI, 95% confidence interval; SVM, support vector machine.
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TABLE 13 | The ROC curve of clinical features, radiomic, clinical features + radiomic model in the validation cohort.

Model AUC 95% CI Sensitivity Specificity

Clinical model 0.779 0.564 - 0.921 0.600 0.929
LR-radiomic 0.914 0.776 - 0.998 0.700 0.929
SVM-radiomic 0.929 0.746 - 0.993 0.900 0.857
Combined 1
(clinical+LR-radiomic)

0.957 0.787 - 0.999 1.000 0.857

Combined 2
(clinical+SVM-radiomic)

0.943 0.766 - 0.997 0.846 0.929
Frontiers in Oncology | www.frontiersin.org
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AUC, area under curve; LR, logistic regression; 95% CI, 95% confidence interval; SVM, support vector machine.
FIGURE 8 | The training cohort.
FIGURE 9 | The validation cohort. Figures 8, 9 The ROC curve of clinical features, radiomic, clinical features + radiomic model in the training and validation cohorts.
TABLE 14 | Delong Test between each two models (clinical, radiomic, clinical features + radiomic model) in the training and validation cohort.

Model Clinical LR-
Radiomic

SVM-
Radiomic

Clinical +LR-Radiomic Clinical +SVM-Radiomic

Clinical – 0.0140* 0.0161* 0.0138* 0.0085*
LR-Radiomic 0.0966 – 0.9065 0.7927 0.9142
SVM-Radiomic 0.1361 0.5247 – 1.0000 0.8908
Combined 1
(Clinical +LR-Radiomic)

0.0619 0.7807 0.2536 – 0.8798

Combined 2
(Clinical +SVM-
Radiomic)

0.0787 0.8381 0.6251 0.6265 –

Training cohort Validation cohort
T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; CE, contrast-enhanced; LR, logistic regression; SVM, support vector machine. *p < 0.05.
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clinical application.Third,wecomparedonlyT1WI,T2WIandCE-
T1WI sequences of MRI. The most commonly used clinical
examination for osteosarcoma is X-ray, and the effectiveness of
X-ray radiomics needs to be investigated in future studies.
Additional MRI functional data must be included in future
evaluations to enhance the accuracy and clinical value of ourmodel.

In conclusion, we established a noninvasive prediction tool
involving radiomics and clinical characteristics to predict SLM in
osteosarcoma patients. The LR and SVM classifiers exhibited an
elevated degree of diagnostic performance while employing a
combination of characteristics for distinguishing SLM and lack
of SLM in osteosarcoma patients. Among all radiomics models,
those including the T2WI parameter exhibited good predictive
performance for the prediction of osteosarcoma SLM. The
constructed model involving the combination of clinical and
radiomics characteristics is more effective in evaluating
osteosarcoma SLM relative to the clinical model and radiomics
model, and the constructed model can provide a new basis for
early clinical intervention in metastasis.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding authors.
Frontiers in Oncology | www.frontiersin.org 13
ETHICS STATEMENT

Written informed consent was not obtained from the individual
(s), nor the minor(s)’ legal guardian/next of kin, for the
publication of any potentially identifiable images or data
included in this article.
AUTHOR CONTRIBUTIONS

ZL, JL, XS, and WC contributed to the design and
implementation of the concept. ZL and JL contributed equally
to this work. JL and ZL contributed in collecting and reviewing
patients’ clinical and imaging data. RL and ZL contributed in
segmenting the lesions. YL and RL contributed in the statistical
analysis of the data. ZL, YL, and RL contributed in building
models. All authors contributed to the writing and reviewing of
the paper. All authors read and approved the final manuscript.
FUNDING

High Level-Hospital Program, Health Commission of
Guangdong Province, China (No: HKUSZH201901026).
REFERENCES
1. Ritter J, Bielack S. Osteosarcoma. J Ann Oncol Off J Eur Soc Med Oncol (2010)

(Supplement 7):320–5. doi: 10.1093/annonc/mdq276
2. Meyers P, Heller G, Healey J, Huvos A, Applewhite A, Sun M, et al.

Osteogenic Sarcoma With Clinically Detectable Metastasis at Initial
Presentation. J Clin Oncol Off J Am Soc Clin Oncol (1993) 11(3):449–53.
doi: 10.1200/jco.1993.11.3.449

3. Kager L, Zoubek A, Pötschger U, Kastner U, Flege S, Kempf-Bielack B, et al.
Primary Metastatic Osteosarcoma: Presentation and Outcome of Patients
Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols.
J Clin Oncol Off J Am Soc Clin Oncol (2003) 21(10):2011–8. doi: 10.1200/
jco.2003.08.132

4. Bacci G, Picci P, Briccoli A, Avella M, Ferrari S, Femino F, et al. Osteosarcoma
of the Extremity Metastatic at Presentation: Results Achieved in 26 Patients
Treated With Combined Therapy (Primary Chemotherapy Followed by
Simultaneous Resection of the Primary and Metastatic Lesions). Tumori
(1992) 78(3):200–6. doi: 10.1177/030089169207800311

5. Kaste S, Pratt C, Cain A, Jones-Wallace D, Rao B. Metastases Detected at the
Time of Diagnosis of Primary Pediatric Extremity Osteosarcoma at Diagnosis:
Imaging Features. Cancer (1999) 86(8):1602–8. doi: 10.1002/(sici)1097-0142
(19991015)86:8<1602::aid-cncr31>3.0.co;2-r

6. Sheen H, Kim W, Byun B, Kong C, Song W, Cho W, et al. Metastasis Risk
Prediction Model in Osteosarcoma Using Metabolic Imaging Phenotypes: A
Multivariable Radiomics Model. PloS One (2019) 14(11):e0225242.
doi: 10.1371/journal.pone.0225242

7. Brader P, Abramson S, Price A, Ishill N, Emily Z, Moskowitz C, et al. Do
Characteristics of Pulmonary Nodules on Computed Tomography in
Children With Known Osteosarcoma Help Distinguish Whether the
Nodules Are Malignant or Benign? J Pediatr Surg (2011) 46(4):729–35.
doi: 10.1016/j.jpedsurg.2010.11.027

8. Chiesa A, Spinnato P, Miceli M, Facchini G. Radiologic Assessment of
Osteosarcoma Lung Metastases: State of the Art and Recent Advances. Cells
(2021) 10(3):553. doi: 10.3390/cells10030553
9. Fang J, Zhang B, Wang S, Jin Y, Wang F, Ding Y, et al. Association of MRI-
Derived Radiomic Biomarker With Disease-Free Survival in Patients With
Early-Stage Cervical Cancer. Theranostics (2020) 10(5):2284–92. doi: 10.7150/
thno.37429

10. van Griethuysen J, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational Radiomics System to Decode the Radiographic
Phenotype. Cancer Res (2017) 77(21):e104–e7. doi: 10.1158/0008-5472.Can-
17-0339

11. Huang X, Zhao J, Bai J, Shen H, Zhang B, Deng L, et al. Risk and
Clinicopathological Features of Osteosarcoma Metastasis to the Lung: A
Population-Based Study. J Bone Oncol (2019) 16:100230. doi: 10.1016/
j.jbo.2019.100230

12. Kim S, Shin K, Kim H, Cho Y, Noh J, Suh J, et al. Postoperative Nomogram to
Predict the Probability of Metastasis in Enneking Stage IIB Extremity
Osteosarcoma. BMC Cancer (2014) 14:666. doi: 10.1186/1471-2407-14-666

13. Munajat I, Zulmi W, Norazman M, Wan Faisham W. Tumour Volume and
Lung Metastasis in Patients With Osteosarcoma. JJoos (2008) 16(2):182–5.
doi: 10.1177/230949900801600211

14. Wang S, Zheng S, Hu K, Sun H, Zhang J, Rong G, et al. A Predictive Model to
Estimate the Pretest Probability of Metastasis in Patients With Osteosarcoma.
Medicine (2017) 96: (3):e5909. doi: 10.1097/MD.0000000000005909

15. Ogura K, Fujiwara T, Yasunaga H, Matsui H, Jeon D, Cho W, et al.
Development and External Validation of Nomograms Predicting Distant
Metastases and Overall Survival After Neoadjuvant Chemotherapy and
Surgery for Patients With Nonmetastatic Osteosarcoma: A Multi-
Institutional Study. Cancer (2015) 121(21):3844–52. doi: 10.1002/cncr.29575

16. Li H, Zhu Y, Burnside E, Drukker K, Hoadley K, Fan C, et al. MR Imaging
Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as
Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene
Assays. Radiology (2016) 281(2):382–91. doi: 10.1148/radiol.2016152110

17. Chen H, Zhang X, Wang X, Quan X, Deng Y, Lu M, et al. MRI-Based
Radiomics Signature for Pretreatment Prediction of Pathological Response to
Neoadjuvant Chemotherapy in Osteosarcoma: A Multicenter Study. Eur
Radiol (2021) 31(10):7913–24. doi: 10.1007/s00330-021-07748-6
February 2022 | Volume 12 | Article 802234

https://doi.org/10.1093/annonc/mdq276
https://doi.org/10.1200/jco.1993.11.3.449
https://doi.org/10.1200/jco.2003.08.132
https://doi.org/10.1200/jco.2003.08.132
https://doi.org/10.1177/030089169207800311
https://doi.org/10.1002/(sici)1097-0142(19991015)86:8%3C1602::aid-cncr31%3E3.0.co;2-r
https://doi.org/10.1002/(sici)1097-0142(19991015)86:8%3C1602::aid-cncr31%3E3.0.co;2-r
https://doi.org/10.1371/journal.pone.0225242
https://doi.org/10.1016/j.jpedsurg.2010.11.027
https://doi.org/10.3390/cells10030553
https://doi.org/10.7150/thno.37429
https://doi.org/10.7150/thno.37429
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1016/j.jbo.2019.100230
https://doi.org/10.1016/j.jbo.2019.100230
https://doi.org/10.1186/1471-2407-14-666
https://doi.org/10.1177/230949900801600211
https://doi.org/10.1097/MD.0000000000005909
https://doi.org/10.1002/cncr.29575
https://doi.org/10.1148/radiol.2016152110
https://doi.org/10.1007/s00330-021-07748-6
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Radiomics for SLM in Osteosarcoma
18. Chen H, Liu J, Cheng Z, Lu X,Wang X, LuM, et al. Development and External
Validation of an MRI-Based Radiomics Nomogram for Pretreatment
Prediction for Early Relapse in Osteosarcoma: A Retrospective Multicenter
Study. Eur J Radiol (2020) 129:109066. doi: 10.1016/j.ejrad.2020.109066

19. Zhao S, Su Y, Duan J, Qiu Q, Ge X, Wang A, et al. Radiomics Signature
Extracted From Diffusion-Weighted Magnetic Resonance Imaging Predicts
Outcomes in Osteosarcoma. J Bone Oncol (2019) 19:100263. doi: 10.1016/
j.jbo.2019.100263

20. Dai Y, Yin P, Mao N, Sun C, Wu J, Cheng G, et al. Differentiation of Pelvic
Osteosarcoma and Ewing Sarcoma Using Radiomic Analysis Based on T2-
Weighted Images and Contrast-Enhanced T1-Weighted Images. BioMed Res
Int (2020) 2020:9078603. doi: 10.1155/2020/9078603

21. Yin P, Mao N, Liu X, Sun C, Wang S, Chen L, et al. Can Clinical Radiomics
Nomogram Based on 3D Multiparametric MRI Features and Clinical
Characteristics Estimate Early Recurrence of Pelvic Chondrosarcoma?
J Magn Reson Imaging JMRI (2020) 51(2):435–45. doi: 10.1002/
jmri.26834

22. Zhong J, Hu Y, Si L, Jia G, Xing Y, Zhang H, et al. A Systematic Review of
Radiomics in Osteosarcoma: Utilizing Radiomics Quality Score as a Tool
Promoting Clinical Translation. Eur Radiol (2021) 31(3):1526–35.
doi: 10.1007/s00330-020-07221-w

23. Wang H, Zhang J, Bao S, Liu J, Hou F, Huang Y, et al. Preoperative
MRI-Based Radiomic Machine-Learning Nomogram May Accurately
Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-
Center Study. J Magn Reson Imaging JMRI (2020) 52(3):873–82.
doi: 10.1002/jmri.27111

24. Viswanath S, Chirra P, Yim M, Rofsky N, Purysko A, Rosen M, et al.
Comparing Radiomic Classifiers and Classifier Ensembles for Detection of
Peripheral Zone Prostate Tumors on T2-Weighted MRI: A Multi-Site Study.
BMC Med Imaging (2019) 19(1):22. doi: 10.1186/s12880-019-0308-6

25. Hu J, Zhao Y, Li M, Liu Y, Wang F, Weng Q, et al. Machine-Learning-Based
Computed Tomography Radiomic Analysis for Histologic Subtype
Classification of Thymic Epithelial Tumours. Eur J Radiol (2020)
126:108929. doi: 10.1016/j.ejrad.2020.108929

26. Parmar C, Grossmann P, Rietveld D, Rietbergen M, Lambin P, Aerts H.
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head
and Neck Cancer. Front Oncol (2015) 5:272. doi: 10.3389/fonc.2015.00272

27. Delzell D, Magnuson S, Peter T, Smith M, Smith B. Machine Learning and
Feature Selection Methods for Disease Classification With Application to
Lung Cancer Screening Image Data. Front Oncol (2019) 9:1393. doi: 10.3389/
fonc.2019.01393

28. Zhang Y, Zhu Y, Shi X, Tao J, Cui J, Dai Y, et al. Soft Tissue Sarcomas:
Preoperative Predictive Histopathological Grading Based on Radiomics of
MRI. Acad Radiol (2019) 26(9):1262–8. doi: 10.1016/j.acra.2018.09.025

29. Nazari M, Shiri I, Hajianfar G, Oveisi N, Abdollahi H, Deevband M, et al.
Noninvasive Fuhrman Grading of Clear Cell Renal Cell Carcinoma Using
Computed Tomography Radiomic Features and Machine Learning. La Radiol
Med (2020) 125(8):754–62. doi: 10.1007/s11547-020-01169-z

30. Roberts W, Delaat J, Nagane M, Huang S, Cavenee W, Palade G. Host
Microvasculature Influence on Tumor Vascular Morphology and Endothelial
Frontiers in Oncology | www.frontiersin.org 14
Gene Expression. Am J Pathol (1998) 153(4):1239–48. doi: 10.1016/s0002-
9440(10)65668-4

31. Carmeliet P, Jain R. Angiogenesis in Cancer and Other Diseases. Nat
Commun (2000) 407(6801):249–57. doi: 10.1038/35025220

32. Chan A, Fox J, Perez Johnston R, Kim J, Brouwer L, Grizzard J, et al. Late
Gadolinium Enhancement Cardiac Magnetic Resonance Tissue
Characterization for Cancer-Associated Cardiac Masses: Metabolic and
Prognostic Manifestations in Relation to Whole-Body Positron Emission
Tomography. J Am Heart Assoc (2019) 8(10):e011709. doi: 10.1161/
jaha.118.011709

33. Zhang L, Fried D, Fave X, Hunter L, Yang J, Court L. IBEX: An Open
Infrastructure Software Platform to Facilitate Collaborative Work in
Radiomics. Med Phys (2015) 42(3):1341–53. doi: 10.1118/1.4908210

34. Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Delmastro E, et al.
Predicting Locally Advanced Rectal Cancer Response to Neoadjuvant
Therapy With F-FDG PET and MRI Radiomics Features. Eur J Nucl Med
Mol Imaging (2019) 46(4):878–88. doi: 10.1007/s00259-018-4250-6

35. Nie K, Shi L, Chen Q, Hu X, Jabbour S, Yue N, et al. Rectal Cancer:
Assessment of Neoadjuvant Chemoradiation Outcome Based on Radiomics
of Multiparametric MRI. Clin Cancer Res (2016) 22(21):5256–64.
doi: 10.1158/1078-0432.Ccr-15-2997

36. Liu S, Zheng H, Pan X, Chen L, Shi M, Guan Y, et al. Texture Analysis of CT
Imaging for Assessment of Esophageal Squamous Cancer Aggressiveness.
J Thorac Dis (2017) 9(11):4724–32. doi: 10.21037/jtd.2017.06.46

37. Xiong Q, Zhou X, Liu Z, Lei C, Yang C, Yang M, et al. Multiparametric MRI-
Based Radiomics Analysis for Prediction of Breast Cancers Insensitive to
Neoadjuvant Chemotherapy. Clin Trans Oncol (2020) 22(1):50–9.
doi: 10.1007/s12094-019-02109-8

38. Gillies R, Kinahan P, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/
radiol.2015151169

Conflict of Interest: Author YL was employed by GE Healthcare China.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Luo, Li, Liao, Liu, Shen and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
February 2022 | Volume 12 | Article 802234

https://doi.org/10.1016/j.ejrad.2020.109066
https://doi.org/10.1016/j.jbo.2019.100263
https://doi.org/10.1016/j.jbo.2019.100263
https://doi.org/10.1155/2020/9078603
https://doi.org/10.1002/jmri.26834
https://doi.org/10.1002/jmri.26834
https://doi.org/10.1007/s00330-020-07221-w
https://doi.org/10.1002/jmri.27111
https://doi.org/10.1186/s12880-019-0308-6
https://doi.org/10.1016/j.ejrad.2020.108929
https://doi.org/10.3389/fonc.2015.00272
https://doi.org/10.3389/fonc.2019.01393
https://doi.org/10.3389/fonc.2019.01393
https://doi.org/10.1016/j.acra.2018.09.025
https://doi.org/10.1007/s11547-020-01169-z
https://doi.org/10.1016/s0002-9440(10)65668-4
https://doi.org/10.1016/s0002-9440(10)65668-4
https://doi.org/10.1038/35025220
https://doi.org/10.1161/jaha.118.011709
https://doi.org/10.1161/jaha.118.011709
https://doi.org/10.1118/1.4908210
https://doi.org/10.1007/s00259-018-4250-6
https://doi.org/10.1158/1078-0432.Ccr-15-2997
https://doi.org/10.21037/jtd.2017.06.46
https://doi.org/10.1007/s12094-019-02109-8
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Radiomics Analysis of Multiparametric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma
	Introduction
	Materials And Methods
	Patient Selection
	MR Imaging
	Preprocessing of MR Images
	Radiomic Feature Extraction
	Radiomics Feature Selection
	Machine Learning Model
	Statistical Analysis

	Results
	Clinical Characteristics of the Patients
	Performance of the Radiomics Models

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


