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Abstract
Tick-borne encephalitis (TBE) has been a notifiable disease in Germany since 2001. Its causative agent, the TBE virus 
(TBEV), is the most important arbovirus in Europe and Northern Asia. The illness, caused by the European Subtype usu-
ally displays flu-like symptoms, but can result in sequelae and, in 2 % of all cases, in death. Over the last few decades, the 
virus has spread into new habitats, such as higher altitudes in the Alpine region. For this study, it was hypothesized that the 
environmental challenges that the virus might be exposed to at such altitudes could lead to the selection of viral strains with a 
higher resilience to such environmental factors. To determine whether strains identified at higher altitudes possessed different 
genetic traits compared to viruses from lower altitudes, an analysis of viral genomes from higher Alpine altitudes (> 500 m 
above sea level) (n = 5) and lower altitudes (< 500 m above sea level) (n = 4) was performed. No common phylogenetic 
ancestry or shared amino acid substitutions could be identified that differentiated the alpine from the lowland viral strains. 
These findings support the idea of many individual introductions of TBEV into the alpine region and the establishment of 
foci due to non-viral specific factors such as favorable conditions for vector species and host animals due to climate change.

Keywords Tick-borne encephalitis virus · Mountains · Genetic analysis · Tick-borne encephalitis · Tick-borne encephalitis 
virus strains

Introduction

TBEV is the agent of tick-borne encephalitis (TBE), a severe 
infection of the central nervous system that may result in 
sequelae and can possibly end in disability or death. Cur-
rently, the virus is divided into three subtypes, the European, 
the Siberian and the Far Eastern subtype [1–5]. TBEV is 
mostly transmitted via tick bites. However, especially in 
Eastern Europe, outbreaks caused by alimentary transmis-
sion through unpasteurized milk and soft cheese have been 
reported [6–12].

In recent years, the European subtype of TBEV has come 
more into focus since its distribution pattern changed sig-
nificantly. The virus appeared in mountainous regions of the 
Alps previously considered free of natural foci of TBEV [13, 
14]. It is unclear, whether certain/specific genetic traits of the 
virus are responsible for this sudden claim of new endemic 
areas or if the climatic conditions changed and became more 
suitable for the natural transmission cycle. It is possible that 
the mountainous strains were naturally selected due to some 
small nucleotide polymorphisms (SNPs) in their genome 
that made them more resistant to the alpine environment. To 
shed light on the question, 5 different virus strains, isolated 
from these new endemic areas, were thoroughly analysed 
regarding their genomic sequences and compared to strains 
isolated from long established foci in lower altitudes.

Results and discussion

For all TBEV-EU strains included in the study the whole 
genome sequences were generated. The phylogenetic tree 
based on the nucleotide sequences showed no evidence of 
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a common origin of the mountainous strains (Fig. 1). The 
virus strains D15_33, K2 and HB171_11 had the closest 
phylogenetic relation to each other, despite coming from 
different elevation levels and collecting sites being 200 km 
apart.

In Table 1 the different strains have been compared in 
regard to nucleotide changes/amino acid differences. This 
analysis reveals that the strain K2 differs the most from strain 

NE_1/7 (Neudoerfl) with 219 nucleotide changes (shown in 
Italics), whereas the strains D15_569 and D17_1044 show 
the fewest differences (shown in Bold). Regarding amino 
acid substitutions the biggest difference of 40 amino acid 
changes is between strains K2 and D17_1989 (highlighted in 
Italics) and the least amino acid difference can be observed 
between the strains HB171_11 and BaWa16_303 with only 
19 amino acid changes (indicated in Bold).

Fig. 1  a Phylogenetic tree 
of whole genomes of several 
TBEV-Eu strains. The whole 
genomes were amplified in 
three DNA amplicons covering 
the whole genome [15]. For 
sequencing the Illumina MiSeq 
platform and the MiSeq reagent 
kit V3 (Illumina, Inc., San 
Diego, USA) was used, follow-
ing the manufacturer’s instruc-
tions. Assembly was performed 
using the software Spades 
v.3.12. For the phylogenetic 
comparison, available TBEV-Eu 
whole genome sequences pub-
lished in the NCBI GenBank 
database were chosen. The tree 
was generated using the maxi-
mum likelihood approach and 
1000 bootstraps were imple-
mented for statistical support 
[16–19]. The strains used in 
this study are highlighted in red 
(alpine regions) and blue (lower 
altitudes). b Table containing 
the meta data for the TBEV 
strains used in the analysis

(A) 

(B) Strain Loca�on Country Year of Isola�on GPS - X GPS- Y Eleva�on Sequencing material

D14_97 Aschau A 2014 47,2583 11,8871 710 m �ck homogenate

D15_33 Egelsee A 2015 47,6049 12,1707 563 m �ck homogenate

D15_569 Wald A 2015 47,0778 10,8329 1364 m �ck homogenate

D17_1044 Mühlau D 2017 47,7254 12,3938 611 m �ck homogenate

D18_1133 Tres I 2018 46,3173 11,1069 858 m �ck homogenate

D17_1989 Pe�ng D 2017 47,9259 12,819 459 m �ck homogenate

BaWa16_303 Haselmühl D 2016 49,409 11,8831 430 m �ck homogenate

NE_1/7 Neudoerfl A 1975 47,7887 16,3051 266 m babymouse brain

K2 Karlsruhe D 1980 49,032 8,4136 116 m babymouse brain

HB171_11 Heselbach D 2011 49,2973 12,2006 432 m VeroB4 P0/P1
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All ten amino acid sequences were aligned and analysed 
for substitutions. No common amino acid substitution dif-
ferentiating the alpine and the lowland strains was found. 
All virus proteins were analysed separately. The capsid pro-
tein showed up to two individual changes in the amino acid 
sequence. The prM/M protein showed up to two individual 
changes in the sequence with only strain HB171_11 hav-
ing a non-synonymous change of T141I. The strain D14_97 
showed four amino acid changes in the E-gene sequence, 
two of which were heterologous and may affect the superfi-
cial charge of the virus membrane. Other non-synonymous 
changes were found in strain D15_569 with L459S, strain 
D17_1989 that has a Y130H and K2 with A83T. Y130H has 
already been correlated with increased neuroinvasiveness in 
immunodeficient mice [20].

The NS1 protein showed up to two individual amino 
acid changes. Strain D17_1044 showed a non-synonymous 
substitution of the non-polar I127T, K2 one of P103S and 
HB171_11 A41T. Compared to its length the most vari-
able protein was NS2A. The three strains D15_33, K2 and 
HB171_11 showed the same synonymous substitution of 
V41I and the strains D17_1044 and D17_1989 shared a 
substitution of I53M. The latter is remarkable, since both 
belong to two different genetic clusters and share another 
substitution in their NS3 protein.

Within the NS2B amino acid alignment two non-synon-
ymous changes could be identified for the strains D15_569 
and HB171_11. For NS3 up to three individual substitutions 
were found and three of the strains (D15_33, D18_1133 and 
K2) showed non-synonymous changes. The NS4A showed 
one substitution in three viruses, with only the substitution 
of Gly100 for serine in strain D17_1044 being non-synony-
mous. Three strains (D17_1989, K2 and HB171_11) had up 
to two individual substitutions in the NS4B protein.

The NS5 showed up to fourteen amino acid substitutions 
ranging from one to seven individual changes. The virus 
with most individual changes was strain D17_1044, followed 
by strain D17_1989.

The virus strain with the fewest individual amino acid 
changes was strain D18_1133 with 23% changes in their 
amino acid sequence. It was followed by strain D14_97 with 
33.3% individual changes. The virus strain with most indi-
vidual changes was HB171_11 with 48%.

Therefore, a phylogenetic analysis often results in poor 
statistical support and has to be interpreted very cau-
tiously. The comparison of our TBEV strains confirms 
this observation, since the genetic difference of the ten 
TBEV strains in our study was 0.028 substitutions per site 
in total. Over the last two decades a clear shift in the dis-
tribution of TBE virus from lower to higher altitudes has 
been observed. So far, the possible effects on the genomic 
characteristics of TBEV are still unclear. One working 
hypothesis was that the virus replication had to adapt to Ta
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harsh environmental conditions. Therefore, these strains 
might exhibit certain specific changes in their genomes as 
a response to the conditions they were exposed in regions 
with higher altitudes. Another explanation is that every 
strain from a mountainous area is derived from a common 
ancestor adapted to the conditions found in mountains. 
After further distribution, they could form new natural 
foci. Furthermore, a change in climatic and therefore eco-
epidemiological conditions in the higher altitudes might 
lead to better conditions for TBEV replication in ticks.

We were not able to find a common specific genetic 
trait shared by all strains from areas of an altitude above 
500 m above sea level. According to the phylogenetic 
analysis, each virus strain was probably introduced indi-
vidually into its location and found favourable environ-
mental conditions (possibly due to climate changes). We 
observed some of the amino acid changes described in the 
paper by Formanová et al. [21] in all eight virus strains 
(namely Ile167V, E127D, V201I and G206R). In addition, 
T33S was found in HB171_11 and D17_1989 and I53M 
in D17_1044 and D17_1989. Furthermore, we could not 
determine a close phylogenetic relationship between the 
mountainous strains. In fact, strain D15_33 was geneti-
cally most closely related to the lower altitudinal region 
strains HB171_11 and K2 in our analysis. This is another 
indicator for the newly emerged strains to be distributed 
into new areas by chance.

NS2A is said to be involved in the shift between RNA 
packaging and RNA replication [22, 23], its high variabil-
ity could be the reason for the different replication rates 
and infectivity of different TBEV strains. The same could 
apply to the high variability in NS2B, a protein suspected 
to be involved in modulating the membrane permeability 
during infection [24]. To confirm or disprove this hypoth-
esis further experiments need to be undertaken.

Since we could not find any hints pointing towards spe-
cific genetic characteristics of TBEV strains from higher 
altitudes, we assume that other reasons for the new distri-
butional pattern are responsible for the emerging alpine 
distribution of TBEV.

As shown by Rubel et al. in [25] the Alps, have under-
gone a severe climatic shift since 1876. It can be assumed 
that this shift contributes to transformation of the Alpine 
environment and therefore, the distribution of vector spe-
cies, and host animals might change. This has yet to be 
proven by further research.
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