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3 Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, Agia Paraskevi Attikis,

15310 Athens, Greece
4 Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
5 Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquimíca, Universidad de Buenos Aires,

Junin 954, Buenos Aires CP 1113, Argentina
6 Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299,

00161 Rome, Italy
* Correspondence: chrys@isof.cnr.it

Abstract: Mitochondrial (mt) DNA and nuclear (n) DNA have known structures and roles in cells;
however, they are rarely compared under specific conditions such as oxidative or degenerative envi-
ronments that can create damage to the DNA base moieties. Six purine lesions were ascertained in
the mtDNA of wild type (wt) CSA (CS3BE–wtCSA) and wtCSB (CS1AN–wtCSB) cells and defective
counterparts CS3BE and CS1AN in comparison with the corresponding total (t) DNA (t = n + mt).
In particular, the four 5′,8–cyclopurine (cPu) and the two 8–oxo–purine (8–oxo–Pu) lesions were
accurately quantified by LC–MS/MS analysis using isotopomeric internal standards after an enzy-
matic digestion procedure. The 8–oxo–Pu levels were found to be in the range of 25–50 lesions/107

nucleotides in both the mtDNA and tDNA. The four cPu were undetectable in the mtDNA both
in defective cells and in the wt counterparts (CSA and CSB), contrary to their detection in tDNA,
indicating a nonappearance of hydroxyl radical (HO•) reactivity within the mtDNA. In order to
assess the HO• reactivity towards purine nucleobases in the two genetic materials, we performed
γ–radiolysis experiments coupled with the 8–oxo–Pu and cPu quantifications on isolated mtDNA
and tDNA from wtCSB cells. In the latter experiments, all six purine lesions were detected in both of
the DNA, showing a higher resistance to HO• attack in the case of mtDNA compared with tDNA,
likely due to their different DNA helical topology influencing the relative abundance of the lesions.

Keywords: mitochondrial and nuclear DNA damage; 5′,8–cyclopurines; 8–oxo–dG; gamma radiolysis;
hydroxyl radical; isotope dilution LC–MS/MS; cockayne syndrome

1. Introduction

Molecular oxygen (O2) is used for the production of reactive oxygen species (ROS)
that are involved in the signaling pathways of various basal and adaptive physiological
responses controlling organism homeostasis [1–4]. However, ROS are also responsible for a
variety of pathological processes, as their overproduction contributes to biomolecule dam-
age, which has been linked with the etiology of various diseases [4–6]. Under physiological
conditions, most human resting cells experience ca. 5% oxygen tension; however, the [O2]
gradient occurring between the extracellular environment and mitochondria, where oxygen
is consumed by cytochrome c oxidase, results in a significantly lower [O2] exposition of mi-
tochondria [7–9]. It is estimated that up to 1% to 5% of the consumed mitochondrial oxygen
is converted to ROS [10]. In 1972, Harman proposed that mitochondria were the primary
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source of cellular free radicals, and were thus responsible for the free–radical–based ageing
process [11].

Human mitochondrial DNA (mtDNA) is a circular molecule of ~16.5 kb and must be
compacted in order to fit within a mitochondrion [12,13]. mtDNA exists in a compacted
DNA–protein complex known as the mitochondrial nucleoid that may be protective to-
wards the source of mitochondrial free radicals [14]. As cellular ROS are produced by
the mitochondrial respiratory chain, in the form of superoxide, much attention has been
focused on the putative role of ROS in mitochondrial mutagenesis [15]. mtDNA such as
nuclear DNA (nDNA) is highly susceptible to ROS, and is easily oxidized to accumulate
DNA modifications [16–18]. Increased oxidative damage in mtDNA has been associated
with neurological degeneration, inflammasomes, tumorigenesis, and malignant progres-
sion [19,20]. Among the mtDNA repair pathways, the base excision repair (BER) pathway
has been extensively characterized to remove some of oxidative DNA damage in the mito-
chondria as efficiently as in the nuclei [17]. Implications of other repair pathways remain
unclear, although the absence of nucleotide excision repair (NER) in the mitochondria
is well documented [17]. Indeed, despite the permanent exposure to ROS and the less
protective pathways in the mitochondria, it is not clarified how the integrity of genetic
information is maintained in this compartment [16–18].

ROS include radicals such as the superoxide radical anion (O2
•−), nitric oxide (NO•),

hydroxyl radical (HO•), nitrogen dioxide (NO2
•), and the carbonate radical anion (CO3

•−),
as well as molecules such as hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and
peroxynitrite (ONOO−) [6,21,22]. In quantitative terms, O2

•− is the most abundant radical
formed in aerobic organisms and the main entry to the ROS network. Aerobic life would
not be possible without the enzymes known as superoxide dismutases (SODs) and catalase
(CAT), which transform O2

•− to water [23]. As shown in Figure 1, H2O2 is at the crossroad
of several pathways: H2O2 transformation to highly reactive HO• occurs by the Fenton
reaction (Fe2+ + H2O2) and Haber–Weiss reaction (O2

•− + H2O2) [22,24]; myeloperoxidase
(MPO) uses H2O2 and Cl− to generate HOCl, which further reacts with O2

•− to produce
HO• [25]. Therefore, O2

•− being quite unreactive in typical free radical reactions, such
as hydrogen atom abstraction or addition, is converted to H2O2, which is able to diffuse
and generate the most reactive HO• radical. The diffusion distance of HO• is very small
because of their high reactivity with all types of biomolecules (DNA is not an exception)
and, consequently, there is a low probability to be intercepted by antioxidants [26]. HO• is
able to react with DNA, causing single strand breaks, abasic sites, DNA–DNA intrastrand
adducts, DNA–protein crosslinks, and base damage [27]. Evidence has been provided that
in human fibroblasts, mtDNA may be more vulnerable to H2O2 compared with nDNA,
showing a higher frequency of H2O2–driven lesions in cell culture models, despite it being
a well–known H2O2 scavenging system (cf. Figure 1) [28]. It has been reported that H2O2
treatment results in strand breaks or abasic sites that are converted to strand breaks [29]. It
has been suggested that the relationship between free radicals and mtDNA mutations is
not as straightforward as it is often portrayed [17]. Indeed, it has been reported that the
absence of oxidative stress induced mutations in the mitochondrial genome may be due to
the rapid degradation of oxidized DNA molecules [30]. Consistently, the mechanism of
damaged mitochondrial DNA degradation has been recently characterized [31,32].

In the present work, we considered the simultaneous measurement of the six purine
lesions in mtDNA shown in Figure 2. 5′,8–cyclopurines (cPu) represent a very interesting
and peculiar family of DNA lesions because they are exclusively generated by the reaction
of HO• radicals with genetic material via C5′ radical chemistry of the purine moieties [33].
They consist of 5′,8–cyclo–2′–deoxyadenosine (cdA) and 5′,8–cyclo–2′–deoxyguanosine
(cdG), existing as 5′R and 5′S diastereoisomeric forms (Figure 2) [34–36]. On the other
hand, the 8–oxo–Pu family, which consists of 8–oxo–dG and 8–oxo–dA, is generated by
oxidation at the C8 position by a variety of ROS, such as HO• and ROO• radicals, H2O2,
singlet oxygen or ONOO– [33,37]. cPu lesions are substrates of NER, whereas 8–oxo–Pu
lesions are substrates of BER [38–41].
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Figure 1. Relevant pathways of the reactive oxygen species (ROS) network: hydroxyl radical (HO•)
formation from superoxide radical anion (O2
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cPu, as transcriptional blocking lesions, have been identified as molecular defects in
neurodegenerative processes [42]. In particular, Cockayne syndrome (CS) is an autosomal
recessive neurodegenerative premature aging disorder associated with defects in NER.
Over 90% of CS cases are due to mutations in either the CSA or CSB genes, responsible
for the defect in the transcription coupled nucleotide excision repair (TC–NER) observed
in CS cells. The lack of this repair mechanism makes CS cells hypersensitive to UV light.
Moreover, cells from CS patients present elevated levels of ROS and are also defective
in the repair of a variety of oxidatively generated DNA lesions [43–45]. Additionally,
elevated levels of mitochondrial DNA damage, hypersensitivity to bioenergetic inhibitors,
redox unbalance due to an increase of mitochondrial ROS, and mitochondrial dysfunction
have been reported in CS cells [20]. We recently reported two studies on the oxygen–
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dependent accumulation of purine lesions in total (t) DNA (t = n + mt) [46] and membrane
lipidome remodeling [47] in wild type and defective CSA and CSB cell lines. Based on
our interest in clarifying the DNA damage scenario, in the present work, we evaluated in
this cell system mtDNA damage of purine with a very sensitive protocol (LC–ESI–MS/MS
system with isotopomeric internal standards) [33,36,48]. We addressed the following
chemical/biological points: (i) the simultaneous measurement of the six purine lesions
shown in Figure 2, carried out in the mtDNA of wild type and defective CSA and CSB
cell lines, grown under atmospheric oxygen tension; (ii) comparison of the six purine
lesions between mtDNA and tDNA, and role of HO• radicals in the oxidatively–induced
damage; and (iii) the model reactivity of mtDNA and tDNA in an “isolated” context, using
the reaction of genetic material with HO• radicals under biomimetic conditions [49] and
measuring the levels of six lesions. The results contribute to a better understanding of
the genome integrity features under HO• radical reactivity estimating the contribution of
different helical topology in distinct genetic pools such as mtDNA and nDNA.

2. Materials and Methods
2.1. Cell Lines and DNA Isolation

CSA and CSB SV40–transformed cell lines were established and cultured as pre-
viously described [50]. More precisely, an isogenic cell line that expresses the wtCSA
protein tagged with the Flag and HA epitopes (CS3BE–wtCSA) was used. The defective
counterpart is CS3BE [51]. For CSB cell lines, we used CS1AN–wtCSB and CS1AN (de-
fective CSB cells) [52]. Defective cell lines carry the empty vector. Cell culture studies are
grown under standard atmospheric oxygen tension. The mitochondria were isolated by a
non–mechanical, reagent–based method according to the procedure of The Mitochondria
Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA). Then, mtDNA was extracted
using a high–salt extraction procedure [46,50]. A similar procedure was used for the
isolation of tDNA.

2.2. γ–Radiolysis Experiments

Each sample of mtDNA and tDNA from CSA1N–wtCSB was dissolved in double
distilled water (ddH2O) with a concentration of 0.5 mg/mL; in particular, 33.5 µg of
tDNA was suspended in 67 µL and 45.9 µg of mt–DNA was suspended in 91.8 µL. The
solution was placed in a glass vial of 2 mL containing a 300 µL glass insert, flushed
with N2O for 10 min and exposed to gamma rays at room temperature (22 ± 2 ◦C) using
a 60Co–Gammacell apparatus at different doses (dose rates: 1.44 Gy/min). The exact
absorbed radiation dose was determined with the Fricke chemical dosimeter, by taking
G(Fe3+) 1.61 µmol J−1 [53]. The irradiation doses used were 0, 20, and 40 Gy for tDNA
and 0, 15, 30, and 45 Gy for mtDNA. The experiments were performed in triplicate. The
samples were lyophilized after the irradiation experiments.

2.3. Enzymatic Digestion and Quantification of Modified Nucleosides by Stable
Isotope LC–MS/MS

The purine DNA lesions levels were quantified as described previously [33,36,46,54]
and are summarized in Figure 3. Briefly, 10 µg of DNA were enzymatically digested in
a reaction mixture including 0.2 mM pentostatin, 5 µM BHT, 3 mM deferoxamine, and
the internal standards ([15N5]–5′S–cdA, [15N5]–5′R–cdA, [15N5]–5′S–cdG, [15N5]–5′R–cdG,
[15N5]–8–oxo–dG and [15N5]–8–oxo–dA), the samples were filtered off by centrifugation
through a 3 kDa microspin filter, and were cleaned up and enriched by an HPLC–UV
system coupled with a sample collector and injected into the LC–MS/MS system. The
quantification of the modified nucleosides was carried out by a triple–stage quadrupole
mass spectrometer (Thermo, Waltham, MA, USA) using positive electrospray ionization
(ESI) following a gradient program (2 mM ammonium formate, acetonitrile, and methanol)
and the detection was executed in multiple reaction monitoring mode (MRM) using the two
most intense and characteristic precursor/product ion transitions for each lesion [55,56].
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2.4. Statistical Analysis

All of the measurements were performed in triplicate and the data were expressed as
mean ± standard deviation (SD). The unpaired t-test was used for the statistical analysis
and a two–tailed p-value < 0.05 and p-value < 0.01 were considered to indicate a statistically
significant difference.

3. Results and Discussion
3.1. Purine mtDNA Lesions Levels in Wild Type and Defective CSA and CSB Cells

The mtDNA from wtCSA (CS3BE–wtCSA), wtCSB (CS1AN–wtCSB), and defective
counterparts CS3BE and CS1AN cell lines cultivated under standard atmospheric oxygen
tension have been isolated. After hydrolysis of the genetic material to single nucleosides
by an enzymatic cocktail containing nucleases, analysis by liquid chromatography with
tandem mass spectrometry (LC–MS/MS) was performed for the determination of the
modified nucleosides (four cPu and two 8–oxo–Pu), in accordance with a recently optimized
protocol [33,36,46,55,56]. The levels of 8–oxo–dG and 8–oxo–dA are reported in Table 1.
Unexpectedly, none of the four cPu lesions were detected. 8–oxo–dG was found to be
significantly raised in defective CSB cells compared with the wild type cell line (p = 0.011).

Table 1. The levels (lesions/107 nucleosides) of 8–oxo–dG and 8–oxo–dA in mtDNA isolated from
CSA and CSB (wt and defective) cells.

mtDNA 8–oxo–dG 1 8–oxo–dA 1

CS3BE–wtCSA 28.30 ± 0.13 7.32 ± 0.13
CS3BE 29.31 ± 0.22 7.58 ± 0.07

CS1AN–wtCSB 39.00 ± 0.18 * 8.08 ± 0.15
CS1AN 40.90 ± 0.22 * 8.71 ± 0.17

1 The numbers represent the mean value (±standard deviation) of the DNA lesions levels from the measurement
of triplicate; statistical significance: * (p < 0.05) was observed between CS1AN–wtCSB and CS1AN cell samples
(see Table S1).

Comparing the 8–oxo–dG and 8–oxo–dA levels of mtDNA (Table 1) with the correspond-
ing values of tDNA of the same cellular lines reported recently by us (see Table S2) [46], we
observed an increase in lesions in all four cellular lines going from tDNA to mtDNA, e.g.,
the increase in 8–oxo–dG was ~40% in wt cells and ~10% in defective cells. Similar trends
of 8–oxo–dG was previously reported in CS cells by the less sensitivity HPLC–ED detection
method [52]. On the other hand, the calculated ratio 8–oxo–dG/8–oxo–dA of 3.9 and 4.8 for
CSA and CSB cells, respectively (from the data of Table 1), was very similar to the analogous
ratio calculated in the tDNA of the same cellular lines (cf. Table S2), indicating comparable
reactivities of the two purine bases (dG and dA) towards the ROS independently of the two
genetic pools.

Table 2 shows the levels of total 8–oxo–Pu and cPu in mtDNA in comparison with
analogous data calculated for tDNA of the same cellular lines, and Figure 4 also illustrates
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the overall behavior. The 8–oxo–Pu levels were ~ 40% higher in the mtDNA than the tDNA
of the wt cells, whereas the increase was limited to ~10% in defective cells. Table 2 and
Figure 4 indicate the absence of cPu lesions in the mtDNA, whereas the cPu levels in tDNA
were in the same order of 8–oxo–Pu. The four cPu in the mtDNA were undetectable in
defective cells and in the wt counterparts (CSA and CSB). Based on the limit of detection of
our analytical methodology, we can infer that the total number of cPu lesions was at least
two orders of magnitude lower in the mtDNA compared with the tDNA.

Table 2. Total amount of 8–oxo–Pu and cPu (lesions/107 nucleosides) in mtDNA in comparison with
values of tDNA isolated from CSA and CSB (wt and defective) cells.

8–oxo–Pu 1 cPu 1

mtDNA 2 tDNA 3 mtDNA 2 tDNA 3

CS3BE–wtCSA 35.62 ± 0.26 26.32 ± 1.22 N/D 20.56 ± 0.30 *
CS3BE 36.89 ± 0.28 33.98 ± 2.40 N/D 22.04 ± 0.55 *

CS1AN–wtCSB 47.08 ± 0.21 *** 32.49 ± 3.04 N/D 22.84 ± 1.39
CS1AN 49.61 ± 0.13 *** 43.73 ± 1.86 N/D 23.67 ± 0.62

1 The numbers represent the mean value (± standard deviation) of DNA lesions levels from the measurement of
triplicate. 2 Present work; N/D = not detected. 3 From [46]. Statistically significant samples * (CS1AN–wtCSB vs.
CS1AN; p = 0.035); *** (CS1AN–wtCSB vs. CS1AN; p = 0.0005).
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difference (p < 0.05) between the groups, *** denotes a statistically significant difference (p < 0.001)
between the groups (see Table S3).

The absence of cPu lesions in the mtDNA in both defective cells and in the wt coun-
terparts (CSA and CSB) may indicate the absence of reactivity with HO• radicals towards
mtDNA. The presence of 8–oxo–Pu in the absence of cPu should be informative of the oc-
currence of the molecular rather than the radical reactivity. Indeed, similar to HO• radicals,
other oxidizing species such as H2O2 or ONOO− are also able to generate 8–oxo–Pu as
DNA lesions [29,37]. It is interesting to note that these oxidizing species are increased in
CSA defective cells. Treatment with catalase, a H2O2 scavenger, has shown that high levels
of H2O2 are present in CSA defective cells [57]. Moreover, CSA defective cells are charac-



Biomolecules 2022, 12, 1630 7 of 14

terized by increased levels of reactive nitrogen species and peroxynitrite, and decreased
levels of NO [57,58].

In humans, mitochondrial DNA represents about 1–10% of total cellular DNA (about
1000 to 10,000 copies per cell). In contrast with the invariable copy number of the nuclear
genome (diploid), a single cell can contain many copies of mtDNA dependent on different
processes involved in the mitochondrial homeostasis, such as mitochondrial replication, mi-
tochondrial dynamics, and mitophagy. It has been estimated that each human cell contains
from hundreds to thousand mitochondria [59]. Cells with a higher energy expenditure
have a higher number of mitochondria and, consequently, more copies of mitochondrial
DNA. A recent study estimated that cardiac and skeletal muscle contained between 4000
and 6000 copies of mtDNA per cell, while the liver, kidney, and lung tissues averaged
between 500 and 2000 copies [60].

Previous work in human HeLa cell extracts indicated that cdA and cdG lesions are
excised with a similar efficiency by NER and that the R–diastereoisomers of both cdA and
cdG cause greater distortion of the DNA backbone and are better substrates of NER than
the corresponding S ones [41,61]. However, the absence of NER in the mitochondria is well
documented; therefore, the nonappearance of cPu lesions in the mtDNA cannot be due to
their repair [17]. In order to understand the HO• reactivity towards DNA helical topology
better, we selectively generated HO• radicals by ionizing irradiations in the presence of
isolated mtDNA or tDNA samples from wtCSB cells and carried out the quantification of
the six purine lesions as described in the next section.

3.2. Hydroxyl Radical–Induced Formation of Purine Lesions: tDNA vs. mtDNA

The findings in the cell cultures motivated our interest to investigate the reactivity of
mtDNA and tDNA taken out of their biological contexts. HO• radicals are known for their
reactivity and ability to cause chemical modifications to DNA, the site of attack being both
the base moieties (85–90%) and the 2–deoxyribose units [62]. Therefore, we exposed tDNA
and mtDNA, isolated from CS1AN–wtCSB, to HO• radicals generated by irradiation.

Radiolysis of neutral water leads to the reactive species eaq
−, HO•, and H• as shown in

Reaction 1, together with H+ and H2O2. The values in parentheses represent the radiation
chemical yields (G) in units of µmol J−1. In an N2O–saturated solution (~0.02 M of N2O),
eaq
− are converted into the HO• radical via Reaction 2 (k2 = 9.1 × 109 M−1 s−1), with

G(HO•) = 0.55 µmol J−1, i.e., HO• radicals and H• atoms account for 90 and 10%, respec-
tively, of the reactive species [63,64]. The rate constants for the reactions of HO• radicals
and H• atoms with DNA (Reactions 3 and 4) have been reported to be ca. 2.5 × 108 M−1 s−1

and 6 × 107 M−1 s−1, respectively [62,63].
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H2O + ɣ–irr → eaq−(0.27), HO•(0.28), H•(0.062), H+(0.27), H2O2(0.07) (1) 
eaq− + N2O + H2O → HO• + N2 + HO− (2) 

HO• + DNA → radical product (3) 

-irr→ eaq
−(0.27), HO•(0.28), H•(0.062), H+(0.27), H2O2(0.07) (1)

eaq
− + N2O + H2O→ HO• + N2 + HO− (2)

HO• + DNA→ radical product (3)

H• + DNA→ radical product (4)

Figure 5 summarizes our findings and the resulting formation of 8–oxo–dG, 8–oxo–dA,
5′R–cdG, 5′R–cdA, 5′S–cdG, and 5′S–cdA in the function of irradiation doses in both tDNA
and mtDNA (for specific values, see Table S4). As expected, the number of the lesions
studied increased with the increment of the dose [55,56]. 8–oxo–dG is the main detected
lesion, whereas 8–oxo–dA is formed in lower yields and similarly for each of the four cPu
(5′S–cdG, 5′R–cdG, 5′S–cdA and 5′R–cdA). Furthermore, the slope of the obtained lines
represents the number of lesions formed per Gy, as summarized in Table 3 (cf. Table S5).
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Table 3. The levels of 8–oxo–dG, 8–oxo–dA, 5′R–cdG, 5′R–cdA, 5′S–cdG, and 5′S–cdA (Lesions/107 nu/Gy)
from the irradiation of N2O saturated tDNA or mtDNA (0.5 mg/mL) of CS1AN–wtCSB in aqueous solutions.

Lesion tDNA mtDNA

8–oxo–dG 35.2 3.8
8–oxo–dA 5.1 0.8
5′R–cdG 4.0 0.8
5′R–cdA 4.9 0.8
5′S–cdG 7.1 0.5
5′S–cdA 3.0 0.4

From the analysis of the data reported in Table 3 in terms of lesions/107 nu/Gy, the
ratios 8–oxo–dG/8–oxo–dA were 6.9 and 4.8 in tDNA and mtDNA, respectively. It is worth
mentioning that the same ratio in calf–thymus DNA was found to be 7.7 under similar
experimental conditions, although the number of lesions/Gy was four to five times higher
with respect to tDNA [55]. The mechanism of the formation of 8–oxo–dG through the
reaction of HO• radical with ds–oligonucleotide [55,56] and calf–thymus DNA [65,66] has
been investigated in detail. It was demonstrated that the addition of HO• to the C8 position
of the guanine moiety accounts for a minor percentage (~10%), whereas the main yield of
8–oxo–dG is produced by a one–electron oxidation reaction involving DNA radicals [56,
65,66]. The lower yield of formation of 8–oxo–dA was attributed, to a minor extent, to the
latter path in the case of adenine moieties. However, the HO•–adducts of guanine and
adenine moieties afforded a variety of products, including 8–oxo–dG and 8–oxo–dA [33,67].
It is worth underlining that the lesions/Gy decreased substantially when going from tDNA
to mtDNA (9.3 times for 8–oxo–dG and 6.4 times for 8–oxo–dA, see Table 3).

Intramolecular cyclization products 5′R–cdG, 5′R–cdA, 5′S–cdG, and 5′S–cdA were
also formed in the same fashion, but in lower yields (Figure 4). The slope of the lines
obtained represents the number of lesions formed per Gy, and these data are also reported
in Table 3. The attack at the H5′ of DNA by HO• was estimated to be 55% for all possible
sugar positions and the resulting C5′ radical in the purine nucleotide moieties likely evolved
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with an internal cyclization onto the C8 position of the base with the formation of cPu
as the final product (Scheme 1) [33–36]. The most important finding was the significant
reduction in lesions/Gy going from tDNA to mtDNA (5.0, 6.1, 14.2, and 7.5 times for
5′R–cdG, 5′R–cdA, 5′S–cdG, and 5′S–cdA, respectively), similar to the case of 8–oxo–dG
and 8–oxo–dA (9.3 and 6.4 times, respectively). The observed differences between tDNA
and mtDNA in the reaction with HO• were likely due to the different topology of the
nuclear and mitochondrial genome [68].
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Scheme 1. Purine 2′–deoxynucleoside reacts with HO• yielding cPu via the cyclization of the C5′

radical followed by oxidation.

We also considered the total amount of 8–oxo–Pu and cPu lesions (lesions/107 nu)
in both the tDNA and mtDNA of CS1AN–wtCSB cells irradiated at different doses. The
scale referring to tDNA (Figure 6A) was six times higher than the scale referring to mtDNA
(Figure 6B), clearly indicating the different amounts of accumulated lesions in the two
genetic materials (Table S6). The 8–oxo–Pu was nearly twice that of the cPu values in
both genomic materials (Figure 6): in units of lesions/107 nu/Gy, we calculated 40.3 for
8–oxo–Pu and 19.0 for cPu in tDNA, and 4.6 for 8–oxo–Pu and 2.5 for cPu in mtDNA. These
values also indicate that 8–oxo–Pu and cPu were 8.8 and 7.6 times, respectively, higher in
the tDNA than in the mtDNA.
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From the reaction of the HO• radicals with tDNA and mtDNA, it is clear that (i) the
formation 8–oxo–Pu was twice that of cPu, indicating a true competition of the two path-
ways in Figure 2, although we cannot exclude a small percentage of 8–oxo–Pu formation by
the reaction of H2O2 generated from the irradiation of water (see reaction (1)), and (ii) the
values of both 8–oxo–Pu and cPu in tDNA were ~8 times higher than in mtDNA, revealing
a different accessibility of HO• to mtDNA and nDNA structures. The structure of mtDNA
is arranged in a loop, which is loosely supercoiled [12]. The comparison of 8–oxo–Pu
lesions arising from γ–radiation sourced HO• on tertiary DNA helical forms of supercoiled
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(SC), open circular (OC), and linear (L) conformation was known [68]. Purine oxidation in
dsDNA follows L > OC >>SC, indicating increased damage towards the extended B–DNA
topology, where 8–oxo–dG and 8–oxo–dA levels increase ≥10–fold in both circular and
linear conformers.

The cPu lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each
2′–deoxyadenosine and 2′–deoxyguanosine moieties. The diastereomeric ratio (R/S) at-
tracts interest as it can inform on mechanistic issues that are related to structural conforma-
tions of both isomers in association with their abundance. Figure 7 shows the R/S ratios for
cdG and cdA lesions of irradiated tDNA and mtDNA samples. The reported data indicate
that the ratios are similar within tDNA or mtDNA and independent of the irradiation dose,
i.e., the R/S average ratios are 0.52 for cdG and 1.75 for cdA in tDNA, whereas in mtDNA
they are 1.35 for cdG and 1.74 for cdA (Table S7).
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It is worth underlining that in previous studies using extracted tDNA from various
animal tissues, the S form was found to always be more abundant than the R form in cdG,
whereas in cdA, the R form was always more abundant than the S form [36], this is in
accordance with our present results. For example, the R/S levels of the cdG and cdA lesions
in the tDNA of the liver and kidney of normal Swiss mice associated with age–related
processes [69] are similar to the values of Figure 7A. In the brain of a rat model of Wilson
disease, the S-cdG was always higher than the S-cdA (1.5 times) [70] similar to the ratios in
the brains of normal, SCID, and tumor–bearing mice [71]; in the latter, the R/S cdA was
always higher that the cdG ratio (approximately 1.3-1.6 times). Moreover, in various tissues
(such as the brain, spleen, and liver) of prdx1–/– mice, the R/S cdG was found to be 0.23,
0.14, and 0.40 while the R/S cdA was 0.11, 0.23, and 0.08 [72]. As Figure 6B shows, in
the mtDNA in both cdG and cdA, the R form is always more abundant in both cdG and
cdA. In this respect, it is worth recalling that the R/S ratios of 8.3 for cdG and 6 for cdA
were obtained in water upon the irradiation of free nucleosides (R form is always more
abundant) [73,74], indicating that the diastereomer ratio is dependent on the molecular
complexity. The R/S ratios can be used to support further biological implications in the
formation and/or repair of these lesions, although a clear scenario for the R/S formation is
still missing [36]. The structure of mtDNA is arranged in a loop, with one strand called
H (heavy; purine rich) and the other strand called L (light; pyrimidine rich) [12]. We
are suggesting that this arrangement strongly influences the local conformations at the
reactive sites prior to C5′ radical cyclization, which makes one type of diastereoisomer
more prevalent.
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4. Conclusions

In this work, we measured the purine lesions in mtDNA of four cellular lines, i.e.,
wtCSA, wtCSB, and their defective counterparts, and compared with their analogous
data of tDNA. The 8–oxo–Pu lesions were comparable in mtDNA and tDNA, although
they were found to be constantly higher in mtDNA for all four cellular lines. The cPu
lesions were undetectable in mtDNA, suggesting at least a 100 times lower level than in
tDNA. We evidenced, for the first time, the DNA damage scenario as a contribution of two
distinctive pathways, i.e., the molecular ROS and the radical ROS species, which can be
clearly distinguished by comparing our results in the cell cultures with the cPu levels of the
irradiation experiments. Indeed, we evaluated that the absence of cPu lesions in the mtDNA
of the cellular experiment may indicate a nonappearance of HO• radical reactivity and that
the amount of 8–oxo–Pu in mtDNA was consistent with the contribution of DNA reactivity
with oxidizing species, such as H2O2 or ONOO−. Moreover, a suggestive hypothesis to
explain the absent accumulation of cPu adducts in the mtDNA of CS cells could play a
crucial role in specific mechanisms devoted to the maintenance of the mitochondrial genome
integrity. In particular, in mammalian cells, a degradation mechanism of damaged mtDNA
molecules has been recently discovered [32]. Moreover, mitophagy and mitochondrial
fission can further contribute to the removal of dysfunctional/damaged organelles reducing
the cPu levels up to undetectability. In the reaction of γ–irradiation generated HO• radicals
with isolated tDNA and mtDNA, the values of all six purine lesions in the tDNA are
~8 times higher than in mtDNA. We evidenced a different accessibility of HO• into mtDNA
and nDNA structures which were associated with different helical topologies.
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