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Summary 
Accumulating data show that the tyrosine protein kinase Zap-70 plays an essential role in T cell 
receptor-mediated signal transduction. However, the mode of action, as well as the physiolog- 
ically relevant substrates of Zap-70, have not been determined. We have attempted to identify 
a 120-kD tyrosine-phosphorylated protein (p120) that associates with Zap-70 in activated T 
lymphocytes. The results of  our analyses showed that p120 is largely encoded by the c-cbl pro- 
tooncogene. Furthermore, the association of Zap-70 with c-Cbl was shown to be induced by 
T cell receptor stimulation, implying that it required posttranslational modification of one or 
both of these products. FynT, but not Lck, also associated with c-Cbl in activated T cells. Fi- 
nally, using a heterologous system, it was demonstrated that the ability of Zap-70 to cause ty- 
rosine phosphorylation of p120 c-cbl was dependent on Lck- or FynT-mediated signals. As c-Cbl 
can associate with several other signaling molecules, it may couple Zap-70 to downstream es 
lectors during T cell activation. 

S timulation of  T lymphocytes by antigen or anti-TCR 
antibodies causes a rapid tyrosine protein phosphoryla- 

tion signal (for review, see references 1-4). Accumulating 
evidence shows that this signal is initiated by p56 kk and 
p59 fynT, two members of the Src family abundantly ex- 
pressed in T lymphocytes (for review, see references 1-5). 
This function presumably reflects the ability of Lck and 
FynT to phosphorylate specific tyrosine residues in the cy- 
toplasmic domains of the CD3 and ~ chains of the TC1K 
complex. Subsequent to this event, Zap-70, a member of  
the Syk/Zap-70 family of  cytoplasmic tyrosine protein ki- 
nases, associates with tyrosine-phosphorylated CD3 and 
through its tandem amino-terminal Src homology 2 (SH2) 
domains (6-9). This association is paralleled by an increase 
in the tyrosine phosphorylation and catalytic activity of  
Zap-70. The importance of Zap-70 in TC1K signaling is 
highlighted by the finding that a subset of humans with se- 
vere combined immunodeficiency has mutations in the 
zap-70 gene (10-12). 

The identity of the targets of  Zap-70 in T lymphocytes is 
not known. However, we previously found that Zap-70 
associates with a 120-kD tyrosine-phosphorylated polypep- 
tide (p120) in activated T ceils (13, 14). This association 
was shown to involve a pool of  Zap-70 molecules not asso- 
ciated with TC1K. Moreover, it seemingly required the 
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presence of  phosphorylated tyrosine residues, as it could be 
efficiently competed by addition ofphosphotyrosine to cell 
lysates. Whereas the identity of p120 could not be estab- 
lished in this earlier study, evidence was provided that it 
was distinct from phosphatidyl inositol 3' kinase, GTPase- 
activating protein of p21 ~a~ and focal adhesion kinase (Fak). 
Furthermore, while the 120-kD product of the c-cbl pro- 
tooncogene (p120 ~-~bl) is prominently tyrosine phosphory- 
lated in activated T cells, we failed to detect Zap-70 in 
anti-Cbl immunoprecipitates, suggesting that the Zap-70- 
associated p120 was also distinct from c-Cbl. 

The cbl gene was initially identified in a rearranged form, 
as the oncogene of the Cas-Br-M murine leukemia virus, 
which causes pre-B cell lymphomas and myeloid leukemias 
in mice (15). Cloning of the c-cbl protooncogene showed 
that it encodes a 120-kD protein bearing a proline-rich do- 
main and a possible carboxy-terminal leucine zipper (16). 
While c-cbl is expressed in several cell types, it preferentially 
accumulates in thymus and testis, as well as in hemopoietic 
cells (17). A role for c-Cbl in hemopoietic cell signaling 
was suggested by the recent finding that it undergoes 
prompt tyrosine phosphorylation after stimulation of  the T 
cell receptor for antigen (18), the Fc receptor for IgG (19), 
and the receptors for GM-CSF and erythropoietin (20). 
Furthermore, it has been documented that c-Cbl can bind 
a multitude of SH2 and/or SH3 domain-containing pro- 
teins, through its tyrosine-phosphorylated region and pro- 
line-rich domain, respectively (18). These Cbl-binding 
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partners include FynT,  the adaptor proteins Grb2 and Nck, 
phosphatidyl inositol 3 '  kinase, and phospholipase C-y ,  
which are likely involved in regulating and /o r  mediat ing 
Cbl-related functions. 

Materials and Methods  

Cells. BI-141 is a class II MHC-restricted, beef insulin-spe- 
cific mouse T cell hybridoma, which lacks expression of CD4 and 
CD8 (2l, 22). It was propagated in R.PMI 1640 medium supple- 
mented with 10% fetal bovine serum and, if indicated, the ami- 
noglycoside G418 (0.6 rag/nil). BI-141 derivatives expressing an 
activated version of p56 l~k (tyrosine 505 to phenylalanine 505 
[F505] Lck) have been described elsewhere (21). Cos-i cells were 
propagated in ot MEM with 10% fetal bovine serum. 

Antibodies. Antibodies against p120 ~-cbl were produced by 
immunizing New Zealand White rabbits with a TrpE fusion pro- 
tein encompassing amino acids 541-886 of the mouse c-Cbl se- 
quence. Rabbit antisera directed against the unique domain of 
p56 lck (23) or p59# n (22), or the "linker" region of Zap-70 (13), 
were described elsewhere. Affinity-purified rabbit antiphosphoty- 
rosine antibodies were previously reported (21, 22). 

Antibody-mediated T CellActivation. BI-141 cells (1 • 107) 
were stimulated for 2 min with saturating amounts of anti-TCR 
V~8 mouse mAb F23.1 (24) and sheep anti-mouse (SAM) IgG, as 
outlined elsewhere (21, 22). After stimulation, cells were lysed in 
2• TNE buffer (100 mM Tris, pH 8.0, 2% NP-40, and 40 mM 
EDTA), supplemented with 20 p~g/ml each of the protease inhib- 
itors leupeptin, aprotinin, N-tosyl-L-phenylalanine chloromethyl 
ketone, N-p-tosyl-L-lysine chloromethyl ketone, and PMSF, as 
well as the phosphatase inhibitors sodium fluoride (100 raM) and 
sodium orthovanadate (2 mM). 

Immunoprecipitations and lmmunoblots. Unless indicated, post- 
nuclear supematants were precleared with Staphylococcus aureus 
protein A. Then, lysates were immunoprecipitated with the ap- 
propriate antisera, according to a previously described protocol 
(25). For depletion experiments, lysates were immunoprecipi- 
tated three times with either normal rabbit serum (NRS) or anti- 
Cbl antibodies, before a final inmmnoprecipitation with anti- 
Zap-70 or anti-Cbl antibodies. Immunoblots were performed as 
detailed elsewhere (23, 25). 

Coexpression in Cos-l Cells. cDNAs encoding mouse Zap-70 
(8), p56 kk (26), or p59 frnx (27) were reported elsewhere. A c-cbl 
cDNA was generated by PCI< from mouse thymus RNA, based 
on the published sequence (our unpublished data), cDNAs were 

individually inserted in the multiple cloning site of pXM139, 
which bears the SV40 origin of replication. Cos-1 cells were 
transfected by the DEAE-dextran method, using a fixed total 
amount of DNA (12 btg) (28). After 12 h, cells were incubated 
with chloroquine (60 btg/ml) for 5 h. After an additional growth 
period of 48 h, cells were harvested by scraping, and lysed in 1 • 
TNE buffer (50 mM Tris, pH 8.0, 1% NP-40, and 2 n-tM 
EDTA), supplemented with the protease and phosphatase inhibi- 
tors described above. Then, lysates were subjected to immuno- 
blotting or imnmnoprecipitation, as outlined earlier. 

Results  

To evaluate better the possibility that Zap-70 associates 
with the c-Cbl  protein, we generated a highly sensitive 
rabbit antiserum against the Cbl protein (see Materials and 
Methods).  This reagent was used to study further the po-  
tential association o f  Zap-70 with c-Cbl  in BI-141 cells ex- 
pressing an activated version o f  p56 lck (F505 Lck; 21), 
which exhibit a greatly enhanced T C R - i n d u c e d  tyrosine 
protein phosphorylat ion signal. After activation with anti- 
T C R  antibodies, cells were lysed in nonionic  detergent-  
conta in ing buffer. Postnuclear  lysates were then immu-  
noprecipitated with various antibodies, and subjected to 
immunoblo t t ing  with antiphosphotyrosine (Fig. 1 A) or 
ant i -Cbl  (Fig. 1 B) antibodies. As previously reported (13, 
14), activated BI-141 cells contained easily detectable 
amounts o f  tyrosine-phosphorylated Zap-70 (Fig. 1 A, lane 
2). Additionally, Zap-70 immunoprecipi tates  exhibited a 
120-kD tyrosine-phosphorylated protein (p120). Also con-  
sistent with our earlier report  (13), ant i -Cbl  immunopre -  
cipitates (lane 3) from activated BI-141 cells contained a 
120-kD tyrosine-phosphorylated product,  representing the 
c-Cbl  protein. However ,  no tyrosine-phosphorylated p70 
was detected in these immunoprecipitates.  W h e n  identical 
immunoprecipi tates  were immunoblo t ted  with ant i -Cbl  
antibodies (Fig. 1 /3), significant quantities o f  c -Cbl  were 
noted in an t i -Zap-70  immunoprecipi tates  (lane 2). It was 
estimated that 5-10% of  c-Cbl  was present in an t i -Zap-70  
immunoprecipitates.  Coimmunoprec ip i ta t ion  o f  Zap-70 
and c-Cbl  was also observed in normal mouse thymocytes 
(our unpublished data). 

Figure 1. Association of Zap-70 with c-Cbl in ac- 
tivated BI-141 T-cells. BI-141 cells expressing acti- 
vated p56 kk molecules were stimulated for 2 rain 
with anti-TCR mAb F23.1 and SAM lgG. After ex- 
traction in nonionic detergent-containing buffer, ly- 
sates were subjected to immunoprecipitation with the 
indicated antibodies, and immunoblotting with an- 
tiphosphotyrosine (A) or anti-Cbl (/3) antibodies. 
The positions of p120, Zap-70, heavy chain of IgG, 
and c-Cbl are indicated on the left, while those of 
prestained molecular mass markers are shown on the 
right. Exposures: 15 h. 
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To demonstrate clearly that the Zap-70-associated p120 
was c-Cbl ,  deplet ion experiments were conducted (Fig. 2). 
Lysates from activated B1-141 cells were subjected to re- 
peated immunoprecipi ta t ions with either N R S  (lanes I -3)  
or ant i -Cbl  antibodies (lanes 4-6). After three cycles, the 
remaining cellular proteins were immunoprecipi ta ted  with 
either ant i -Cbl  (lanes 7 and 8) or an t i -Zap-70  (lanes 9 and 
10) serum, and probed by immunoblo t t ing  with antiphos- 
photyrosine antibodies. Using this approach, >90% o f  ty-  
rosine-phosphorylated c-Cbl  molecules was removed with 
one Cbl immunoprecipi ta t ion  (lane 4), and nearly 100% 
was eliminated after two precipitations (lane 8). After three 
c-Cbl  immunoprecipi tat ions,  we found that <10% o f  Zap-  
70-associated p120 remained in cell lysates (lane 10; data 
not  shown). In combination,  these results indicated that the 
Zap-70--associated p120 mostly represented p120 c-cbl. H o w -  
ever, as longer autoradiographic exposures clearly showed 
that N10% of  p120 remained after immunodeple t ion  o f  
c -Cbl  (data not  shown), it is possible that one or more  ad- 
ditional p120s were also associated with Zap-70.  Whi le  the 
identity o f  these products is not  known,  they may corre- 
spond to the recently described focal adhesion kinase-  
related FakB (29). 

W e  also investigated whether  the association o f  Zap-70 
with c-Cbl  was constitutive, or  was induced by T cell acti- 
vation. Cells were either left unstimulated, or stimulated 
with anti-TCP,, antibodies. Ant i -Cbl  immunoblo t t ing  o f  

Zap-70 immunoprecipi tates  revealed that the association o f  
Zap-70 with c -Cbl  was undetectable in unstimulated cells 
(Fig. 3, lane 1), and that it was induced by T C R  stimula- 
t ion (lane 2). Ant i -Cbl  immunoblo t t ing  o f  parallel Cbl im-  
munoprecipitates demonstrated that the abundance o f  
p120 c-cbi was not  augmented during T cell aotivation (lanes 
3 and 4). 

To  examine the specificity o f  the interaction between 
Zap-70 and c-Cbl ,  we assessed the ability o f  Cbl to bind 
p561ok and p59 eynT, the two other  tyrosine protein kinases 
implicated in T C R  signaling (for review, see references 1-4). 
After detergent extraction, lysates from activated BI-141 
cells were immunoprecipi ta ted  with antibodies directed 
against the unique domain o f  Lck or FynT,  and were im-  
munoblot ted  with ant i -Cbl  serum (Fig. 4 A). W e  found 
that ant i -Fyn immunoprecipi tates  (lane 5) contained appre- 
ciable quantities o f  p120 c-cbl. However ,  these amounts were 
consistently lower than those observed in an t i -Zap-70  im-  
munoprecipitates (lane 2; data not  shown). In contrast, no 
c-Cbl  was detected in anti-p561ok immunoprecipi tates  (lane 
4) or in immunoprecipi tates  generated with pre immune se- 
rum (lane 1). Similar results were obtained with BI-141 
cells expressing a constitutively activated form of  p59 cxnT 
(data not  shown). Given these results, we wanted to estab- 
lish whether  the binding o f  c -Cbl  to FynT was also regu- 
lated by TCP,. stimulation. Evaluation o f  both unstimulated 
and TCR-s t imula t ed  BI-141 cells revealed that the interac- 

Figure 2. Effects of immunodepletion of c-Cbl on the recovery of 
Zap-70-associated p120. Lysates from activated BI-141 cells were sub- 
jected to repeated immunoprecipitations with NIKS or anti-Cbl antibod- 
ies, before a final immunoprecipitation with anti-Cbl (lanes 7 and 8) or 
anti-Zap-70 (lanes 9 and 10) antibodies. Tyrosine-phosphorylated pro- 
teins were detected by immunoblotting with antiphosphotyrosine anti- 
bodies. The presence ofa tyrosine-phosphorylated 70-kD protein in im- 
munoprecipitates obtained with normal rabbit serum (lane 1) or anti-Cbl 
antibodies (lane 4) was due to recovery ofTCP,-associated Zap-70 mole- 
cules with the combination of mAb F23.1 and SAM IgG used for TCP,. 
aggregation. Because a preclearing step was not used in this expemnent, 
the anti-TCR immune complexes were nonspecifically precipitated by 
the Staphylococcus aureus protein A. The positions of p120, Zap-70, and 
heavy chain of IgG are shown on the left, while those ofprestained mo- 
lecular weight markers are indicated on the right. Exposures: 24 h. 

Figure 3. Association of Zap-70 with c-Cbl is induced by T cell acti- 
vation. BI-141 cells were either left unstimulated (lanes 1 and 3), or stim- 
ulated with mAb F23.1 and SAM IgG (lanes 2 and 4). The abundance of 
Zap-70-associated p120 c cbl was determined by immunoblotting of anti- 
Zap-70 inununoprecipitates with anti-Cbl antibodies (lanes 1 and 2), 
while the cellular levels of c-Cbl were determined by anti-Cbl immuno- 
blotting ofanti-Cbl immunoprecipitates (lanes 3 and 4). The migration of 
c-Cbl is indicated on the left. Exposures: lanes I and 2; 18 h; lanes 3 and 
4; 5b. 
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Figure 4. Association of c-Cbl with FynT, but not Lck, in activated 
BI-141 cells. (A) BI-141 cells containing F505 Lck were stimulated with 
anti-TCR mAb F23.1 and SAM IgG for 2 rain. Lysates were then immu- 
noprecipitated with various antibodies, followed by inununoblotting with 
anti-Cbl antibodies. The migrations of c-Cbl and heavy chain of IgG are 
shown on the left. Exposure: 84 h. (B) Same as in A, except that cells 
were either left unstimulated or stimulated with anti-TCR mAb F23.1 
and SAM IgG. Lysates were immunoprecipitated with anti-Fyn antibod- 
ies, and immunoblotted with anti-Cbl serum. The position of c-Cbl is in- 
dicated on the left. Exposure: 24 h. 

tion ofc-Cbl  with p59 fynT was absent before TCR. stimulation 
(Fig. 4 B, lane 1). Therefore, as is the case for the Zap-Cbl  
association, the detection o f  FynT-Cbl  complexes required 
activation ofBI-141 T cells. 

To understand better the respective roles o f  Zap-70, 
p5ff ok, and p59 eynT in the tyrosine phosphorylation o f  
c-Cbl, we attempted to reconstitute their functional inter- 
actions in nonlymphoid Cos-1 cells, cDNAs encoding 
these kinases were transfected either individually or in 
combination, in the presence o f  a mouse c-cbl cDNA. After 
3 d, cells were lysed in detergent-containing buffer, and 
postnuclear lysates were directly probed by immunoblotting 
(Fig. 5). Using a panel of  antisera directed against c-Cbl, 
Zap-70, Fyn, and Lck, it was confirmed that all cells ex- 
pressed the appropriate cDNAs (Fig. 5 A). Through an- 
tiphosphotyrosine immunoblott ing o f  total cell lysates (Fig. 

5 B), we also determined that c-Cbl was not tyrosine phos- 
phorylated in Cos-1 cells in the absence o f  coexpression of  
a tyrosine protein kinase (lane 2). Introduction o f  FynT 
(lane 3) or Lck (lane 4) provoked an appreciable augmenta- 
tion o f  the phosphotyrosine content o f  c-Cbl. In contrast, 
expression of  Zap-70 alone (lane 5) had no impact. Inter- 
estingly though, Zap-70 increased by approximately three- 
fold the effects o f  FynT (lane 6) and Lck (lane 7) on c-Cbl 
tyrosine phosphorylation. This consequence was observed 
in three independent experiments, and was confirmed by 
immunoprecipitation o f  p120 c-cbl (data not shown). While 
phosphorylation o f  c-Cbl by these tyrosine protein kinases 
could be reconstituted in Cos-1 cells, it is worth noting that 
we were unable to show association of  c-Cbl and Zap-70 in 
this system (data not shown). 

Discuss ion  

The results o f  our experiments showed that a significant 
amount (5-10%) of  the protooncogene product p120 c-cbl 
could be detected in anti-Zap-70 immunoprecipitates from 
either activated BI-141 T cells (this report) or activated 
mouse thymocytes (our unpublished data). Moreover, de- 
pletion experiments confirmed that the majority (>90%) of  
the Zap-70-associated p120 was removed by anti-Cbl anti- 
bodies, implying that it largely represented p120 c-cbl. De-  
spite this firm evidence, we consistently failed to detect 
Zap-70 in anti-Cbl immunoprecipitates (13 and this re- 
port). Although the precise basis for this phenomenon is 
not determined, the anti-Cbl antibodies used in our exper- 
iments may not efficiently recognize c-Cbl molecules com-  
plexed to Zap-70. This possibility appears unlikely how-  
ever, since equivalent results were obtained with an 
antiserum directed against another domain o f  c-Cbl (our 
unpublished data). Alternatively, the lack o f  detection o f  
Zap-70 in anti-Cbl immunoprecipitates could indicate that 
only a small fraction o f  Zap-70 was bound to c-Cbl in acti- 
vated T cells. We  favor this possibility. 

Figure 5. Reconstitution of interactions between c-Cbl, 
Zap-70, and Src family kinases in Cos-1 cells. Cos-1 cells 
were transfected with the indicated cDNAs. After 3 d, pro- 
tein expression was determined by immunoblotting of total 
cell lysates (A). Levels of phosphotyrosine were ascertained 
by immunoblotting with antiphosphotyrosine antibodies (B). 
The migrations of c-Cbl, Zap-70, FynT, and Lck are indi- 
cated on the left, whereas those of prestained molecular 
weight markers are shown on the right. Exposures: (A) top, 
15 h; top middle, 15 h; bottom middle, 10 h; bottom, 10 h; (/3) 
48 h. 
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The formation of  Zap-Cbl complexes was shown to be 
induced by T cell activation. Therefore, it is probable that 
this association required modification o f  either or both o f  
these products in the course o f  T cell activation. Further 
support for this view was lent by our finding that phospho-  
tyrosine (but not phosphoserine) dissociated Zap-Cbl  com-  
plexes (13 and our unpublished data), which implied that 
phosphorylated tyrosine residues were crucial for the stabil- 
ity o f  the interaction. Because both Zap-70 and p120 c-cbl 
are tyrosine phosphorylated in activated T cells (6, 18), ei- 
ther could act as a docking site for the other. One  obvious 
possibility is that the SH2 motifs o f  Zap-70 interact with 
sites o f  tyrosine phosphorylation on c-Cbl. Unfortunately, 
however, we were unable to show binding o f  tyrosine- 
phosphorylated c-Cbl to recombinant Zap-70 SH2 do-  
mains in vitro (our unpublished data). Conversely, it is 
plausible that phosphorylated tyrosines on Zap-70 were 
central to the interaction. As c-Cbl does not bear any SH2 
domain, this model would require the participation o f  an 
intermediary molecule linking tyrosine phosphorylated 
Zap-70 to c-Cbl. This idea would also be consistent with 
the inability o f  Zap-70 to associate with c-Cbl in Cos-1 
cells, even in the presence o f  Src-related enzymes. Since 
c-Cbl possesses binding sites for SH2 and SH3 domains 
(18), it may interact with Zap-70 through an "adaptor" 
molecule such as Grb-2, Crk, or Nck  (30). These polypep- 
tides contain both SH2 and SH3 domains, and are known 
to mediate associations between signal transduction molecules. 

By coexpression in Cos-1 cells, evidence was adduced 
that Zap-70 could not phosphorylate c-Cbl in the absence 

o f  Lck or FynT. This result was reminescent o f  that o f  
Chan et al. (6), which showed that phosphorylation o f  cel- 
lular proteins by Zap-70 in Cos-7 cells was also dependent 
on coexpression o f  a Src-like kinase. Importantly, we 
found that Zap-70 augmented the extent o f  c-Cbl tyrosine 
phosphorylation induced by Lck or FynT. On  this basis, 
we hypothesized that Zap-70 and Lck/FynT cooperate to 
induce optimal tyrosine phosphorylation o f  p120 c-cbl during 
T cell activation. The relative contribution o f  each en- 
zyme, as well as the possibility that they phosphorylate dis- 
tinct sites on p120 c-cbl, remain to be examined. 

What  is the potential role o f  c-Cbl in Zap-70-mediated 
signal transduction? Previous studies have shown that c-Cbl 
is a potent growth regulator that has oncogenic potential 
towards cells o f  hemopoietic and fibroblastic lineages (15, 
16, 31, 32). While its exact mode o f  action is not defined, 
p120 c-cbl has the ability to associate with various polypep- 
tides containing SH2 or SH3 domains (18). Therefore, 
c-Cbl may function as a large docking protein linking Zap-70 
to biochemical events such as Ras activation and lipid me-  
tabolism. In this context, the formation of  Zap-Cbl com-  
plexes may represent a crucial step in T cell activation. Al- 
ternatively, it is possible that the binding of  c-Cbl affects 
the regulation o f  Zap-70. For example, by associating with 
both Zap-70 and p59 fynT, c-Cbl could enhance the ability 
o f  FynT to phosphorylate (and activate) Zap-70. This may 
be especially important for non-TCR-associa ted Zap-70 
molecules, which are actually known to preferentially asso- 
ciate with c-Cbl (13). These two possibilities are currently 
being tested. 
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