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Relative Average Look Duration 
and its Association with 
Neurophysiological Activity in 
Young Children with Autism 
Spectrum Disorder
Dmitry Yu. Isaev1*, Samantha Major2, Michael Murias2,3, Kimberly L. H. Carpenter2, 
David Carlson   4, Guillermo Sapiro1,5,6 & Geraldine Dawson   2,7

Autism Spectrum Disorder (ASD) is characterized by early attentional differences that often precede 
the hallmark symptoms of social communication impairments. Development of novel measures of 
attentional behaviors may lead to earlier identification of children at risk for ASD. In this work, we 
first introduce a behavioral measure, Relative Average Look Duration (RALD), indicating attentional 
preference to different stimuli, such as social versus nonsocial stimuli; and then study its association 
with neurophysiological activity. We show that (1) ASD and typically developing (TD) children differ 
in both (absolute) Average Look Duration (ALD) and RALD to stimuli during an EEG experiment, with 
the most pronounced differences in looking at social stimuli; and (2) associations between looking 
behaviors and neurophysiological activity, as measured by EEG, are different for children with ASD 
versus TD. Even when ASD children show attentional engagement to social content, our results suggest 
that their underlying brain activity is different than TD children. This study therefore introduces a new 
measure of social/nonsocial attentional preference in ASD and demonstrates the value of incorporating 
attentional variables measured simultaneously with EEG into the analysis pipeline.

Autism spectrum disorder (ASD) is characterized by early attentional differences that often precede the hall-
mark symptoms of social communication impairments and restricted and repetitive behaviors1–3. Attentional 
processes such as orienting, disengagement from and sustaining attention to relevant stimuli2,4–6, and the ability 
to share attention7,8 are foundational for the development of social abilities and social communication. Research 
has demonstrated deficits in all of these domains of attention in infants and children with ASD8. As such, screen-
ing and diagnosis place particular emphasis on these behaviors; and early interventions target these attentional 
processes to facilitate the acquisition of social and communication skills9–11. In this work we investigate the asso-
ciations between attention and simultaneously recorded neurophysiological signals in children with ASD. Our 
results suggest that even when ASD children show attentional engagement to social content, their underlying 
brain activity is different than typically developing (TD) children.

A distinctive sign of ASD is robust differences in the amount of attention directed toward social versus nonso-
cial stimuli, documented across the lifespan and reported as early as 6 months of age in infants who later develop 
ASD12–15. Although neurophysiological recordings (e.g., Event-Related Potentials [ERP]16 and spontaneous elec-
troencephalogram [EEG]) and looking behavior paradigms (e.g., via habituation17 and gaze18, which are often 
measured with eye-tracking technology19, but can also use standard computer vision20) have been widely used 
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in autism research, few studies have reported reliable and robust results that combine these measures and jointly 
analyze them. Our study aims to fill in this gap, investigating the associations between looking/attentional behav-
ior and neurophysiological patterns, registered simultaneously in a synchronized fashion.

In infant studies, a common way to assess social attention is via diverse “habituation” paradigms17,21–23. For 
example, in some studies, static stimuli (faces or objects, i.e., social and nonsocial images) are presented to 
the participants. Then, look durations, defined as time between initial look at the stimulus and look away, are 
recorded. From such measures of look duration, various statistics can be derived, including time to habituate 
(formally, decline attention), peak look duration, mean look duration, and/or number of looks21,22,24. Webb et al.21 
showed that toddlers with more severe ASD symptoms based on the Autism Diagnostic Observation Schedule 
[ADOS]25) took significantly longer to habituate to faces than objects (houses). Further, the children with severe 
ASD took significantly longer to habituate to faces than groups of TD toddlers, as well as toddlers with less severe 
ASD, developmental delay (DD), siblings of ASD children, and siblings of TD children. In another study22, infants 
who later developed ASD showed shorter look durations to faces than objects, and their peak time to look to faces 
happened later than in infants who did not develop ASD, suggesting that infants at risk for ASD attend to faces 
differently than TD infants.

A common method/technology used to measure and analyze looking behavior (or gaze) is eye-tracking19. 
A broad body of literature, including some of the above mentioned papers, has offered insights to visual social 
attention using this method (see Guillon et al.26 for a review). Eye-tracking studies are commonly used to assess 
patterns of attention to dynamic stimuli6,14, e.g., movies or changing images, where both social (i.e., people) and 
nonsocial cues (e.g., toys) are presented and compared. The dynamic nature of the stimuli used in many of these 
studies is more ecologically valid than studies with static stimuli. In a study of toddlers with ASD, Chawarska et al.6  
showed that the difference between total looking time at faces/objects becomes apparent only when the child was 
viewing child-directed speech and the actress was making eye contact, referred to as a dyadic bid. In such a scene, 
the ASD group showed diminished attention to the face and the mouth while their attention to toys in the same 
scene was increased. This suggests that ASD toddlers have difficulties holding attention to the face particularly in 
dyadic bid situations. The same experiment, when conducted with 6-month old infants at risk for ASD15, demon-
strated reduced attention by infants who later developed ASD to the overall social scene, as well as to a person and 
her face, without any significant difference by types of activities shown (dyadic bids, joint attention, moving toys).

While eye-tracking and habituation studies provide us with rich data on attentional behavior patterns to 
social/nonsocial stimuli, it is also of interest to understand underlying neurophysiological activity during atten-
tion that might help explain differences in social attention. For example, using an ERP paradigm, Dawson et al.27  
showed that TD young children, as well as ASD children receiving an early developmental intervention (Early 
Start Denver Model9), showed increased activity in the theta band and decreased activity in the alpha band while 
attending to static faces, while ASD children who received treatment as usual showed the opposite pattern (greater 
activity in theta and less in alpha in response to static toy stimuli). While an extensive body of literature exists for 
ERP16 biomarkers of social attention in ASD28,29, fewer studies have focused on measures of spontaneous EEG and 
their relationship to attention to social dynamic stimuli. In an experiment with TD infants and preschool children 
that used dynamic stimuli (child-directed speech, manipulating toys, and visual attention to bubbles), theta band 
power was found to increase during emotionally stimulating conditions (child-directed speech and manipulating 
toys) as compared to a baseline (bubbles stimulus), supporting previous evidence of a relationship between theta 
power and attentional states30,31. In another study with dynamic stimuli32, an EEG connectivity analysis of the 
data from infants watching social/nonsocial videos was performed, however, the actual type of stimuli was not a 
factor influencing the EEG results.

Given the potential role of attention in influencing underlying neurophysiological activity, it is of interest to 
simultaneously measure both attention and EEG and jointly consider them for analysis. This was done in several 
EEG studies in which the participant’s behavior was videotaped synchronously with EEG recording32–35, and sub-
sequently looking behavior (looks at the screen), as well as motor behavior (significant motion), and/or emotional 
behavior (crying, excessive smiling) was coded offline. However, in those studies, the coded participant’s behavior 
was used only for data preprocessing33–35, or group comparisons of the behavioral variables32, and joint analysis 
of EEG and behavior was not explicitly performed. To the best of our knowledge, in the area of ASD research, 
only one study so far performed simultaneous eye-tracking (as a proxy to attention) and EEG analysis in an 
experiment with joint attention in a small sample of high-functioning autistic children36. The authors reported a 
positive correlation between cumulative fixation duration on face and beta and gamma band relative power. Our 
study uses a different age range and introduces significant additional analysis both of the attentional signal (as a 
measure of relative responses to social vs. nonsocial stimuli) and of the EEG signal, as well as their interaction.

In the present study, we explore a method to jointly study EEG and synchronized looking behavior during 
the same experiment. We introduced a new measure, Relative Average Look Duration (RALD), a normalized 
measure indicating attention preference when comparing different stimuli, i.e., social vs. nonsocial, allowing a 
within-subject comparison of relative attention directed to different stimuli. This allows for an individual meas-
ure of attentional preference. Furthermore, young children with autism are not compliant with instructions to 
sit quietly without any video stimuli while spontaneous EEG are collected. Thus, it is considered standard in 
the field of autism research not to include a video-free baseline but rather to examine how the brain responds 
to different types of stimuli during spontaneous EEG recording37; the proposed RALD naturally addresses this 
challenge. As mentioned above4,21, previous studies have shown differences in preference to social as compared 
to nonsocial stimuli in children with ASD. Here we develop a new measurement of relative/preferential attention 
and jointly analyze it with EEG. First, we examined how ASD and TD groups differ in their RALD at two videos 
displaying complex dynamic social and nonsocial audiovisual stimuli, as well as a neutral, less complex video 
(bubbles cascading) that did not involve sound. Second, we investigated how RALD correlates with brain activity, 
as reflected in the Relative Power Spectral Density (RP) of the EEG signal in four frequency bands. While the joint 
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study of EEG and looking behavior was previously used in EEG artifact correction38 and in the studies of human 
reading39–42, to the best of our knowledge only one study made an attempt to jointly analyze looking behavior and 
EEG in relation to social attention36. Our study goes further, proposing to use RALD as a measure of preferential 
attentional behavior and study its association with EEG.

Methods
Participants.  All caregivers/legal guardians of participants gave written, informed consent, and the study 
protocol was approved by the Duke University Health System Institutional Review Board. Methods were carried 
out in accordance with institutional, State, and Federal guidelines and regulations.

ASD participants.  Participants were 31 children with ASD (23 males, 8 females) between 28 and 81 months 
of age (mean = 55.3, SD = 14.8). Children with ASD were part of a single site, prospective, randomized, 
double-blind, parallel group study of placebo versus a single intravenous autologous or allogeneic, unrelated 
cord blood (CB) infusion in ASD children aged 2–7 years. The trial was conducted under IND #15949. Only 
data from the baseline visit, which were collected before infusions, were used in this analysis. Clinical diagno-
sis of ASD was based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)43, 
and established by expert clinicians using the Autism Diagnostic Observation Scale (ADOS-2)25 and the Autism 
Diagnostic Interview, Revised (ADI-R)44. Additional inclusion criteria included (1) stability on current medica-
tions for at least 2 months prior to the infusion, (2) participants and parents/guardians were English speaking, 
and (3) availability of autologous umbilical cord blood unit or ≥4/6 HLA-matched allogeneic unrelated umbilical 
cord blood unit from the Carolinas Cord Blood Bank. Exclusion criteria included (1) a history of prior cell ther-
apy, (2) use of intravenous immunoglobulin (IVIG) or other anti-inflammatory medications (with the exception 
of NSAIDs), (3) known genetic syndrome (e.g., Fragile X), presence of dysmorphic features, pathogenic mutation 
or copy number variation associated with ASD, and/or other significant medical and/or psychiatric comorbidity, 
(4) obvious physical dysmorphology, (5) an uncontrolled seizure disorder, (6) significantly impaired renal or 
liver function, (7) known active CNS infection, evidence of uncontrolled infection, and/or HIV positivity, (8) 
family unwilling or unable to commit to study-related assessments, and/or (9) clinically significant abnormalities 
in complete blood count. The mean Full Scale IQ of ASD study participants was 80.4 (SD = 21.9) based on the 
Mullen Scales of Early Learning Composite Score45 or Differential Ability Scales Second Edition (DAS-II)46.

Typically developing participants.  Children who did not have a diagnosis or suspected diagnosis of ASD were 
recruited from the community and the Duke Center for Autism and Brain Development research registry to par-
ticipate in a study of preschool age children with and without autism. A randomly chosen subset of these children 
(N = 31) who were age matched to the ASD participants were included in the current analyses. Participants were 
31 children (14 males, 17 females) between 39 and 71 months of age (mean = 53.3, SD = 10.5). Children were eli-
gible to be in the TD control group if they had scores on the Strengths and Difficulties Questionnaire (SDQ) that 
were within the normal range for all scales. The SDQ is a parent-report screening tool for measuring internalizing 
and externalizing difficulties in children47–49. Exclusion criteria for this group included having (1) a biological 
sibling or parent diagnosed with ASD or developmental delay (DD), (2) a genetic disorder (e.g., Fragile X), (3) 
vision or hearing problems, (4) a significant motor impairment (e.g., cerebral palsy), (5) chronic or acute medical 
illness, and (5) a seizure in the last year, a seizure disorder, or being on medication for seizures. The mean Full 
Scale IQ of TD study participants was 114.3 (SD = 13.5) based on the Mullen Scales of Early Learning Composite 
Score45 or Differential Ability Scales Second Edition (DAS-II)46. In order to control for IQ differences between the 
two groups, IQ was used as a covariate in the analyses.

EEG measures.  Protocol.  Continuous EEG was recorded while the participant watched three video stimuli 
which were each shown twice (total of 6 videos, 6 minutes). Video content was dynamic stimuli consisting of a 
woman singing nursery rhymes while she gestured (“Social,” video 1), brightly colored dynamic toys that made 
noise (“Toys,” low social content, video 2), and bubbles cascading across the screen with no auditory content 
(“Bubbles,” low social and audio content, video 3), see Fig. 1 for corresponding screenshots. The order of Social 
and Toys videos was counterbalanced to eliminate any potential order effects, and Bubbles was always shown last. 
During the experiment, two behavioral assistants accompanied the child. They ensured that standard conditions 
were in place during each experiment, including dimming the lights, seating participants in their parent’s lap in a 
comfortable armchair 65 inches from the monitor, and redirecting participants in instances of movement and/or 

Figure 1.  Screenshots of three stimuli used in the study. Left – Social, Center – Toys, Right - Bubbles stimulus.
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poor attention to the videos. The child’s face was recorded from a camera beneath the screen synchronized with 
the EEG. It allowed post-session editing of periods of inattention. EEG data were recorded from 124 channels 
with reference to Cz using a Hydrocel Geodesic Sensor Net and Net Amps 400 amplifier (Electrical Geodesics, 
Eugene, Oregon). Data were collected using Netstation 4.5.6 with a sampling rate of 1000 Hz.

EEG preprocessing and data attrition.  Data were processed with Matlab 2014a, using the open source Fieldtrip50 
and EEGLAB51 toolboxes for all operations on EEG data. Data were filtered with a 1–100 Hz bandpass filter and a 
60 Hz notch filter. Participant videos were inspected for gross inattention to the video and movement artifact, and 
these time points were removed from EEG analyses. For each participant’s data, persistent bad channels that were 
deviant in 33% of trials (identified with Fieldtrip function ft_rejectvisual based on within channel variance and 
kurtosis) were interpolated using spline interpolation, as implemented in the Fieldtrip function ft_repairchannels. 
Interpolation was chosen to keep consistent datasets across participants. Amount of interpolated channels was 
between 4 and 21 for ASD participants and 6 and 24 for TD participants. Data were decomposed using Second 
Order Blind Identification (SOBI) as implemented in EEGLAB51,52. Topographic maps of SOBI components 
were inspected and electrooculogram (EOG) and electromyogram (EMG) components were removed. Forty 
one-second epochs from each of two presentations of the stimulus with minimal movement contamination were 
retained (again using ft_rejectvisual function). Data were then re-referenced to the common average as laid out 
in Nunez and Srinivasan, 200653 using Fieldtrip ft_preprocessing function50. These preprocessing methods are 
commonly employed in modern electroencephalography50–54. Finally, a fast Fourier transformation (FFT) was 
performed on the rectangular windowed time series. For each of the 3 stimulus conditions presented twice, the 
presentation with the least amount of movement artifact was chosen for analysis.

EEG data analysis.  As a result of preprocessing step, EEG data were a 3-dimensional array of voltages, with 
dimensions 40 × 124 × 1000 (40 one-second epochs, 124 channels, 1000 samples per second). Three scalp regions 
of interest (Regions: Frontal, Central, and Posterior), per McEvoy et al.54, were used in the analysis. Twelve chan-
nels covering the left hemisphere, right hemisphere, and midline were included in each of the three regions35. Per 
each participant and each condition, average Power Spectral Density (PSD) from 40 artifact-free seconds of EEG 
recording for each channel was binned into four power bands: theta (5–7 Hz), alpha (8–10 Hz), beta 1 (11–20 Hz), 
and beta 2 (21–30 Hz)35. Relative Power Spectral Density (RP) was calculated by dividing PSD in each band by 
the total signal power between 3 and 30 Hz for each channel, resulting in four RP values per channel during each 
video stimulus. RP per region was then calculated by averaging values from twelve channels within the region. 
Additionally, log-ratio of RP between pairs of video stimuli V1 and V2 was computed, as well as log-ratio of 
Theta/Beta power ratio,
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Measurement of relative average look duration.  By comparing within-subject relative average look 
duration to nonsocial versus social stimuli, each participant’s attention to one type of stimulus served as a “base-
line” for comparing that participant’s attention to the second type of stimulus. Attention was coded as a binary 
signal based off the same video recording used for preprocessing EEG data. The following summary features were 
extracted from this binary signal:

	(1)	 Total looking duration (TLookV) - total amount of time child was watching the screen when video stimulus 
V was presented;

	(2)	 Average look duration (ALDV) - This attention/looking variable was computed as follows for each video 
stimulus V:

= ⋅ALD TLook
Number of looks at the screen during the video presentation#V

V

With this variable we are providing a measurement of the intermittent behavior of attention.
	(3)	 Relative average look duration (RALD) – This core new measurement was computed as:

=
−
+
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This measure can be considered as a measure of engagement in one type of video (V1), treating another as 
a baseline level (V2). As can be seen from the formula, RALDV1,V2 takes values in the range of [−1, 1]. For exam-
ple, full engagement in Social video and disengagement in Toys video means RALDSocial,Toys = 1, and, vice versa, 
RALDSocial,Toys = −1 means full engagement in Toys video and disengagement in Social video.
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Statistical analysis methods.  To evaluate the ability to distinguish the ASD from the TD group using the 
attention measures, two-way ANCOVA was performed for ALDV, with categorical predictors of Group (ASD/
TD) and video type (Bubbles/Social/Toys), and IQ, Sex, and Age as covariates. Then, one-way ANCOVA was 
performed for RALDV1,V2 with predictor of Group and the same covariates. In the order of increasing complexity, 
we applied the following models, each time testing whether a new predictor significantly increased explanatory 
power of the model:

~ALD IQ (1a)

+~ALD Sex IQ (1b)

+ +~ALD Age Sex IQ (1c)

+ + +~ALD Group Age Sex IQ (1d)

+ + + +~ALD Group VideoType Age Sex IQ (1e)

+ + + + +~ALD Group VideoType Group: VideoType Age Sex IQ (1f)

A univariate linear modeling approach was used to search for possible associations between the proposed 
baselined attention measures (RALDSocial,V2) and EEG signal features, namely log-ratio of RP (relative power) and 
TBR (Theta/Beta ratio). In other words, −LRSocial V choice of nonsocial2( ) and −LRTBR Social V choice of nonsocial, 2( ) were treated 
as dependent variables, while RALDSocial,V2, Group, and interaction between RALDV1,V2 and Group were taken as 
predictors, with Age, Sex, and IQ treated as covariates. This is all expressed in the following equation:

( )LR or LR RALD Group

Group RALD
Age Sex IQ

( )

( )
(2)

Social V band Region TBR Social V Region Social V

Social V

2, , , , 2, 0 1 , 2 2

3 , 2

4 5 6

β β β

β
β β β

= + +

+ ∗
+ + + .

− −

In all models we were interested in the effect of RALDSocial,V2 and an interaction term (Group * RALDSocial,V2) 
on the dependent variable. False Discovery Rate (FDR)55 correction was applied to p-values corresponding to 
these 2 regression coefficients from all models of the above type. Initially, FDR correction was done for 60 tests, 
since both LR and RPSocial were used as dependent variables. However, results for RPSocial were not directly inter-
pretable. For the sake of reproducibility, we recomputed FDR for 30 tests. Nothing changed in the significance of 
the results, only FDR-corrected p-values slightly changed.

For those models that proved significant on RALD or Group*RALD interaction we tested whether adding 
the interaction term significantly improved explanatory power of the model, by applying 3 models in the order 
of increasing complexity:

•
	
( )LR or LR Group Age Sex IQ (3)Social V band Region TBR Social V Region2, , , , 2, 0 2 4 5 6β β β β β= + + + + .− −

•
	
( ) (4)LR or LR RALD Group Age Sex IQ( )Social V band Region TBR Social V Region Social V2, , , , 2, 0 1 , 2 2 4 5 6β β β β β β= + + + + + .− −

•	 and Model from Eq. (2).

Results
Average look duration.  First, and for the sake of completeness, we report initial results on ALD, since it 
forms the basis of RALD, which is the main subject of this work. Patterns of attention during each type of stimuli for 
both groups can be seen on Fig. 2a. Our sequential tests for explanatory power revealed that it increases by adding 
Group (Eq. 1d), Video type (Eq. 1e) and Group*Video type interaction (Eq. 1f) (p < 0.05, p < 0.001, p < 0.05 on 
F-tests respectively), even after controlling for differences in IQ. We observed a strong effect of Group, such that 
ASD children exhibited shorter look durations than the TD group (F1,177 > 35.39, p < 0.001), and of video stimu-
lus type, with both groups most engaged in Toys and least engaged in Bubbles (F2,177 > 16.04, p < 0.001). Further, 
an interaction effect was significant (F2,177 > 3.21, p < 0.05), suggesting that relative level of engagement between 
Social, Toys and Bubbles was different in ASD group and TD group; in the ASD group, decreased ALD was most 
evident while viewing the Social video, which was not the case for the TD group. See Fig. 2b for details. This effect 
also became evident when considering RALD measures below.

Relative average look duration.  The ability of 3 different RALDV V1, 2 measures (contrasting Social vs. 
Toys, Social vs. Bubbles, and Toys vs. Bubbles videos) to distinguish ASD from TD group was explored. To this 
end, one-way ANCOVA models with Sex, Age and IQ confounding variables were exploited. RALDSocial,Bubbles and 
RALDSocial,Toys (which can be considered Social vs. Nonsocial) demonstrated significant ability to separate between 
the groups (F1,57 > 4.43, p < 0.04 and F1,57 > 10.50, p < 0.002 respectively), while RALDToys,Bubbles (two nonsocial 
stimuli) did not (F1,57 > 0.50, p < 0.48).
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EEG measures.  We selected RALDSocial,Toys for combined analysis with EEG since it better separated groups 
(see above), and being a relative measure it eliminated potential effects of baseline mood, excitation, or drows-
iness on the day of the experiment. It also follows independent findings about the value of changes/differences 
(RALD) contrary to absolute behaviors4,21.

When taking the log-ratio of RPSocial and RPToys (which is a measure of relative brain activation while viewing 
social versus nonsocial stimuli; see Dawson et al.27), different patterns of associations between RALDSocial,Toys and 

Figure 2.  (a) Attention measurements in this study. Each line (31 lines total) on each one of the six images 
represents one participant’s attention during the course of 120 seconds (2 video repetitions of 60 seconds 
length). (b) Behavior of ALDV for each video type. Asterisks mark level of significance on two-sample t-test 
between two groups within each video type. *p < 0.05, ****p < 0.0001.
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EEG measures became evident. Specifically, LRSocial-Toys,Theta,Central and LRSocial-Toys,Theta,Posterior had a positive associa-
tion with RALDSocial,Toys in the TD group and negative association with RALDSocial,Toys in the ASD group at the level 
of p < 0.1, while inverse patterns of association were observed in the Beta 1 Frontal band (p < 0.05).

The log-ratio of Theta-Beta Ratio (LRTBR,Social,Toys) measure showed significant positive association with 
RALDSocial,Toys (in TD group, all regions) and significant negative association (in ASD group, Posterior region), or 
a tendency to negative association (in ASD group, Frontal and Central regions), as can be seen from confidence 
intervals shown in Fig. 3 and Table 1. Our sequential tests for explanatory power demonstrated that simply adding 
RALDSocial,Toys to the model containing only covariates and Group (Eq. 4 compared to Eq. 3) did not improve the 

Figure 3.  Relations between RALDSocial,Toys and LRSocial-Toys,Theta, LRSocial-Toys,Beta 1, and LRTBR,Social-Toys in Posterior 
Region for TD and ASD groups. Log-Ratio (LR) takes on relative powers of frequency bands as arguments. 
Results are typical for all the Regions.

log(RPSocial/RPToys), Region

RALDSocial,Toys Group *RALDSocial,Toys Confidence Interval for βcoefficient at RALDSocial,Toys

β
p-val 
(FDRcorr) β

p-val 
(FDRcorr) In TD group In ASD group

Theta F 0.2304 0.150 −0.3122 0.097 −0.042 0.502 −0.219 0.056

Theta C 0.2950 0.070 −0.3881 0.042 0.029 0.561 −0.228 0.041

Theta P 0.2911 0.094 −0.4389 0.041 0.008 0.574 −0.291 −0.005

Alpha F 0.1220 0.527 −0.0027 0.989 −0.232 0.476 −0.060 0.298

Alpha C 0.0108 0.982 0.2416 0.275 −0.328 0.350 0.081 0.424

Alpha P −0.1715 0.405 0.3648 0.141 −0.537 0.194 0.009 0.378

Beta1 F −0.3124 0.041 0.4514 0.021 −0.545 −0.080 0.021 0.257

Beta1 C −0.1401 0.275 0.2130 0.166 −0.371 0.091 −0.044 0.190

Beta1 P −0.2460 0.137 0.4019 0.042 −0.520 0.028 0.017 0.295

Beta2 F −0.3480 0.204 0.3734 0.228 −0.817 0.121 −0.212 0.263

Beta2 C −0.2036 0.275 0.1314 0.527 −0.533 0.126 −0.239 0.094

Beta2 P −0.3355 0.134 0.4758 0.065 −0.701 0.030 −0.045 0.325

LRTBR F 0.5609 0.041 −0.7426 0.021 0.156 0.966 −0.387 0.023

LRTBR C 0.4599 0.042 −0.5829 0.041 0.093 0.826 −0.308 0.062

LRTBR P 0.5824 0.042 −0.8842 0.021 0.115 1.050 −0.538 −0.065

Table 1.  Associations of log-ratio of EEG RP in Social and Toys videos and LRTBR,Social-Toys and RALD. EEG 
measurements were aggregated to three regions, frontal (F), central (C), and posterior (P). Spectral power was 
binned into four frequency bands: Theta (5–7 Hz), Alpha (8–10 Hz), Beta 1(11–20 Hz), Beta 2 (21–30 Hz). 
Associations in bold are significant. In “Confidence Interval” section in case at least one association is 
significant, for each group positive associations are marked in bold underline with italic, negative associations in 
bold underline, and no association in bold.
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explanatory power of the model regardless of region and frequency band. However, adding RALDSocial,Toys and 
Group * RALDSocial,Toys interaction (Eq. 2 compared to Eq. 3) increased explanatory power in all models that we 
reported significant above (p < 0.05 on F-test).

While our primary hypothesis involved comparing brain activity across two audiovisual conditions that dif-
fered in social versus nonsocial content, we also carried out similar analyses comparing the social and bubbles 
conditions and the toys and bubbles conditions. In this case, the two conditions differed not only in content but 
also level of stimulation because the bubbles condition did not involve audio. No significant results were found.

Discussion
In order to illustrate the value of jointly studying attentional behavior and EEG, we first investigated a metric for 
average look duration (ALD), defined as the average length of separate looking periods (intermittent attention) 
to a complex, dynamic stimulus. We found that, compared to age matched TD children, children with ASD have 
shorter average look durations to both social and nonsocial complex dynamic audiovisual stimuli. ALD is the 
building block for a newly proposed measure of relative average look duration (RALD) to different stimulus 
types; RALD to the social compared to nonsocial stimuli exhibited differential associations with neurophysio-
logical measures for the ASD and TD groups. These results indicate that the neural systems that mediate relative 
differences in sustained attention to social versus nonsocial stimuli are not the same for children with ASD versus 
TD. Additionally, adding an interaction term, thus accounting for differential associations in TD and ASD, sig-
nificantly increased explanatory power of the model even after controlling for group differences in IQ and sex. 
These results therefore support the idea that ASD and TD children process social and nonsocial stimuli differently 
and that combining simultaneously recorded attentional behavioral data and EEG data adds explanatory value in 
understanding these differences.

Group differences in ALD were most robust when the children were viewing the social stimulus, further sup-
porting the use of RALD to capture differential attention between different stimulus types. That is, ASD children 
had shorter look duration for all stimuli types, but the effect was most pronounced in the social condition. When 
the relative measure (RALD) was examined, it was found that the contrast between social and nonsocial stimuli 
(RALDSocial,Toys, RALDSocial,Bubbles) distinguished the TD and ASD groups, while the contrast between two nonsocial 
stimuli (RALDToys,Bubbles) did not yield group differences. ASD deficits in sustained attention appear to be strongest 
when social content is involved, highlighting a context-specific difference in attention. This may distinguish ASD 
from other disorders of attention, including attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. 
Our findings are consistent with other studies that have shown differences between ASD and TD children in total 
looking time and peak look duration in the context of social attention6,12,14,15,24. However, these studies are limited 
in that they did not measure average look duration and only focused on maximum and total durations.

As the contrast between the Social and Toys stimuli for average look duration (RALDSocial,Toys) was most robust, 
we used it for subsequent investigation of its relationship with simultaneously recorded EEG, where the measure 
of interest was relative EEG power during the social as compared to nonsocial stimuli. Analysis revealed that cor-
relations between RALD for social versus toys stimuli and underlying patterns of EEG differed for children with 
ASD versus TD. For TD children, as average look duration to social stimuli relative to toys increased, central and 
posterior EEG theta power while viewing social versus toy stimuli also increased. This is consistent with previous 
studies that have found that frontal theta band activity increases when individuals pay attention to multi-sensory 
stimuli involving auditory and visual input56, particularly since the social stimuli were more complex (e.g., involv-
ing language) than the dynamic toy stimuli. Furthermore, reduced frontal beta power while viewing social versus 
toy stimuli was associated with increased attention duration to the social relative to the nonsocial video. Studies 
have shown that working memory encoding is associated with a transient reduction in beta power (see review by 
Hanslmayr, Matuschek57). The social video involves the actress speaking and gesturing to the child which might 
have invoked working memory processes.

Different patterns emerged in the ASD group. Increased posterior theta power and decreased frontal and pos-
terior beta power while viewing the social versus toy stimuli was associated with shorter average look durations 
to the social video relative to the nonsocial video. Taken together, we conclude that TD children with preferential 
attention to social vs nonsocial stimuli exhibit an expected brain response while watching the social stimuli that 
is characterized by high levels of theta power and low levels of beta power across the scalp. ASD children, how-
ever, appear to show the opposite effect or no association at all. This suggests that even when ASD children show 
preferential attentional engagement with social content, their underlying brain activity is not the same as the TD 
children. Given the relatively small sample size and the fact that we did not make a priori predictions regarding 
these associations for the ASD group, replication with a larger sample size is needed.

Our findings, showing main differences between ASD and TD children in the associations of looking behavior 
and EEG in theta and beta bands, prompted us to study a metric, typically used in ADHD research, Theta-Beta 
ratio (TBR)58–60, which measures an increase in theta power relative to a decrease in beta power. Indeed, TBR 
log-ratio was positively associated with RALDSocial,Toys for TD children across all scalp regions, while a negative 
association existed for ASD children across the posterior region. There has been evidence for use of TBR as a 
biomarker for ADHD, but the exact neural basis of the TBR is still poorly understood (see Lenartowitz, Loo58 
and Jeste et al.61 for reviews). However, no previous research to our knowledge has looked into TBR as a measure 
of brain response to social/nonsocial stimuli, especially in children with autism. Interestingly, it is estimated that 
37–85% of the ASD population has comorbid ADHD62. While both disorders involve disruptions in attention, 
individuals with ADHD show more pronounced deficits in sustained attention than those with ASD63,64. Since 
TBR is atypical in both ADHD and ASD, we may be probing attentional brain circuitry that is commonly dis-
rupted in both disorders. More work is needed to understand the similarities and differences in brain functioning 
and attentional behaviors between ASD and ADHD participants.
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Previous research has studied EEG activity during social and nonsocial videos in clinical trials for children 
with ASD. In a study comparing a TD group and two behavioral intervention models (Early Start Denver Model9 
and community intervention), Dawson et al.27 reported increased log-ratio (Faces vs. Objects) theta power in 
the TD group as well as the ESDM group, while the opposite pattern was observed in the group that received 
community intervention. In the present study we found that, for the TD group, increased theta power during the 
social stimulus and log-ratio (Social vs. Toys) was associated with increased preference to social videos, consist-
ent with Dawson’s findings in the TD and ESDM groups. Increases in theta power have been implicated in the 
allocation of greater attentional and cognitive resources27. Furthermore, Murias et al.35 found that higher baseline 
beta power was predictive of changes in the Vineland Socialization subscale score in an open-label trial testing 
the efficacy of umbilical cord blood for children with ASD. It is clear from these studies that theta and beta power 
are viable, modifiable biomarkers for ASD, and the current results provide additional evidence that these brain 
markers are associated with the ability to sustain attention, which involves development of inhibitory and execu-
tive functioning skills. Data shows that there is similar association in ASD children in our study (log-ratio of beta 
power increases as engagement in social stimulus increases), while this pattern is not showing up in TD children. 
This supports the idea that ASD and TD children process social and nonsocial stimuli differently, and combining 
behavioral and EEG data is a way to reveal this difference.

A potential weakness in our study was the fact that TD and ASD groups differed not only in terms of an ASD 
diagnosis but also in cognitive ability and sex distribution, with the ASD group having a mean lower IQ and more 
male participants compared to the TD group. All results accounted for this group difference by including IQ and 
sex as covariates. However, future work should include comparisons between groups with similar cognitive ability 
and sex distribution. In addition, the study used a relatively small sample size which limited statistical power; 
nevertheless, many findings were still robust enough to be statistically significant.

In the presented work we proposed a method to analyze looking behavior during synchronized spontaneous 
EEG recording. We showed that the measures of looking behavior that incorporate not only total attention time 
but also average look duration, differentiate between children with TD and ASD and are associated with differen-
tial patterns of EEG activity, which differ in children with ASD and TD. Future work will aim at combining this 
measure with EEG signal features for improving assessment of autism spectrum disorder.

Data availability
Groups interested in direct use of the data can do so via collaboration with the authors due to privacy and consent 
considerations. Data is stored in a secured partition at Duke Health.
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