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Abstract

Mechanisms coupling heart function and cardiac morphogenesis can be accessed in lower 

vertebrate embryos that can survive to swimming tadpole stages on diffused oxygen. Forward 

genetic screens in Xenopus tropicalis have identified more than 80 mutations affecting diverse 

developmental processes, including cardiac morphogenesis and function. In the first positional 

cloning of a mutation in X. tropicalis, we show that non-contractile hearts in muzak (muz) 
embryos are caused by a premature stop codon in the cardiac myosin heavy chain gene myh6. The 

mutation deletes the coiled-coil domain responsible for polymerization into thick filaments, 

severely disrupting the cardiomyocyte cytoskeleton. Despite the lack of contractile activity and 

absence of a major structural protein, early stages of cardiac morphogenesis including looping and 

chamber formation are grossly normal. Muz hearts subsequently develop dilated chambers with 

compressed endocardium and fail to form identifiable cardiac valves and trabeculae.
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Introduction

Formation of the heart is highly conserved in vertebrate species. Genes relevant to human 

cardiac development and disease can be studied in lower vertebrate models whose 

externally-developing embryos are easily accessible during heart forming stages and survive 

for several days on passively-diffused oxygen if cardiac function is compromised 

experimentally. Xenopus researchers have combined classical embryological explant and 

transplant approaches with over- and mis-expression of gene products (Warkman and Krieg, 
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2007) to examine early steps in heart formation, including specification of the heart field 

(Sater and Jacobson, 1989), transcriptional regulation of cardiac identity (Evans et al., 1995; 

Fu et al., 1998; Grow and Krieg, 1998), and signaling pathways underlying cardiac 

asymmetry (Branford et al., 2000; Hyatt and Yost, 1998; Ramsdell and Yost, 1999). In 

zebrafish, heart development studies have built on loss-of-function genetic tools, as well as 

the optical properties of the embryos for microscopy, to analyze cardiac morphogenesis and 

valve formation (Beis et al., 2005; Sehnert and Stainier, 2002; Stainier, 2001). As teleost fish 

are the most diverse vertebrates, due in part to the ancestral genome duplication and 

subsequent shuffling of gene functions (Force et al., 1999; Postlethwait et al., 2000), 

comparative studies in other models will help identify developmental mechanisms shared 

broadly among tetrapods. Loss-of-function studies in X. laevis have previously been limited 

to injection of dominant negative constructs (Grow and Krieg, 1998; Shi et al., 2000) and, 

more recently, antisense morpholino oligonucleotides (Peterkin et al., 2007; Small et al., 

2005). Large-scale genetic approaches are impractical in X. laevis due to its 

pseudotetraploid genome and long generation time, but are well-suited to its diploid relative 

Xenopus tropicalis. X. tropicalis reaches maturity in a relatively short 4-6 months, and its 

small, canonically-organized tetrapod genome (1.5×109 bp in 10 chromosomes) is supported 

by extensive sequence resources including a high-quality draft genome assembly (http://

genome.jgi-psf.org/Xentr4/Xentr4.home.html), over one million ESTs, and a meiotic linkage 

map of Simple Sequence Length Polymorphisms (SSLPs) (http://tropmap.biology.uh.edu/

index.html) (Carruthers and Stemple, 2006; Klein et al., 2006; Klein et al., 2002).

In a pilot screen for chemically-induced mutations in X. tropicalis, we recovered several 

phenotypes with decreased cardiac function (Goda et al., 2006). Here we show that the lack 

of cardiac contractility in the muzak mutant is caused by a nonsense mutation truncating the 

cardiac myosin heavy chain gene myh6. Despite this defect in a major structural component 

of sarcomeres resulting in absence of myofibrils and contractility, looping and chamber 

formation appear surprisingly normal. Muz hearts subsequently display dilated ventricles 

and atria and malformed endocardium, segments of which appear collapsed with little or no 

lumen. Later steps in cardiac development, such as valve formation and trabeculation, are 

not detected, but it is beyond the scope of this study to determine whether these are direct or 

indirect effects of the mutation. This report describes the first positional cloning of a 

mutation in X. tropicalis.

Experimental Procedures

Frog Strains

The original mutagenesis and fertilization to produce mutant founder F1 animals was 

performed on the N (Nigerian) strain (kind gift of Enrique Amaya, Manchester University, 

United Kingdom); polymorphic crosses used for mapping were generated using the IC 
(Ivory Coast) strain (kind gift of Robert Grainger, University of Virginia, Charlottesville, 

USA). Mutant and wt embryos used for mapping and phenotyping were generated from a 

cross of an F2 muz/+ N/IC female and an F3 muz/+ male produced by crossing an F2 N/IC 
female to an N/PacBio (wild-caught animals of unknown origin obtained from Pacific 

Biological Supply, Inc.) male carrying the mlc2GFP transgene.
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Mapping

Gynogenesis was performed as described previously (Goda et al., 2006). AFLP reactions 

were performed using the AFLP Analysis System I kit (Invitrogen, 10544-013). PCR 

products were resolved on 6% denaturing acrylamide gels and visualized by 

autoradiography. SSLP markers were amplified and resolved as described on the tropmap 

website (http://tropmap.biology.uh.edu/polyprotocol.html). SSLP markers from the meiotic 

map 040E09, 018E09, and 026G09 can be found on the tropmap database (http://

tropmap.biology.uh.edu/) and have the following sequences:

040E09:

F-AAGTTGCCCTAAAGGTAGGC

R-GATTATTGCTCCGAATGTGG

018E09:

F-CTCAATAATCAGGGCATGTAATC

R-GCAGACATAAGCATTGTACCC

026G09:

F-TGAAGTGAAGCACAGCACAG

R-AGGGACTTTTCCAGATCAAG

Bespoke SSLP markers for scaffold 439 were obtained using Tandem Repeat Finder (http://

tandem.bu.edu/trf) and Primer3 (http://primer3.sourceforge.net/). Primers for markers in 

scaffold 439 were as follows:

439.1:

F-TGCCATTTGTATCCCACCTT

R-CCAGGGATGACTTTGACACA

439.3:

F-TGATCTCAGTGCCAGATGCT

R-TGCTCCAGATAGGTGACGTG

439.10:

F-TTTCTCCTGTGGGCAACTTT

R-GTGCTGGTGGAAGGGAAGTA

SSCP439.1

F-GCGCCCTATAGTGAAATCCA

R-GCACAAAATTGCAGGAGGTT

SSCP439.15

F-CCCTGATCAGTCATGGGTTC

R-GTGACATGACAACGCAAACC

Primers to amplify the muz myh6 genomic fragment containing stop mutation:

F-CTCGAGCAACAAGTGGATGA

R-GCCCACCATAAAATGACCTG
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Whole Mount In Situ Hybridization

Embryos were staged according to Nieuwkoop and Faber. Fixing and WISH were carried 

out as described previously (Sive et al., 2000).

WISH probes for myh6 and myh6.2 were made by cloning RT-PCR products into the 

PCRII-TOPO vector using the TOPO TA Cloning Kit (Invitrogen, K4600-40). Probes were 

prepared by linearizing with XhoI and transcribing with SP6. Primers used were:

myh6

F-GCTAGAGAAGATTCGCAAGCAG

R-TCCACAATTGCAGTGTTTTCTT

myh6.2

F-TCAGACCTGACAGAGCAACTG

R-TCCCCCTCCATCTTCTTTTT

RT-PCR

RNA was prepared using Trizol (Invitrogen). cDNA was prepared and amplified with the 

Enhanced Avian HS RT-PCR kit (Sigma HSRT-100) using the following primers:

myh6

F-CCAACAAGGGAACTCTGGAA

R-CTGCAGTTTCTCGTTGGTGA

myh6.2

F-AACCCTGCTGCTATTCCAGA

R-TCAAGCTTGGCTTTGGATTT

myh7b

F-AACTGGACAAGAAGCGGAGA

R-GGTCCATTACCCCTGGAGTT

myh15

F-ATTCCTCCTCACGGACCTTT

R-CGCCCACCTAGAGAGAATGA

myh8

F-CCGTCTTGATTACGGGAGAA

R-GGGTTTCTTGTTGGTCAGGA

odc

F-GCCAGTAAGACGGAAATCCA

R-CCCATGTCAAAGACACATCG

Immunoblotting

Dissected hearts from st. 40 tadpoles were collected on ice, resuspended in a modified SDS-

sample buffer, boiled for 1 minute, resolved by 6% PAGE, transferred to membrane, and 

immunoblotted as described previously (Ehler et al., 1999)
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Silver Staining

Silver staining of proteins on SDS-PAGE gels was performed according to manufacturer’s 

instructions using the Silver Stain Plus Kit (Bio-Rad, 161-0449)

Morpholino injections

Morpholinos were purchased from GeneTools LLC. A total of 12ng of each morpholino was 

injected into both cells of a two-cell embryo. Morpholino sequences were as follows:

myh6 translation-blocking morpholino:

TCTGCCATCAGGGCATCACCCATTG

myh6 morpholino blocking 1st coding exon splice donor:

CTTATAAATGTAATACCTTGCCATC

Control morpholino:

CCTCTTACCTCAGTTACAATTTATA

Immunohistochemistry

Stage 42 tadpoles were fixed in 1% paraformaldehyde for 1 hour, washed in PBS, blocked in 

PBS+10% sheep serum, 2mg/ml BSA and 0.2% saponin for 1 hour at room temperature 

(RT), then incubated with primary antibody in block solution at 4°C overnight, washed in 

PBS containing 0.2% saponin and incubated in block solution containing Alexa Fluor 488-

conjugated anti-mouse IgG secondary antibody (Invitrogen, A21202) for 2 hours at RT. 

After washing in PBS with 0.2% saponin, the tadpoles were incubated with 1:20 dilution of 

Alexa Fluor 568 phalloidin (Invitrogen, A12380) in block solution, washed again, then 

hearts were dissected and visualized with a Zeiss LSM5 Pascal confocal microscope.

Plastic Sections and 3-D modeling

Embryos were fixed o/n in Bouin’s fixative (BDH Laboratory Supplies,28087 4V), 

dehydrated in ethanol, embedded in JB-4 resin (Polysciences Inc.), 3μm sections cut with a 

Leica RM 2165 microtome, and stained with Hematoxylin and Eosin (both Sigma). Sections 

were visualized on a Zeiss axiocam microscope, serial images were converted into 8bit 

greyscale stacks and loaded in Amira 3D Visualisation software Mercury Computer 

Systems, Germany) and heart structures were manually outlined and annotated. 3D models 

were generated using the surface rendition tool in Amira.

Results

The muzak mutation affects heart function

Homozygous muz embryos were identified by complete lack of cardiac contractility at heart 

looping stages (Movie S1). Embryonic blood fails to circulate in muz tadpoles, and 

erythrocytes pool in the ventral blood islands where they form. The tadpoles swim normally, 

indicating that the mutation does not affect skeletal muscle, and other tissues are not visibly 

affected. By stage 43 (3 days post fertilization), muz embryos develop cardiac edema, and 

absence of heart function persists until at least feeding tadpole stage (5 days post 
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fertilization). No phenotype was observed in heterozygotes, suggesting that the muz allele 

behaves in a simple recessive fashion.

Muz maps to an interval containing cardiac myosin heavy chain gene

When we began linkage studies to identify the gene underlying the muz phenotype, no 

meiotic map was available. In a map-independent initial strategy, bulk segregant pools of 

DNA from gynogenetic muz and wild type siblings were used to obtain a set of Amplified 

Fragment Length Polymorphism (AFLP (Vos et al., 1995) markers linked to the mutant 

locus. 5 bands which amplified from wild type but not muz DNA (Figure S1A) were 

extracted, reamplified, sequenced, and placed on the X. tropicalis genome assembly in 

Version 4 scaffolds 554, 91, 567, 289, 158 (http://genome.jgi-psf.org/Xentr4/

Xentr4.home.html). The subsequent release of an X. tropicalis meiotic map of SSLP 

markers (http://tropmap.biology.uh.edu) located these scaffolds in a ~12 cM interval on 

Linkage Group 1 (LG1). Linkage of the mutation to SSLP markers in these scaffolds was 

confirmed by bulk segregant analysis of pools of mutant and wild type embryos from a 

conventional cross of heterozygous carrier siblings (see Figure S1B for an example).

To define the genetic interval containing the muz locus, individual muz embryos from a 

conventional sibling cross were genotyped with SSLP markers from LG1 of the meiotic 

map. Analysis of 3200 meioses placed muz between two flanking markers, 040E09 in 

scaffold 91 (40 recombination events, Figure 1A) and 018E09 in scaffold 554 (77 

recombination events). We tested the set of recombinant embryo DNAs further with a 

marker between the flanking markers, 026G09 (scaffold 256), and found a subset of the 

recombinants with 018E09 were still recombinant with this polymorphism, whereas all the 

recombinants with 040E09 were homozygous for the wild type 026G09 allele, suggesting 

that muz was located between the latter two markers. As the X. tropicalis genomic sequence 

assembly was fragmented in this region, and many scaffolds are not represented on the 

meiotic linkage map, we compared syntenic regions in well-characterized mammalian 

genomes to generate an in silico hypothetical local scaffold assembly. By examining 

syntenic human and mouse genomic regions that overlapped the termini of scaffolds 256 and 

91, we identified candidate intervening scaffolds 439, 792 and 972 in the muz interval. 

Analysis of SSLP markers 1.439.1 (two recombination events), 1.439.3 (no recombination 

events) and 1.439.10 (1 recombination event) confirmed this local assembly and placed the 

mutation in scaffold 439. Further analysis refined the muz interval to a 370kb region 

between Single Strand Conformation Polymorphism (SSCP) markers SSCP439.1 (two 

recombination events) and SSCP439.15 (one recombination event) on scaffold 439 

containing 12 gene models on the JGI assembly (Figure 1A and Table S1). The sequence 

interval containing muz was then inspected for candidate genes.

Compellingly, two gene models in this interval, myh6 and myh6.2, were annotated as 

myosin heavy chain (MHC), with >88% identity to the human cardiac MYH6 and MYH7 

proteins, the major MHC genes expressed in mammalian hearts. These genes are known to 

be required for normal heart function in humans, with mutations in MYH6 and MYH7 
implicated in atrial-septal defects and familial hypertrophic cardiomyopathies respectively 

(Ching et al., 2005; Geisterfer-Lowrance et al., 1990). In human, mouse, and rat these gene 
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pairs are chromosomally adjacent, and are thought to have arisen by tandem duplication 

before these species diverged, some 70 million years ago (Mahdavi et al., 1984; Mahdavi et 

al., 1982). Of the two X. tropicalis MHC genes on scaffold 439, the centromere-proximal is 

orthologous to MYH6 based on mutual best BLAST as well as its strong expression in wild 

type hearts (Figure 2A, black arrow); weaker expression is also seen in jaw muscles (Figure 

2A, white arrow). The distal gene, annotated myh6.2, is expressed in developing jaw muscle 

but not heart (Figure 2C), and hence is unlikely to be responsible for the muz phenotype.

To assess whether a defect in myh6 might underlie the muz phenotype, we sequenced cDNA 

from mutant and unrelated wild type embryos, and found a C to T transition creating a 

premature stop codon at position 3187 of the coding sequence. Genomic DNA from adult 

muz carrier animals was also found to be heterozygous for this lesion. The resulting 

truncated protein (1062 aa vs 1996 aa wild type, Figure 2E) is likely to be nonfunctional as 

it deletes the coiled-coil tail required for dimerization and aggregation into functional thick 

filaments.

Myh6 expression is strongly reduced in muzak hearts

We then evaluated how the mutation affected expression of the two MHC genes in the 

interval. Whole Mount In Situ Hybridization (WISH) showed a significant decrease in myh6 
expression in muz embryos compared to wild type (Figure 2A, B), possibly due to nonsense-

mediated decay (Peltz et al., 1993; Whitfield et al., 1994). Expression of the neighboring 

paralog myh6.2 in jaw muscle was unaffected by the mutation (Figure 2C, D, black arrow).

Levels of cardiac MHC protein were assayed by immunoblotting with the A4.1025 antibody, 

which recognizes an epitope shared by sarcomeric myosin heavy chain head domains (Dan-

Goor et al., 1990) retained in the muz allele. A band of ~220kDa is observed in extracts of 

dissected wild type but not muz hearts (Figure 2F). The mutant protein of predicted size 

~120kDa is not detected, possibly due to depletion of the mRNA by nonsense-mediated 

decay, as suggested by WISH. Given the deletion of the tail domain required for thick 

filament formation and the severe reduction in expression levels, muz is likely to be a strong 

hypomorph or null allele of myh6.

Myh6 antisense morpholinos phenocopy the muz mutation

To confirm that a defect in myh6 could produce the muz cardiac phenotype, we designed 

morpholino antisense oligonucleotides to deplete the endogenous protein. Both translation-

blocking and splice-blocking morpholinos, when injected into both blastomeres of a two-cell 

embryo, affected cardiac contractility with high penetrance (76/79 and 94/100 injected 

embryos respectively). In contrast, heart looping and chamber formation were unaffected. 

Approximately 50% of myh6-depleted embryos had no detectable heartbeat, mimicking the 

muzak phenotype, while the remainder exhibited faint twitching insufficient for blood 

circulation (Movie S2). Injected embryos were otherwise morphologically normal, with 

tadpole motility unaffected, indicating that the morpholinos did not interfere with off-target 

skeletal MHCs. Control morpholino injections had no effect on cardiac function (85/85 wild 

type). Knockdown efficacy was assayed by immunoblotting protein extracts from dissected 

morphant hearts with the A4.1025 antibody. Both myh6 morpholinos strongly depleted 
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cardiac MHC compared to control morpholino (Figure 2G). These gene knockdown data 

confirm a requirement for myh6 in cardiac function, strongly supporting the conclusion that 

a defect in this gene underlies the muz phenotype.

Myh6 is the major cardiac sarcomeric MHC at swimming tadpole stages and is necessary 
for myofibril formation

Myh6 is likely to be the principal functional sarcomeric MHC in tadpole hearts, based both 

on the failure of the A4.1025 antibody to detect any immunoreactive species in muz heart 

extracts and the penetrance of the morphant phenotype. However, since the antibody may 

not recognize all Xenopus MHC proteins, and some morpholino-injected embryos retained 

faint twitching, we asked whether other sarcomeric MHC mRNAs were expressed in stage 

40 hearts or upregulated in muz. RT-PCR of dissected stage 40 hearts confirms that myh6 is 

expressed strongly in wild type and at much reduced levels in muz hearts (Figure 3A). 

Myh6.2 was amplified from stage 40 whole embryo mRNA, consistent with its expression in 

jaw muscle, but not from wild type or muz embryonic hearts, nor from adult heart (Figure 

3B). The Xenopus genome is not thought to contain an ortholog of mammalian MYH7 
(Garriock et al., 2005), and it is likely that myh6.2 derives from a separate tandem 

duplication from the one which gave rise to mammalian MYH6 and MYH7. A third cardiac 

MHC, myh15/vMHC (an inactive pseudogene in human), has been found in chicken (Oana 

et al., 1998), as well as X. laevis (Garriock et al., 2005) where it is not expressed until after 

chamber formation. We found no myh15/vMHC expression in hearts of either wild type or 

muz stage 40 embryos by RT-PCR, although it is detected in adult heart (Figure 3B), 

consistent with previously described onset of expression in X. laevis at stage 43. Similarly, 

no expression in embryonic heart was observed for the skeletal MHCs myh1,2,3 or 4 (data 

not shown). However, two MHCs present in mammalian heart EST collections, the slow-

tonic myh7B and myh8, were detected at comparable levels in both wild type and muz 
dissected hearts (Figure 3A). Absence of myh6 protein in muz does not appear to induce 

expression of non-cardiac MHCs or up-regulate myh7B and myh8 mRNAs which, although 

present in muz hearts, are not sufficient to rescue the phenotype.

We then examined sarcomere formation in muz to see whether the remaining myh7B and 

myh8 could organize myofibrillar structures. Stage 42 wild type and muz embryos were 

stained with the A4.1025 antibody, counterstained with phalloidin, and their hearts dissected 

and visualized by confocal microscopy. Consistent with the depletion of myh6 mRNA and 

protein levels, anti-MHC immunostaining is greatly diminished in muz and is not organized 

in striated myofibrils (Figure 4). Significantly, phalloidin staining shows that actin does not 

form myofibrils in the mutant heart confirming the lack of any cardiac MHC proteins 

capable of assembling into sarcomeres in muz embryos. Myofibrils were absent at stage 35 

(data not shown) when contractions begin as well as stage 40, making it unlikely that muz 
hearts have sarcomeres at any stage of development.

Cardiac chamber morphology and valve development in muzak

In addition to depletion of the myh6 protein, a major structural component of myocardial 

cells, the muz mutation results in abrogation of contractile activity (thought to be required 

for various steps in cardiac morphogenesis, as well as loss of sarcomeres (known to play 
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signaling as well as mechanical roles in cardiac function (Nicol et al., 2000)). We wished to 

describe how these deficits affect the major morphogenetic steps in heart development.

As in other vertebrates, the Xenopus heart initially forms as a linear cardiac tube comprising 

a muscular myocardial layer surrounding an inner endocardial channel. After undergoing 

rightward looping, this tube balloons out into chambers separated by cardiac valves. The 

final stages of heart development in Xenopus include trabeculation of the ventricular 

myocardium and septation of the atrium into two chambers (Kolker et al., 2000; Mohun et 

al., 2000). To characterize how these processes are affected by absence of myh6 and the 

resulting lack of sarcomeres and contractility, muz hearts were subjected to histological 

analysis. Plastic sections of the cardiac region of wild type and mutant embryos were 

obtained at stages relevant to specific tissue formation processes: stage 35 (heart looping), 

40 (onset of chamber formation), and 42 (valve formation).

Figure 5 shows stage 40 wild type and muz hearts; sections are numbered to indicate their 

position in the stack beginning at the ventral side of the cardiac cavity. Outlines of 

myocardial and endocardial layers in the image stacks were then used to generate 3D 

projections (Figure 5A-H, see also movies S3, S4 for a rotating view). Regions of the heart 

are indicated by colour: the myocardium of the outflow tract (blue) was defined by 

morphological position; thinner myocardium in dorsal sections (green) forms the atrium; 

thicker myocardium (red) in ventral sections is clearly ventricular (e.g. Figure 5 section 32 

‘v’); however, in malformed mutant hearts, where atrial and ventricular chambers showed 

little difference in wall thickness, the precise border was assigned arbitrarily.

Cardiac chambers in muz are dilated, and at stage 40 the myocardial wall appears thinner 

than wild type throughout. Segments of the endocardial tube, notably in outflow tract and 

atrioventricular canal (AVC), appear constricted with little lumen (white arrowheads, section 

23 and F, H). The expanded ‘peri-endocardial’ region between the distended myocardium 

and the constricted endocardium distorts their alignment (white arrowhead, section 14). The 

cardiac tube at AVC level, spanned by black arrowheads in sections 27 and 23, is narrower 

in the mutant (black arrowhead in C and G). Dorsally the muz atrium is usually distended 

(white arrowhead, section 41). No blood cells are seen in muz hearts at this stage due to lack 

of circulation. Many of these abnormalities are already present prior to chamber 

differentiation in earlier looped cardiac tube (stage 35) muz tadpoles, including the dilated 

outflow tract, collapsed endocardial tube, and the narrow cardiac tube at the level of the 

AVC (Figure S2).

At slightly later stages, valve formation begins in Xenopus; this process is not thought to 

occur in the absence of contraction in zebrafish (Bartman et al., 2004). We therefore 

examined plastic sections of stage 42 wild type and muz tadpoles (Figure 6). A spiral valve 

can be distinguished in the outflow tract of wild type embryos (black arrowhead, sections 14 

and 23), and the ‘endocardial cushion’ valve precursors are forming in the AVC (black 

asterisks, section 23). In stage 42 muz hearts, as at earlier stages, the endocardial tube is 

often narrower (white arrowheads, sections 54, 58 and F, H) and no valve formation can be 

discerned. Transverse sections more clearly show endocardial cushions forming in the AVC 

region of wild type (Figure 6I, white arrowhead) but not muz hearts (Figure 6J). Since it is 
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difficult to unambiguously identify valve-forming AVC and outflow tract positions in the 

morphologically-distorted mutant hearts, we have also examined complete stacks of cardiac-

level sections from 10 muz embryos without detecting identifiable cushions at any position 

(data not shown). Endocardial cushions were clearly visible in 10/10 sibling wild type 

embryos.

Another important process, trabeculation, in which the ventricular myocardium takes on a 

spongiform appearance, is also occurring at this stage. In wild type hearts, myocardial cells 

can be seen proliferating and protruding into the lumen (Figure 6I, black arrowheads); 

interestingly, these cells also take on a vacuolated appearance that may be integral to the 

mechanism of trabeculation (black arrows). No trabeculae are seen in muz ventricular 

myocardium, which is very thick but retains abundant vacuole-like structures similar to wild 

type (Figure 6J, black arrows).

3-D modeling at stage 42 reveals that mutant cardiac morphology is becoming progressively 

more distorted (Figure 6, see also movies S5, S6 for a rotating view). Whereas in wild type 

the outflow tract rises sharply out of the ventricle towards the dorsal side of the embryo 

(Figure 6 section 14 and A), in muz hearts it gently loops out of the end of the elongated 

ventricle (Figure 6, 34 and E). The narrow cardiac tube at AVC level seen at stages 35 and 

40 becomes more pronounced at stage 42 (Black arrowhead, G). Again, blood cells are 

absent in the muz heart except for a few in the atrium and inflow tract (Figure 6 section 58). 

The qualitative morphological abnormalities described here are consistently present in muz 
embryos at stages 40-42 (>10 mutant and wild type hearts examined in plastic sections, and 

6 mutant and wild type examined by High Resolution Episcopic Microscopy (HREM)(data 

not shown)).

Analysis of histological sections of muz hearts demonstrates that later steps in heart 

development such as valve formation and trabeculation do not occur in the absence of myh6/

contractility and sarcomeres. The morphology of heart chambers is altered; dilated ventricles 

and atria are observed as early as stage 35, and become progressively more pronounced. The 

endocardium is likewise severely malformed, with segments of lumen highly constricted. It 

is beyond the scope of this analysis to conclude that these late effects are direct 

consequences of the mutation in myh6. However, early steps in cardiogenesis, such as 

looping and chamber formation, are relatively unaffected by absence of contractility and 

blood flow.

Discussion

The mapping of muzak marks the first identification of a sequence lesion underlying an 

induced mutation in X. tropicalis, an important step in establishing this species as a genetic 

model organism. The non-contractile heart phenotype is tightly linked to a nonsense 

mutation in the myh6 gene deleting the coiled-coil tail domain required for aggregation into 

functional thick filaments. This nonfunctional peptide, associated with severe reduction of 

mRNA and absence of detectable MHC protein and myofibrils, suggests that the muz allele 

is a strong hypomorph or null of myh6. Loss-of-function studies in Xenopus have previously 

been limited to morpholino knockdown and dominant negative strategies, where it can be 

difficult to obtain reproducible and complete deletions of specific activities. Precision loss-
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of-function tools are available in genetic systems such as mice and zebrafish. However, 

mutational analysis of cardiac development can be challenging in mammals, where heart 

function is required early in gestation; indeed, the null phenotype of mouse Myh6 has not 

been characterized due to early lethality (Jones et al., 1996). Genetic screens in fish have 

uncovered a large number of cardiac gene functions, but the basic structure of the two-

chambered fish heart differs significantly from the four-chambered mammalian heart. The 

ancestral teleost genome duplication has also led to wholesale reassignment and shuffling of 

gene functions (Force et al., 1999; Postlethwait et al., 2000), complicating orthology 

assignment and contributing to the diversity of developmental mechanisms. For example, 

zebrafish cardiac valves are thought to form by an atypical direct invagination of endocardial 

epithelia into leaflet structures (Scherz et al., 2008) rather than via a mesenchymal 

‘endocardial cushion’ intermediate as has been described in other vertebrates (Armstrong 

and Bischoff, 2004; Eisenberg and Markwald, 1995) and indeed other fish (Gallego et al., 

1997; Icardo et al., 2004). Genetic analysis of X. tropicalis, with its more conventionally-

organized tetrapod genome and array of functional assays, will help bridge studies of cardiac 

development from teleost models to amniotes.

In muzak embryos, the early processes of heart looping and chamber formation are 

remarkably successful despite the lack of myh6 protein and consequent absence of 

myofilaments, sarcomeres, heartbeat and blood flow. We have not ascertained which of these 

deficits is responsible for the later defects observed in chamber morphology, valve 

formation, and trabeculation, or whether these are direct or indirect consequences of the 

mutation. However, it is worth noting that mutant hearts never initiate detectable contraction 

and beating, and hence develop in the complete absence of blood flow-mediated pressure 

load and shear stress. The role of mechanical forces in cardiac morphogenesis has been 

studied extensively, with conflicting results (Taber, 2006). In diverse vertebrates, beating 

begins substantially prior to requirements for transport of blood-borne oxygen and nutrients, 

consistent with a role as a physical influence on early steps such as looping and chamber 

formation (Burggren et al., 2000; Mellish, 1994; Pelster and Burggren, 1996; Territo and 

Burggren, 1998); indeed, heart looping begins when the first myofibrils appear (Manasek et 

al., 1978). Mechanical or genetic perturbation of contraction and blood flow have supported 

a role in these early steps in some cases (Hove et al., 2003; Huang et al., 2003; Nishii et al., 

2008), but not in others (Sehnert et al., 2002). Our histological analysis and 3-D modelling 

of muz hearts demonstrates that contractility and blood flow are not required for the key 

early steps of looping and chamber formation in this tetrapod.

Slightly later in heart development, chamber outgrowth or ‘ballooning’ is thought to be 

shaped by mechanical forces. Analysis of the chamber-specific MHC mutations weak atrium 
(atrial MHC, myh6) and half hearted (ventricular MHC, vmhc) show that blood flow 

promotes cardiomyocyte elongation in specific regions of the linear heart tube in the 

zebrafish embryo, while contractility restricts cell size and elongation (Auman et al., 2007). 

The muzak cardiac tube still undergoes ballooning into ventricle and atrium, suggesting that 

factors other than fluid shear forces can initiate chamber outgrowth. Another striking feature 

of muz hearts is the constriction of the lumen seen in the atrioventricular canal and outflow 

tract segments of the endocardial tube. The developing heart has been compared to a 

specialized blood vessel; arteries are thought to remodel their lumen diameters to maintain 

Abu-Daya et al. Page 11

Dev Biol. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shear stress near an optimal set point, decreasing diameter in response to decreased shear 

(Taber et al., 1995). It is possible that morphogenesis and inflation of these heart regions are 

particularly shear-dependent.

Another key step in cardiac development, remodeling of the ventricular myocardium to form 

trabeculae, is critical for increasing the surface area through which the muscle mass of the 

ventricle can diffuse oxygen prior to the development of coronary circulation (Sedmera, 

2005). Trabeculation does not occur in muz; instead the non-trabeculating regions of the 

ventricular myocardial wall become very thick. Wild type myocardium undergoing 

trabeculation displays a vacuolated appearance that we also observe in muz. Failure to form 

trabeculae could be simply due to lower oxygen requirements of the inactive mutant heart; 

trabeculation could also depend structurally on sarcomere integrity, or require signals from 

the overlying endocardium (Gassmann et al., 1995; Grego-Bessa et al., 2007; Meyer and 

Birchmeier, 1995), some of which regulate myocyte proliferation. Interestingly, the non-

trabeculating muz myocardial wall appears as thick as its wild type counterpart, suggesting 

that proliferation may still occur. Although endocardium does not express myh6, it is known 

to alter its gene expression in response to haemodynamic changes (Groenendijk et al., 2005); 

it remains to be seen whether specific trabeculation signals are affected in the mutant.

As the embryonic heart matures, efficient function depends on the formation of endocardial 

valves to prevent retrograde blood flow between chambers. Studies in Danio suggest that 

when contraction and/or blood flow is disrupted mechanically (Hove et al., 2003) or 

genetically (Bartman et al., 2004), valve formation is impaired, but this process is now 

thought to occur by an atypical mechanism of direct leaflet invagination in zebrafish (Scherz 

et al., 2008). We have seen no evidence of precursors or differentiated valves in muz 
embryos, consistent with a requirement for blood flow in valve formation mediated by more 

conventional endocardial cushion intermediates. However, in the absence of cushion-specific 

markers, which have not been described in Xenopus, morphological distortion of the muz 
endocardium makes it difficult for us to conclusively rule out the presence of ectopic 

cushion precursors.

Several other mutations affecting heart function have been identified in pilot genetic screens 

in X. tropicalis (Goda et al., 2006; Grammer et al., 2005; Noramly et al., 2005), rapid 

mapping strategies have been established ((Khokha et al., 2009); see also Supplemental 

Figure S3 for an X. tropicalis genetic mapping strategy flowchart), and reverse genetic 

resources are being developed ((Goda et al., 2006), http://www.sanger.ac.uk/Teams/Team31/

xtmr.shtml) from which mutants in known genes can be obtained. Heart development in X. 
tropicalis genetic models can be analyzed with a broad array of molecular, genomic, and 

embryological tools, including gain-of-function mRNA expression screens (Smith and 

Harland, 1992) to identify interacting suppressor or enhancer functions and sophisticated 

explant assays modeling differentiation to diverse tissue fates including beating cardiac 

muscle (Latinkic et al., 2003). Reinforced by these robust functional assays, genetic 

approaches in amphibians complement rapidly-advancing genomics technologies for 

dissecting tetrapod developmental processes. The work presented here demonstrates the 

feasibility of positionally cloning mutations in X. tropicalis, greatly increasing the range of 

genetic studies.
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Figure 1. Muz maps to an interval containing cardiac myosin heavy chain gene
A. Individual muz embryos were genotyped with SSLP markers from scaffold 91 and 

scaffold 554. Mapping was refined with SSCP markers (sscp439.1 and sscp439.15) and an 

SSLP marker (1.439.3) from scaffold 439; number of recombination events detected in 3200 

meioses shown above each marker. Dark grey scaffolds are present on the tropicalis meiotic 

map; intervening light grey scaffolds were obtained by analysis of synteny to reference 

genomes and confirmed by linkage. Muz maps to a 370 kb genomic interval between 

sscp439.1 and sscp439.15 containing 12 gene models in the JGI assembly, including myh6 
and myh6.2.
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Figure 2. muzak is encoded by myh6
WISH shows myh6 expression in wild type heart (A, black arrow) and jaw muscle (white 

arrow) is diminished in muz (B). (C, D) myh6.2 is expressed in jaw muscle (white arrow) 

but not heart (black arrow), and is unaffected by the mutation. (E) Schematic showing 

domain structure of wild type X. tropicalis myh6 and the truncated protein lacking the 

myosin coiled-coil tail encoded by the muz allele. (F) Western blot analysis does not detect 

sarcomeric MHC protein in extracts of muz heart; silver stained loading control below. 

(Movie S2 and G) myh6 morphant hearts do not beat and show strong depletion of 

sarcomeric MHC protein relative to control morpholino-injected tadpoles; silver stained 

loading control below.
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Figure 3. MHC genes expressed in stage 40 wild type and muz hearts
RT-PCR from isolated stage 40 hearts shows lower levels of myh6 in muz; myh7B and myh8 
are unaffected. (A) myh6.2 mRNA is not detected in wild type or mutant tadpole hearts or 

wild type adult heart, although it is amplified from whole-embryo mRNA; myh15 is 

expressed in adult but not stage 40 tadpole heart(B).
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Figure 4. Muz hearts lack myofibrils
3D confocal projections of wild type (A) and muz (B) hearts immunostained with the pan-

sarcomeric MHC A4.1025 antibody (green) and counterstained with phalloidin (red). In wild 

type hearts, MHC and actin colocalize to myofibrils, while muz hearts show very little 

A4.1025 immunostaining and no fibrillar structures.
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Figure 5. Altered chamber morphology in muz hearts
Coronal plastic sections of stage 40 wild type and muz hearts (top rows) numbered from 

ventral side of cardiac cavity, and indicated by white lines in 3D models (bottom rows). m= 

myocardium, e= inner endocardial tube, v= ventricle, ot= outflow tract , a= atrium. No blood 

cells are seen in the muz sections due to lack of circulation, and myocardial layer appears 

thinner throughout the muz heart compared to wild type. The muz ventricle is wider than in 

wild type (sections 7 and 11), while outflow tract and atrium are dilated (sections 14, 23 and 

41). Abnormal muz chamber morphology is highlighted in 3D projections of outlines of 

myocardium (A, C, E, G, red=ventricle, blue=outflow tract, green=atrium) and endocardium 

(B, D, F, H, orange), including elongated ventricle, dilated outflow tract (black arrowhead in 

E) and narrow cardiac tube at AVC level (black arrow in G). muz endocardium is very 

compressed with drastically reduced lumen (white arrows in 23, F and H)
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Figure 6. Muz hearts become dilated and lack valves and trabeculae
Coronal plastic sections of stage 42 wt and muz hearts (top rows) numbered from ventral 

side of cardiac cavity, and indicated by white lines in 3D models (middle rows). v= 

ventricle, ot= outflow tract , a= atrium. Wild type hearts show a spiral valve in the outflow 

tract (sections 14, 23, black arrows), and thickening of endocardium preceding 

atrioventricular valve formation (section 23, black asterisk). Valve formation is not detected 

in muz hearts, and endocardial lumen is drastically reduced in outflow tract and AVC 

regions (white arrowheads sections 54, 58, also compare models B and F). Endocardial 

cushion formation in AVC can also be seen in transverse sections of stage 42 wild type (I, 

white arrowhead) hearts but not in muz (J). Trabeculation has initiated in the wild type 

ventricle (I, black arrowheads) but is absent in muz (J). At this stage the ventricular 

myocardium has a vacuolated appearance in both wt and mutant embryos (I, J black arrows). 

Middle two rows: 3D projections of outlines of myocardium (A, C, E, G) and endocardium 

(B, D, F, H) highlight abnormal muz chamber morphology; red = ventricle, green = atrium, 

blue = outflow tract, orange = endocardium. Muz ventricles are elongated relative to wild 

type (E, G white arrows). A narrow tube connects muz ventricle and atrium (section 54 and 

G, black arrowheads; compare to 23, C).
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