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Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual’s health and survival. The olfactory bulb 
(OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal’s 
needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic 
neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources 
seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing 
the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. 
We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes 
in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
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Introduction

We live in an ever-changing environment that poses an enor-
mous challenge to our nervous system. Granting our behav-
ioral flexibility, the ability to perceive and act upon sensory 
stimuli in a differentiated way is a process called neuromodu-
lation. Neuromodulation, defined as “the alteration of cellular 
or synaptic properties by a neuron or a substance released by 
neurons” (Katz 1999) is a topic that has received more and 
more attention over the last years. Formerly characterized as 
a form of slow and diffuse neuronal communication (Bucher 
and Marder 2013) is it now recognized that neuromodulation 
acts on multiple timescales (Nadim and Bucher 2014) and 
that all neuronal circuits are subject to modulatory influences 
(e.g., Jacob and Nienborg 2018). This modulation is easily 
noticeable in sensory systems where stimulus perception 
changes dependent on processes such as mood or attention. 
One of the most famous examples of such a change in per-
ception is the “invisible gorilla experiment” (https ://www.
youtu be.com/watch ?v=vJG69 8U2Mv o) from Daniel Simons 
and Christopher Chabris who demonstrated that even large 

objects can become invisible if attention is directed away 
from them.

While evidence for neuromodulatory processes can be 
found across all sensory modalities (Ferezou et al. 2006; 
Reynolds and Chelazzi 2004; Zelano and Sobel 2005), 
the exact mechanism leading to changes in behavior is 
oftentimes hard to pinpoint, mainly for two reasons: in the 
immensely complex landscape of sensory processing, there 
are multiple neuromodulatory mechanisms for every brain 
area and each of those mechanisms typically also influences 
multiple cellular systems.

The olfactory system offers a unique opportunity for stud-
ying mechanisms underlying neuromodulatory changes in 
sensory systems, especially in rodents, macrosmatic animals. 
A major advantage of the olfactory system is its relative 
simplicity since primary olfactory cortices are three-layered 
paleocortical structures (Wilson et al. 2014) and olfactory 
information can reach (neo) cortical areas without being 
relayed via the thalamus (Moberly et al. 2018). Additionally, 
behavioral responses, due to changes in hormonal or nutri-
tional status as well as attention or experience-dependent 
modulation, can be easily observed.

Early sensory processing, i.e., only one or two synapses 
downstream of primary sensory neurons, holds a special 
role in olfaction. The olfactory bulb (OB), the first relay 
station of olfactory information in the brain, is a bulbous 
laminar structure located anterior to the rodent forebrain. 
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In contrast to other sensory systems where early processing 
structures are embedded deep inside the brain, the OB is 
highly accessible to physiological recording techniques. 
Formerly thought to represent a simple information relay 
between sensory input and cortex, it is now recognized as 
a central olfactory processing hub (Cleland 2010). This 
processing is highly dependent on modulatory processes 
originating both inside (“intrinsic neuromodulation”) as 
well as outside (“extrinsic neuromodulation”) of the OB 
(see Lizbinski and Dacks 2017). Especially extrinsic sources 
seem to have a large influence on OB information processing 
as the OB receives massive efferent input from numerous 
brain centers outweighing the sensory input from the nose 
(Shepherd 1972).

The topic of OB neuromodulation has gained more inter-
est over the last years with many new and interesting studies 
shedding light on the different mechanisms. Recent reviews 
give a good summary of particular modulatory mechanisms 
(Gaudry 2018; Harvey and Heinbockel 2018; Li et al. 2020; 
Lizbinski and Dacks 2017; Sayin et al. 2018) but mostly 
focus on just one or a few of the multiple sources for neu-
romodulation. Building on our previous work (Brunert and 
Rothermel 2019; McIntyre et al. 2017), we here aim to give 
a more comprehensive overview of extrinsic influencers of 
olfactory processing in mice. In this review, we significantly 
expanded the chapters on each specific neuromodulatory fac-
tor with a special focus on their sources, effectors within the 
OB, changes in cellular output, and behavioral consequences. 
Furthermore, we give an outlook on potential future research 
topics and discuss a selection of open questions in the field 
of OB neuromodulation that might help to further increase 
interest in this challenging, but very fascinating topic.

Neuroanatomy of the vertebrate olfactory 
bulb

The cellular composition and synaptic connectivity of the 
rodent OB are reasonably well established (for review see 
Burton et al. 2020; Nagayama et al. 2014; Wachowiak and 
Shipley 2006), a prerequisite of understanding neuromodula-
tory effects. We want to briefly introduce the anatomy of the 
OB and mention cell types that have been shown to play a 
role as effectors of extrinsic neuromodulation.

The OB, as the first structure of odor processing, receives 
olfactory information from axons of olfactory sensory neurons 
(OSN). Axons of these primary sensory neurons traverse the 
cribriform plate located between the nasal cavity and the brain 
and bundle together forming the outermost layer of the OB, 
the olfactory nerve layer. Every type of OSN expresses one 
out of a repertoire of approximately 1200 receptors in mice 
(~ 350 in humans) (Glusman et al. 2001; Nei et al. 2008). 
Axons of sensory neurons expressing the same type of 

olfactory receptor are sorted within this layer and enter the 
OB together (Mombaerts et al. 1996; Ressler et al. 1994) to 
form synapses with OB neurons in functional units called 
glomeruli (Shepherd et al. 2004; Sicard and Holley 1984). 
The layer these glomeruli form is called the glomerular layer 
(GL). The GL hosts several types of interneurons, most nota-
bly the periglomerular neurons (PGC), a heterogeneous group 
of GABAergic, and partially dopaminergic neurons, some of 
which receive direct input from OSNs. Additional cells are 
the dopaminergic and GABAergic superficial short axon cells 
(SA), which are characterized by the interglomerular projec-
tion of their dendrites, as well as external tufted cells (ETC), 
glutamatergic neurons showing spontaneous rhythmic activity 
(for review see (Kosaka and Kosaka 2016)). The GL merges 
into the external plexiform layer (EPL). In the EPL various 
types of interneurons can be found as well as the first type of 
OB output neuron, the tufted cell (TC). The mitral cell (MC), 
the second type of OB output neuron, is located in a thin ring-
like structure within the OB, the mitral cell layer (MCL). MC 
and TC both project to primary olfactory cortices but show 
different projection patterns (Igarashi et al. 2012) as well as 
different properties in odor processing (Ackels et al. 2020; 
Economo et al. 2016; Short and Wachowiak 2019). Adjacent 
to the MCL, the internal plexiform (IPL) layer harbors axons 
from MC and TC as well as ETC axon collaterals. The GCL 
comprises granule cells (GC) as well as deep short axon cells 
(dSA). These two types of inhibitory interneurons receive 
strong centrifugal inputs and therefore play an essential part 
in OB neuromodulation.

Different forms of neuromodulatory sources 
for the olfactory bulb

Olfaction is, especially in rodents, essential for survival. 
Mate choice, maternal behavior, food detection, and prefer-
ence as well as predator avoidance are only a few examples 
that critically involve the olfactory system. Thus, the plas-
ticity and fine-tuning of olfaction to an animal’s needs are 
especially important. For the OB, a large number of intrinsic 
and extrinsic modulatory processes have been demonstrated. 
Extrinsic neuromodulation, i.e., modulation of olfactory pro-
cessing by sources from outside the OB, can be mediated by 
neurotransmitters, such as GABA or glutamate, “classic” 
neuromodulators, like dopamine or serotonin, or by pep-
tides, produced either by neurons (neuropeptides) or by other 
organs, reaching the OB via the bloodstream (hormones). 
Figure 1 depicts different extrinsic neuromodulation sources 
in the OB together with examples of the chemical messen-
gers involved.
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Cortical top‑down modulation

The primary olfactory cortex, i.e., areas with direct OB input, 
comprises the anterior olfactory nucleus, tenia tecta, dorsal 
peduncular cortex, piriform cortex, olfactory tubercle, nucleus 
of the lateral olfactory tract, cortical amygdala, and lateral 
entorhinal area (Igarashi et al. 2012; Neville and Haberly 2004; 
Wesson 2020).

The OB receives cortical top-down inputs from at least three 
olfactory cortex areas (Fig. 1a) (Matsutani and Yamamoto 
2008), the anterior olfactory nucleus (AON), the piriform cortex 
(PC), and the lateral entorhinal cortex (LEC). The existence 
of centrifugal back projections from the olfactory tubercle 
is currently under debate (De La Rosa-Prieto et al. 2015; 
Gervais 1979; Heimer 1968; In ’t Zandt et al. 2019; Shafa 
and Meisami 1977; Zhang et al. 2017). Although these OB 
projections are all glutamatergic, their effects on OB circuitry 
are quite complex.

Lateral entorhinal cortex

The LEC receives (Igarashi et  al.  2012) and transfers 
olfactory information from the OB to the hippocampus 
(Steward and Scoville 1976). It is involved in the 
integration of olfactory information and olfactory 
discrimination learning (Chapuis et  al.  2013; Staubli 
et  al.  1984). OB projections arise from the layer II 
calbindin-positive excitatory neurons of the ventral LEC 
(Leitner et al. 2016). Due to its large number of afferent 
inputs, it has been hypothesized that feedback from LEC 
could provide information about the hedonic state, recent 
experience, and multisensory events. Additionally, given 
that LEC neurons are more narrowly tuned to odors than 
PC neurons (Xu and Wilson 2012), it might provide highly 
odor specific feedback to the OB (Leitner et al. 2016). So 
far it is unknown how LEC projections modulate odor 
processing in the OB but it is interesting to note that LEC 

Fig. 1  Types of extrinsic neuromodulatory inputs to the OB. Neuronal (a–
c) as well as non-neuronal (d) sources of OB effective neuromodulatory 
cues. Brain-derived sources are marked in light purple while other colors 
mark sources outside the brain. While neuronal sources stem from fibers 
of brain centers projecting to the OB, non-neuronal sources secrete their 
cues to the bloodstream to be effective on OB receptors. (Abbreviations: 

AON anterior olfactory nucleus, PC piriform cortex, LEC lateral entorhi-
nal cortex, RN raphe nuclei, LC locus coeruleus, BF basal forebrain, HPT 
hypothalamus, TG trigeminal ganglion, ST stomach, SI small intestine, 
PAN pancreas, AT adipose tissue)
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to OB signaling seems to precede odor onset, and thus 
could potentially prepare the OB for incoming inputs (Kay 
et al. 1996).

Piriform cortex

The PC can be separated into two parts, the anterior piri-
form (aPC) and the posterior piriform cortex (pPC). They 
receive input from different but overlapping populations of 
OB output cells (Igarashi et al. 2012; Nagayama et al. 2010) 
and code for different aspects of odor information (Wilson 
and Sullivan 2011). Additionally, the aPC has been shown 
to host a larger number of neurons projecting to the OB 
compared with the pPC (Padmanabhan et al. 2016) but the 
functional relevance of differences between aPC and pPC-
derived OB projections is, as yet, unclear. PC inputs to the 
OB seem to activate predominantly GCs (Boyd et al. 2012; 
Davis and Macrides 1981; Davis et al. 1978; Pinching and 
Powell 1972; Price and Powell 1970) which in turn inhibit 
OB output neurons (Balu et al. 2007; Boyd et al. 2012; 
Strowbridge 2009). More recently, a visualization of top-
down projections from PC into the OB (Boyd et al. 2015; 
Otazu et al. 2015) displayed projections to the GCL, to target 
GCs and dSA cells and, to a lesser extent also, to the GL, 
targeting PG and SA cells. Functionally probing PC-derived 
fiber activity, as well as effects of PC fiber activation, 
revealed a possible role for PC fibers in MC decorrelation 
(Otazu et al. 2015) and sensory gating (Boyd et al. 2012).

Anterior olfactory nucleus

The AON sends the majority of cortical top-down projections 
to the OB (Carson 1984; Shipley and Adamek 1984). 
This olfactory cortex area has been implicated in a range 
of different functions, including serving as the first site 
of integrated odor percept formation and reconstructing 
olfactory memory traces (Aqrabawi and Kim 2020; Haberly 
2001; Levinson et  al.  2020), social interaction (Oettl 
et al. 2016; Wacker et al. 2011; Wang et al. 2020), controlling 
food intake (Soria-Gomez et  al.  2014), and integrating 
activity within and between the two OBs (Esquivelzeta 
Rabell et al. 2017; Grobman et al 2018; Kikuta et al. 2010; 
Lei et  al.  2006; Schoenfeld and Macrides 1984). AON-
derived axons have been shown to project to multiple layers 
of the OB (Padmanabhan et al. 2016; Reyher et al. 1988; Wen 
et al. 2019) including the GCL, as well as the EPL and the 
MCL. Furthermore, AON projections are bilateral; i.e., the 
AON does not only send axons to the ipsilateral but also, via 
the anterior commissure, to the contralateral OB (Brunjes 
et al. 2005; Illig and Eudy 2009; Wen et al. 2019). The 
AON can be divided into two major parts, pars principalis 
(AONpP) and pars externa (AONpE) (Brunjes et al. 2005). 
AONpP sends, similar to PC, sensory-evoked feedback to 

the OB (Rothermel and Wachowiak 2014) but only a few 
studies have investigated the influence of centrifugal AONpP 
projections on in vivo OB circuit function. Activation of 
AONpP derived fibers strongly inhibits sensory signaling 
of olfactory output neurons both in the anesthetized 
(Markopoulos et al. 2012; Medinaceli Quintela et al. 2020) 
as well as in the awake behaving mouse (Medinaceli 
Quintela et al. 2020) suggesting a type of gating function. 
In contrast to that, AONpE corticofugal projections seem to 
be exclusively contralateral (Schoenfeld and Macrides 1984; 
Yan et al. 2008). Neurons within AONpE integrate signals 
from ipsilateral and contralateral OB (Kikuta et al. 2010), and 
their projections to the OB seem to link mirror-symmetric 
MCs and TC with each other (Grobman et al. 2018), possibly 
to achieve odor perceptual unity.

“Neuromodulatory” projections

The term “neuromodulatory systems” refers to small neu-
ronal pools grouped in specific nuclei in the brainstem, the 
mid-brain, and the basal forebrain. Through their widespread 
projections, neuromodulatory centers can influence many 
brain regions and have a powerful effect on cognitive behav-
ior (Avery and Krichmar 2017). Neuromodulatory centers 
include the locus coeruleus for noradrenergic projections, 
the raphe nuclei for serotonergic projections, the basal fore-
brain for cholinergic projections, and the ventral tegmental 
area and substatia nigra for dopaminergic projections (Sara 
2009). These centers innervate a large variety of different 
brain structures which themselves are often highly intercon-
nected, thereby complicating the investigation of each of 
these modulatory centers on a particular circuit. Though the 
literature has tried to pin certain functions to each of the 
neurotransmitters, e.g., acetylcholine mediating attentional 
processes (D’Souza and Vijayaraghavan 2014; Parikh and 
Sarter 2008), serotonin influencing mood (Salomon and 
Cowan 2013), and noradrenaline being responsible for alert-
ness (Waterhouse and Navarra 2018) it becomes more and 
more apparent that their function is far more complex and 
even direct interactions between neuromodulatory systems 
have to be considered (e.g., cholinergic innervation of raphe 
(Kalen and Wiklund 1989)).

The OB receives centrifugal projections from at least 
three of these neuromodulatory systems (Fig. 1b), the locus 
coeruleus (LC), the basal forebrain (BF), and and the raphe 
nuclei. Also, a direct dopaminergic input to the OB from sub-
statia nigra has been suggested (Hoglinger et al 2015). How-
ever, while there are clear effects of dopaminergic neuron 
ablation detectable in the OB circuitry (Zhang et al. 2015) 
and olfactory perception (Hoglinger et al. 2015), it is still 
unclear if this is due to a direct connection, since earlier 
results (Hoglinger et al. 2015) could not be confirmed by 
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newer tracing studies (Padmanabhan et al. 2018; Schneider 
et al. 2020; Vinograd et al. 2019; Wen et al. 2019). Thus we 
will focus on the remaining three modulatory centers (Fig. 2), 
discussing their OB innervation, targets, cellular activity 
modifications, and behavioral effects.

Locus coeruleus

The LC was the first neuromodulatory center characterized 
anatomically and neurochemically (reviewed in Chandler 
et al. 2019). The LC is located deep in the pons and con-
tains only about 1500 neurons per hemisphere in rodents. 
Despite its small number of cells, recent studies suggest that 
the LC could be subdivided into different modules enabling 
targeted neuromodulation (Plummer et al. 2020; Uematsu 
et al. 2017). Immunohistochemical evidence indicates that 
the vast majority of LC neurons are noradrenergic (Grzanna 
and Molliver 1980).

The LC is the major source of forebrain noradrenaline 
(NA, norepinephrine) and sends projections to almost 
all brain regions (Sara 2009). Its activity is commonly 
associated with arousal (e.g., O’Hanlon 1965; reviewed 
in, e.g., Berridge and Waterhouse 2003: Sara and Bouret 
2012). LC noradrenergic fibers reach all OB layers with the 
lowest and highest density in the glomerular and internal 
plexiform layer, respectively (Fig. 2a) (McLean et al. 1989). 
Consistent with this distribution, the effect of NA in the 
GL has received very little attention but newer results show 
that electrical LC stimulation elicits a global and persistent 
inhibition of OB input signals (Eckmeier and Shea 2014). 
Additionally, an excitatory role for beta-adrenergic receptors 
on the firing and bursting frequency of ETCs could be 
demonstrated (Zhou et al. 2016). Research on noradrenergic 
modulation of OB output initially created conflicting results 
with studies reporting either excitatory or inhibitory effects 
(Hayar et al. 2001; Jahr and Nicoll 1982; McLennan 1971; 
Mouly et al. 1995; Okutani et al. 1998; Perez et al. 1987; 
Salmoiraghi et al. 1964). More recent research was able 
to resolve these discrepancies and show that besides a 

Fig. 2  Targets of projections from neuromodulatory centers. Inner-
vation strength and putatively affected OB cells for fibers from locus 
coeruleus (a, yellow), raphe nuclei (b, blue), and basal forebrain (c, 
green). Putatively affected cell types in the basal scheme of the olfac-
tory bulb neuronal circuits are marked in black for each neuromodu-
latory center. Relative innervation density is marked on the right as 
color depth. OB modulation from BF is separated into cholinergic 
(ACh) and GABAergic (GABA) fibers, while innervation from raphe 
nuclei is separated into fibers coming from median (MRN) and dorsal 
raphe (DRN). (Abbreviations: ONL olfactory nerve layer, GL glomer-
ular layer, EPL external plexiform layer, MCL mitral cell layer, IPL 
internal plexiform layer, GCL granule cell layer, ON olfactory nerve, 
PG periglomerular cells, SA short axon cells, ETC external tufted 
cells, MT mitral and tufted cells, GC granule cells, dSA deep short 
axon cells)

▸
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direct excitation of MC firing through activation of the 
α1A-adrenergic receptor (Ciombor et al. 1999), NA also 
affects GCs concentration-dependently through α1A 
receptors, thereby increasing inhibitory drive from GCs 
onto MCs (Zimnik et al. 2013) and through α2A decreasing 
this inhibitory drive (Nai et  al.  2009,  2010; Pandipati 
et al. 2010). The bidirectional modulation of GCs is elicited 
by a change in GC subthreshold membrane potential and 
thus excitability (Li et al. 2015; Nai et al. 2010). Further, 
it has been shown that LC activation reduces spontaneous 
MC activity while enhancing odorant responses (Manella 
et al. 2017). The net effect of LC-derived OB activation 
and inhibition was suggested as a mechanism to enhance 
signal-to-noise levels, a function that has been attributed 
to the LC in multiple sensory systems (McBurney-Lin 
et al. 2019). Consistent with a decrease in signal to noise-
ratio, behavioral tests showed that noradrenergic modulation 
affects odor detection (Escanilla et al. 2012, 2010; Linster 
et  al. 2011) and discrimination (Doucette et  al.  2007; 
Ramirez-Gordillo et al. 2018). Additionally, the LC seems 
to affect OB olfactory memory encoding profoundly. The 
depletion of LC neurons decreased odor habituation, which 
could be counteracted by local bulbar NA infusions (Guerin 
et al. 2008). Also, reward-driven discrimination of very 
similar odors could be affected by NA through an interplay 
of α and β adrenergic receptors (Doucette et  al.  2007; 
Mandairon et al. 2008), while new research shows an effect 
of NE on memory stability in the OB (Linster et al. 2020).

Raphe nuclei

The serotonergic neuromodulatory system is involved in a 
wide range of physiological brain functions including mem-
ory, circadian rhythm, feeding, sleep-wake cycle, and stress 
coping (Filip and Bader 2009) and has been implicated in 
several neurological diseases. It represents the most diverse 
CNS signaling network (Grandjean et al. 2019) comprising 
a range of neurons displaying divergent cellular properties in 
terms of anatomy, morphology, hodology, electrophysiology, 
and gene expression (Okaty et al. 2019).

The source of all serotonergic projections is located in 
the brain stem in the form of nine distinct neuronal clus-
ters (Dahlstroem and Fuxe 1964). Two of those seem to 
be the source of OB innervation: B7, which belongs to the 
dorsal raphe nucleus (DRN), and B8, which is part of the 
median raphe nucleus (MRN) (Muzerelle et al. 2016). Those 
nuclei differentially target the OB with the DRN project-
ing to deeper layers, specifically the MCL and GCL, while 
the MRN projects almost exclusively to the GL (Fig. 2b) 
(Muzerelle et al. 2016; Steinfeld et al. 2015). Single sero-
tonergic fibers have been shown to possess varicosities in 

all layers of the OB and to form synapses with chemically 
heterogeneous cell populations (Suzuki et al. 2015).

The range of different serotonin receptors expressed in the OB 
further complicates revealing its function. At least eight of the 
14 known subtypes of serotonin receptors seem to be expressed 
in the rodent OB (Filip and Bader 2009; Gaudry 2018), most of 
which have not yet been characterized functionally.

Though far from being exhaustively investigated, several 
modulation mechanisms for serotonin in the OB have 
been shown. The most prominent effect is an activation of 
periglomerular SAs (Brill et al. 2016; Brunert et al. 2016; 
Hardy et al. 2005a; Petzold et al. 2009) through 5-HT2C 
receptors. This leads to a reduction of presynaptic OSN 
activity (Petzold et al. 2009) while increasing inhibitory 
drive in the glomeruli. At the same time, ETCs are strongly 
activated, either through 5-HT 2A receptors (Brill et al. 2016; 
Liu et al. 2012) or glutamatergic input from raphe-derived 
fibers (Kapoor et al. 2016). Such dual release of glutamate 
and 5-HT from raphe fibers has been also shown in other 
brain areas like VTA (Wang et al. 2019). Output neurons can 
be directly activated by serotonin (Schmidt and Strowbridge 
2014), in parts through 5-HT 2A receptors (Hardy 
et al. 2005a) or potentially also directly inhibited by 5-HT1a 
and/or 5-HT1b receptors (Kapoor et al. 2016). The net effect 
on MCs and TCs differs, while optogenetic activation of 
raphe-derived fibers led to TC excitation, and ultimately to a 
larger response correlation, MCs showed bimodal effects that 
led to a decorrelation of odor responses (Kapoor et al. 2016).

Despite this clear evidence for serotonin modulation of 
cellular activity, it is unclear how this affects olfactory behavior. 
So far, two studies looked at olfactory related behavior after 
depletion of the serotonergic system. None of them were able 
to establish a significant phenotype for serotonin depleted 
mice in different assays testing coarse olfactory performance 
(Carlson et al. 2016; Liu et al. 2011). Still, not only the described 
changes in OB cell activity but also the differentiated innervation 
and extensive compensatory regulation of serotonergic fiber 
density in the GL upon olfactory sensory deprivation (Gomez 
et al. 2006) make a lack of serotonergic function in the OB 
unlikely. More specific serotonergic targeting techniques as 
well as more refined olfactory tests, like discrimination of very 
similar odor mixtures or detection of low odor concentrations, 
will most likely reveal deeper insights into serotonergic function.

Basal forebrain

The BF is, like the raphe, a complex of subcortical nuclei, 
including the medial septum, vertical and horizontal limbs of 
the diagonal band, the magnocellular preoptic nucleus, and 
the substantia innominata. BF neuromodulatory systems are 
thought to enhance sensory processing and amplify the sig-
nal-to-noise ratio of relevant responses (Disney et al. 2007; 
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Goard and Dan 2009; Picciotto et al. 2012; Sarter et al. 2005) 
as well as being key players in mediating attentional modula-
tion of sensory processing and coordinating cognitive opera-
tions. So far, most of these functions have been attributed 
to cholinergic signaling but most BF nuclei also contain 
GABAergic as well as glutamatergic projection neurons 
(Agostinelli et al. 2019; Gritti et al.2006; Henny and Jones 
2008; Yang et al. 2017; Zaborszky et al. 2015).

The olfactory system is heavily innervated by centrifugal 
inputs from the BF with the majority of bulbopetal neurons 
located in the horizontal dorsal band of Broca (HDB) (Gielow 
and Zaborszky 2017; Gracia-Llanes et al. 2010; Li et al. 2018; 
Shipley and Adamek 1984; Zaborszky et al. 1986, 2015). 
So far, there is knowledge on cholinergic and GABAergic 
projection fibers in the OB though they seem to make up only 
about 50% of HDB derived projections to the OB (Zaborszky 
et al. 1986). Cholinergic and GABAergic bulbopetal cells 
show an overlapping but largely segregated pattern in BF 
(Zaborszky et al. 1986) and innervate the OB layers differently 
(Bohm et al. 2020). ChAT-positive cholinergic axon terminals 
are visible in all layers of the OB (Fig. 2c) (Bohm et al. 2020; 
Durand et al. 1998; Gomez et al. 2005; Macrides et al. 1981; 
Rothermel et al. 2014; Salcedo et al. 2011) but innervate the 
superficial OB layers rather homogeneously compared with 
the GCL, which receives less input. Glutamate decarboxylase 
(GAD) 2-positive GABAergic axon terminals, in contrast, 
show a strong innervation of the glomerular and the GCL 
with weaker innervation of EPL and MCL (Fig. 2c) (Bohm 
et  al.  2020: Nunez-Parra et  al.  2013). Fine structural 
observations show that cholinergic projections synapse 
primarily onto interneurons (Kasa et al. 1995; Nickell and 
Shipley 1988) but extrasynaptic transmission is, like for all 
neuromodulatory transmitters, a well-known feature (Fuxe 
et al. 2012).

In the OB nicotinic as well as muscarinic acetylcholine 
receptors are expressed. So far nicotinic acetylcholine receptor 
(nAChR) subunits α2, α3, α4, α5, α6, α7, and α9 (Keiger and 
Walker 2000) as well as muscarinic acetylcholine receptors 
(mAChRs) M1 and M2 (Le Jeune et al. 1995) have been detected. 
mAChRs are present primarily in the EPL and GL (Hunt and 
Schmidt 1978; Le Jeune et al. 1995) and while M1 activation 
enhances GC excitation, leading to suppression of MTC 
excitability (Pressler et al. 2007; Smith and Araneda 2010), M2 
seems to exert its function in the GL (Bendahmane et al. 2016). 
Effects have varied from excitation of MTC glomerular 
responses (Bendahmane et al. 2016) to an inhibition of MC 
and ETC spiking due to activation of inhibitory interneurons 
(Liu et al. 2015). nAChRs have mainly been found in the GL 
and MCL (Hunt and Schmidt 1978; Le Jeune et al. 1995). So 
far, functional nAChRs have been located on MCs and ETCs 
(D’Souza et al. 2013; D’Souza and Vijayaraghavan 2012) but 
recent research also suggests α2 subunit-containing nAChRs on 
dSAs (Burton et al. 2017; Case et al. 2017). Studies on nAChR 

signaling in the OB have focused mainly on receptors on ETCs 
and MCs and found that ACh application or optogenetic OB 
cholinergic fiber activation in slices leads to a direct MC and ETC 
activation (D’Souza et al. 2013; D’Souza and Vijayaraghavan 
2012; Liu et al. 2015). Overall, observed ACh effects on OB 
odor processing reach from input independent sensory gain 
modulation (Bohm et al. 2020; Rothermel et al. 2014) similar 
to reports in visual cortex (D’Souza et al. 2013; D’Souza and 
Vijayaraghavan 2012; Parsa et al. 2015) to low pass filtering 
(Bendahmane et al. 2016) and sharpening of receptive fields 
(Ma and Luo 2012).

The role of BF-derived GABAergic fibers in the OB has been 
much less investigated. GABAergic fibers from HDB and the 
magnocellular preoptic nucleus have been shown to influence 
GCs (Nunez-Parra et al. 2013), dSAs (Case et al. 2017), and 
different PGCs (Sanz Diez et al. 2019). A recent study reported 
that optogenetic activation of GABAergic fibers in the OB 
caused inhibition of spontaneous and weak sensory activity 
while increasing odor-evoked responses (Bohm et al. 2020). 
This suggests a function for the GABAergic BF system in 
the modulation of signal-to-noise ratio or high pass filtering 
weak sensory inputs. Little is known on the behavioral effects 
of GABAergic OB modulation except that pharmacological 
inactivation of GABAergic fibers impairs olfactory sensitivity 
(Nunez-Parra et al. 2013). In contrast, cholinergic BF fibers 
have been shown to improve odor discrimination ability 
(Chaudhury et al. 2009; Cleland et al. 2002; Doty et al. 1999; Li 
and Cleland 2013; Mandairon et al. 2006) as well as to facilitate 
olfactory learning and memory (Devore and Linster 2012; Ravel 
et al. 1994; Ross et al. 2019). Future studies will shed light on 
the function and interplay of the cholinergic and GABAergic BF 
system, how it influences OB odor processing, and its impact on 
olfactory guided behavior.

Neuropeptidergic modulation

A large number of neuropeptides can modulate OB func-
tion, and most of them are generated locally within the OB, 
e.g., somatostatin (SOM; Nocera et al. 2019), glucagon-like 
peptide 1 (GLP-1; Thiebaud et al. 2019), pituitary adenylate 
cyclase-activating polypeptide (PACAP; Irwin et al. 2015), or 
the circadian rhythm mediating vasoactive intestinal polypep-
tide (VIP; Lukas et al. 2019; Miller et al. 2014). Since some 
neuropeptides, like substance P or enkephalins, are located 
both in local cells and in axonal fibers in the OB (Halasz and 
Shepherd 1983), effects cannot be assigned to extrinsic or 
intrinsic sources. Additionally, there are neuropeptides found 
exclusively in secretory fibers from other neuronal centers 
that project to the OB (Fig. 1c), like, e.g., calcitonin gene-
related peptide (CGRP)–containing fibers from the trigeminal 
ganglion. These fibers were reported to reduce the activity of 
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OB interneurons, thus mediating interaction between trigemi-
nal and odorant sensations (Genovese et al. 2016).

Another example is orexin-A. Orexin is a neuropeptide 
involved in sleep/wake regulation (Sakurai et al. 2010) as 
well as feeding behavior (Horvath and Gao 2005; Sakurai 
et al. 1998). Orexin-positive fibers from the lateral hypothala-
mus have been shown in the OB (Gascuel et al. 2012; Peyron 
et al. 1998) with varicose fibers located predominantly in the 
GL, MCL, and GCL (Caillol et al. 2003). Orexin receptors 1 
and 2 are expressed in PGCs, MCs/TCs, and GCs, and orexin-
A was shown to directly activate and indirectly inhibit MC 
activity (Hardy et al. 2005b) suggesting an additional way of 
metabolic regulation of olfactory processing.

Another neuropeptide that has received attention in recent 
years is oxytocin (OTX), which controls childbirth and is 
strongly involved in social behaviors. OTX released in the 
forebrain mainly originates from neurons in the paraven-
tricular nucleus of the hypothalamus (Knobloch et al. 2012). 
Recently, it has been reported that same-sex social recognition 
in mice is OTX dependent (Linster and Kelsch 2019, Oettl 
et al. 2016). OTX was shown to activate AON cells projecting 
to the OB thereby modulating MC firing (Oettl et al. 2016). 
Together with the absence of detectable OTX fibers in the OB 
(Knobloch et al. 2012), this is casting doubt on a direct effect 
of OTX in the OB. However, the weak but clear presence of 
oxytocin receptors in the OB (Ferguson et al. 2000; Ferris 
et al. 2015; Vaccari et al. 1998), the effects of OTX infused 
into the OB on maternal behavior (Yu et al. 1996a), and MC 
firing (Yu et al. 1996b), as well as the fact that expression of 
oxytocin and its receptors is highly regulated (Freund-Mercier 
et al. 1994), open up the question of a to-date unknown or just 
undetected function of OTX for the OB.

Hormonal neuromodulation

Despite its importance for mating and nutrition, hormonal 
neuromodulation is a field that has received less attention. 
The OB is well-positioned for hormonal neuromodula-
tion; certain blood molecules can reach the OB more eas-
ily compared with other brain areas since the density of 
the blood capillary network, especially in the GL, is very 
high (Lecoq et al. 2009) and the blood-brain barrier at the 
OB is more permeable (Ueno et al. 1996). A specialized 
transport system for certain hormones provides an addi-
tional means to increase the local concentration of those 
hormones within the OB (Banks et al. 1999).

Hormones have many diverse functions, e.g., sex steroids 
like testosterone or estradiol, that regulate sexual differen-
tiation and behavior (McEwen and Milner 2017); neuro-
hormones like melatonin, which affects circadian rhythms 
(Brown 1994); and metabolic hormones like ghrelin and 
insulin (Julliard et al. 2017). Receptors for both estrogens 

(Hoyk et al. 2014, Maruska and Fernald 2010) and mela-
tonin (Corthell et al. 2014) are expressed in the OB, and hor-
monal effects could be demonstrated (Corthell et al. 2014; 
Dillon et al. 2013). However, the presence of synthesiz-
ing enzymes for these hormones within the OB (Corthell 
et al. 2014; Hoyk et al. 2014) speaks rather for a local neu-
ropeptidergic function.

Remotely produced hormones that act on OB cells have 
so far been linked to the metabolic regulation of food intake 
(see (Palouzier-Paulignan et al. 2012). The olfactory system 
is known for its major contribution to the hedonic evalu-
ation of food (with effects on food choices and consump-
tion), and it seems to make sense that olfaction would be 
modulated according to foraging needs (Julliard et al. 2017). 
Foraging influencing hormones are divided into orexigenic 
(appetite-stimulating) and anorexigenic (appetite-suppress-
ing) hormones. So far, ghrelin and adiponectin as orexigenic 
molecules and insulin and leptin as anorexigenic molecules 
have been identified. These hormones have different sources 
(Fig. 1d): ghrelin is produced primarily by the stomach 
(Kojima et al. 1999), leptin is predominantly generated by 
adipose cells and enterocytes in the small intestine (Bado 
et al. 1998), adiponectin is synthesized predominantly in adi-
pose tissue (Scherer et al. 1995), while insulin is released by 
pancreatic beta cells in response to feeding state in a glucose-
dependent manner (Henquin 2011).

The best-investigated metabolic hormone with a function 
in the OB is insulin. The OB shows the highest insulin 
receptor (insulin kinase) density in the whole brain (Hill 
et al. 1986) and insulin has been shown to cause an increase 
in firing frequency and inhibition of spike adaptation in 
OB MCs (Fadool et al. 2000). As a substrate, the voltage-
activated K+ channel Kv1.3 has been identified which, when 
phosphorylated by insulin receptor kinase, is causing a 
change in MC excitability (Fadool et al. 2011). Adiponectine 
receptors have been found in all OB cell layers, and OB 
adiponectine injection was found to regulate the expression 
of insulin receptors (Miranda-Martinez et al. 2017).

Ghrelin is transported across the blood-brain barrier and is 
present in high concentrations in the OB (Rhea et al. 2018). 
So far only one ghrelin receptor has been identified, growth 
hormone secretagogue receptor (GHSR-1a) which is 
expressed in GL and MCL (Tong et al. 2011). Functionally, 
ghrelin has been shown to increase exploratory sniffing 
behavior and olfactory sensitivity but it is unclear whether 
this effect is due to local ghrelin signaling.

The OB has also high levels of leptin receptors (Shioda 
et al. 1998) but despite studies showing leptin decreasing 
olfactory sensitivity (Julliard et al. 2007) and an increase in 
performance of leptin-deficient mice in olfactory detection 
(Getchell et  al.  2006) and memory tasks (Chelminski 
et  al.  2017), the cellular mechanisms of these changes 
remained unclear for a long time. Only recently it was shown 
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that leptin decreases the excitability of MCs/TCs as well 
as GCs through direct modulation of a voltage‐sensitive 
potassium channel which leads to a net inhibition of the MTC 
population and negatively affects discrimination performance 
(Sun et al. 2019).

As mentioned for ghrelin, it is not exactly clear if the 
orexigenic and anorexigenic effects of the hormones are 
caused by their effects in OB circuits or if changing the 
sense of smell is a secondary effect. Global developments 
of increased obesity and subsequent research in diet and 
metabolism will shed more light on this relationship.

Open questions 
concerning neuromodulation 
in the olfactory bulb

There are many unresolved questions in the field of olfactory 
neuromodulation; maybe the most prominent being when and 
how modulatory processes are used in olfactory behavior. An 
important step in this direction is defining the nature of OB 
projection neurons. New tracing techniques are not only able 
to label cells in higher brain areas according to their postsyn-
aptic targets but also allow for a defined characterization of 
their inputs (Schwarz et al. 2015). First results defining the 
input-output relations of different brain centers indicate that 
there are great differences between neuromodulatory systems, 
with, e.g., the LC rather resembling a homogenous integrator 
and broadcaster of information (Schwarz et al. 2015), while 
input-output relations in the BF seem to be much more spe-
cific (Gielow and Zaborszky 2017). Other technical advances 
in, e.g., the development of faster, more sensitive optogenetic 
tools for cell type-specific dissection of brain circuits (Lee 
et al. 2020), increasing spatial resolution for deep brain imag-
ing (Vasquez-Lopez et al. 2018), and enhancing sensitivity 
and expression of genetically coded calcium dyes (Dana 
et al. 2019) will help to advance our knowledge on the specific 
functions of different neuromodulatory systems in olfactory 
guided behaviors.

Another topic that bears consideration are the numerous 
interactions between different brain areas providing modula-
tory input to the OB. These interactions can occur outside of 
the OB but also influence their input to and neuromodula-
tion in the OB. The AON for example sends odor specific 
feedback to the OB but also receives input from olfactory 
cortical areas like the aPC (Haberly 2001; Haberly and 
Price 1978; Luskin and Price 1983) as well as non-olfactory 
areas such as BF (Broadwell and Jacobowitz 1976; Carnes 
et al. 1990; De Carlos et al. 1989; Gaykema et al. 1990; 
Luiten et al. 1987; Zaborszky et al. 2012). The AON has 
also been implicated as the mediator of hypothalamic oxy-
tocin effects on OB olfactory processing (Oettl et al. 2016). 
However, such interactions can also occur inside the OB 

where ACh (Zhou et al. 2018), endocannabinoids (Pouille 
and Schoppa 2018), and GABA (Mazo et al. 2016) have 
been shown to modulate synapses between corticofugal fib-
ers and cells of the OB.

A huge step forward would also be the detailed char-
acterization of projecting neurons in terms of transmitter 
release inside the OB. The here described BF, which has 
been classically associated with cholinergic modulation, 
is a good example. Cholinergic and GABAergic neurons 
account only for about 50% of all BF-derived bulbopetal 
neurons (Zaborszky et al. 1986) leaving open the functional 
contribution of the remaining half. Additionally, most bul-
bopetal fibers are at least suspected to contain more than 
one transmitter. Glutamatergic effects upon stimulation of 
serotonergic OB fibers (Kapoor et al. 2016) and GABA and 
ACh corelease by a subpopulation of OB projecting HDB 
neurons are just two examples (Case et al. 2017).

Another interesting topic is the plasticity of neuromodulatory 
systems. Apart from developmental changes in the embryonic 
phase, top-down systems are also highly plastic in postnatal 
mice. For example, sensory deprivation through unilateral naris 
occlusion was shown to change cholinergic innervation patterns 
in the OB (Salcedo et al. 2011) though overall fiber density 
remained unchanged (Gomez et al. 2006; Salcedo et al. 2011). 
Noradrenergic OB input is even more plastic and shows a strong 
change in LC derived fiber density (Gomez et al. 2006), as well 
as adrenergic receptor expression upon reduced sensory input. 
Additionally, neuromodulatory effects are not homogenously 
distributed across different OB glomeruli. Both, serotonergic 
(Gomez et al. 2005) and cholinergic fibers (Gomez et al. 2005; 
Macrides et al. 1981; Salcedo et al. 2011), have been shown 
to innervate some glomeruli stronger than others but the func-
tional significance is unknown.

Finally, one question that has received more interest of 
late is adult neurogenesis. A distinguishing feature of the OB 
is its lifelong integration of adult-born neuronal progenitors 
into its inhibitory circuits. OB neurogenesis has been shown 
as an important factor for olfactory processing (Livneh 
et al. 2014), odor discrimination (Gheusi et al. 2000; Mouret 
et al. 2009), and odor learning (Alonso et al. 2012; Lazarini 
et  al.  2009; Sultan et  al.  2010). Several recent reviews 
stress the importance of adult neurogenesis for olfactory 
function (Hanson et  al.  2017; Lledo and Valley  2016; 
Takahashi et al. 2018). Neuronal progenitors for adult OB 
neurogenesis stem from the subventricular zone (SVZ) 
along the walls of the brain’s lateral ventricle (Merkle 
et al. 2007) where a pool of dividing astrocytes constantly 
produces new neuroblasts (Doetsch et al. 1999). From the 
SVZ neuroblasts migrate tangentially along the rostral 
migratory stream to the core of the OB, then radially to the 
superficial GCL and, to a lesser extent, the GL (Lepousez 
et  al.  2013; Lledo et  al.  2006). It has been estimated 
that in young adult rodents 10,000–30,000 neuroblasts 
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per day reach the OB (Lois and Alvarez-Buylla, 1994); 
however, only 50% of those cells survive for more than a 
month (Petreanu and Alvarez-Buylla 2002), suggesting a 
rigorous selection process. Numerous studies have shown 
that new interneurons can be influenced in all phases of 
their generation, migration, and integration and that this 
influence is mediated by multiple neuronal messengers 
from different sources (see Fig. 3). For example, all classical 
neuromodulators seem to influence adult neurogenesis 
like, e.g., acetylcholine, either from local sources (Paez-
Gonzalez et al. 2014) or BF derived fibers, regulates the 
proliferation, migration, and survival of adult-born neurons 
(Kaneko et al. 2006; Mechawar et al. 2004; Paez-Gonzalez 

et al. 2014; Sharma 2013). Additionally, new research has 
shown that HDB GABAergic fibers target immature GCs 
upon arrival in the OB and promote their survival (Hanson 
et al. 2020). Other neuromodulators involved are 5-HT that 
acts on proliferation and migration (Banasr et al. 2004; 
Garcia-Gonzalez et  al.  2017), dopamine that increases 
proliferation (Hoglinger et al. 2004), and norepinephrine 
(Weselek et al. 2020) acting on proliferation in the SVZ. 
Other modulatory influences on OB neurogenesis come from 
cortical fibers that reach into the GCL and establish synaptic 
connections to newborn neurons (Arenkiel et al. 2011; De La 
Rosa-Prieto et al. 2015; Deshpande et al. 2013). Activation 
of these fibers can induce LTP (Nissant et al. 2009) as well as 
experience-dependent plasticity (Lepousez et al. 2014) and 
thus seems to promote the survival of these neurons. Other 
examples are neuropeptides like prolactin from the pituitary 
gland during pregnancy (Shingo et al. 2003) or β-endorphin 
from hypothalamic neurons in hunger and satiety (Paul 
et al. 2017). Taken together neuromodulatory changes in 
neurogenesis will be of great interest in the future, especially 
since a recent paper demonstrated that cholinergic effects 
on olfactory learning require adult neurogenesis (Schilit 
Nitenson et al. 2019).

Conclusion

In this review, we have aimed to give a broad overview on 
extrinsic neuromodulation of the OB. The discussed list of 
external OB neuromodulatory sources is, however, by no 
means complete. Increasingly sensitive tracing techniques are 
already expanding the list of centrifugal inputs to the OB (Pad-
manabhan et al. 2018; Schneider et al. 2020; Wen et al. 2019) 
and studies on transcriptomes of OB cells might also increase 
knowledge on hormonal receptors.

In summary, we can say that although most bulbopetal con-
nections have been characterized more than 40 years ago, we are 
still far away from getting a comprehensive view of processes 
that lead to modulation of early olfactory processing. Given the 
intense role of neuromodulation in neurological diseases (see, 
e.g., Avery and Krichmar 2017), more research is needed in 
this field.
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Fig. 3  Neuromodulatory influences in adult neurogenesis (adapted 
from (Rikani et al. 2013). Neuromodulatory transmitters coming from 
deep brain neuromodulatory centers, olfactory cortex, or hypothalamus 
can influence olfactory processing not only by immediate effects but 
also by acting on proliferation (blue), migration (tangential (green), 
radial (yellow)), or differentiation and survival (red) of adult-born 
neurons. Neuromodulators acting on a specific process are listed under 
the respective arrows. (Abbreviations: OB olfactory bulb, RMS rostral 
migratory stream, SVZ subventricular zone, LV lateral ventricle)
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