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ABSTRACT

The gut microbiome closely interacts with the host, and it has a major influence on drug 
response. Many studies have reported the possible microbial influences on drugs and 
the possible influences of drugs on the microbiome. This knowledge has led to a better 
understanding of intra- and inter-individual variabilities in clinical pharmacology. For a 
more precise understanding of the complex correlation between the microbiome and drugs, 
in this review, we summarized the current knowledge on the interactions between the gut 
microbiome and drug response. Moreover, we suggest gut microbiome-derived metabolites 
as possible modulators of drug response and recommend metabolomics as a powerful tool to 
achieve such understanding.
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INTRODUCTION

Over the last several decades, various factors have been considered to play a role in drug 
response, including drug efficacy and adverse effects. In addition to the influences of 
pharmacogenomic variations, various environmental and pathophysiological factors, 
microbial factors, and co-administration of xenobiotics have been reported to affect the 
intra- and inter-variability in the pharmacokinetics and pharmacodynamics of many drugs 
(Figure 1). Recently, many researchers have reported the association of diseases and drug 
responses with the gut microbiota composition and function. For example, the Human 
Microbiome Project carried out by the National Institutes of Health, USA revealed an 
association between drug responses and gut microbiome composition [1]. Such studies 
have increased the interest of clinical pharmacologists to seek knowledge regarding how 
the human gut microbiome interacts with therapeutic drugs, which may enable better drug 
selection and dosing.

Orally delivered drugs are metabolized and absorbed in the gastrointestinal tract prior to the 
systemic circulation. The gastrointestinal tract hosts a number of microbial communities, 
which confer several benefits to the host, such as aiding digestion of food and biosynthesis 
of vitamins. The gastrointestinal tract also hosts enzymes and metabolites secreted by 

Transl Clin Pharmacol. 2020 Mar;28(1):7-16
https://doi.org/10.12793/tcp.2020.28.e3
pISSN 2289-0882·eISSN 2383-5427

Review

Received: Mar 9, 2020
Revised: Mar 25, 2020
Accepted: Mar 26, 2020

*Correspondence to
Joo-Youn Cho
Department of Clinical Pharmacology and 
Therapeutics, Seoul National University, 
College of Medicine and Hospital, 101 Daehak-
ro, Jongno-gu, Seoul 03080, Korea.
E-mail: joocho@snu.ac.kr

Copyright © 2020 Translational and Clinical 
Pharmacology
It is identical to the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/).

ORCID iDs
Sihyun Chae 
https://orcid.org/0000-0002-1816-6004
Da Jung Kim 
https://orcid.org/0000-0002-2268-6029
Joo-Youn Cho 
https://orcid.org/0000-0001-9270-8273

Reviewer
This article was invited and reviewed by peer 
experts who are not TCP editors.

Conflict of interest
- Authors: Nothing to declare
- Reviewers: Nothing to declare
- Editors: Nothing to declare

Author Contributions
Conceptualization: Chae S, Kim DJ, Cho JY; 
Writing - original draft: Chae S; Writing - 
review & editing: Kim DJ, Cho JY.

Sihyun Chae , Da Jung Kim , and Joo-Youn Cho  *

Department of Clinical Pharmacology and Therapeutics, Seoul National University, College of Medicine and 
Hospital, Seoul 03080, Korea

Complex influences of gut microbiome 
metabolism on various drug responses

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-1816-6004
https://orcid.org/0000-0002-1816-6004
https://orcid.org/0000-0002-2268-6029
https://orcid.org/0000-0002-2268-6029
https://orcid.org/0000-0001-9270-8273
https://orcid.org/0000-0001-9270-8273
https://orcid.org/0000-0002-1816-6004
https://orcid.org/0000-0002-2268-6029
https://orcid.org/0000-0001-9270-8273
http://crossmark.crossref.org/dialog/?doi=10.12793/tcp.2020.28.e3&domain=pdf&date_stamp=2020-03-30


the microbial communities. These microbial enzymes present in the gut lumen can also 
affect drug metabolism. The Human Microbiome Project has recorded approximately 
3013 microbiome-encoded β-glucuronidases with various functional capacities in the 
gastrointestinal database [2]. Other studies have also reported the presence of microbial 
polysaccharide lyase, lipases, reductases, endoglycosidases, transferases, oxygenases, 
sulfatases, and glycyl radical enzymes in the gut [3,4]. For example, digoxin is inactivated 
by the cardiac glycoside reductase (cgr) of Eggerthella lenta [5], and levodopa is activated into 
dopamine by the tyrosine decarboxylase of Enterococcus faecalis [6]. These studies indicate 
that not only drugs but also their metabolites can be further metabolized by microbial 
enzymes. Busulfan is first metabolized into glutathione S-conjugate by direct interaction 
with glutathione and host glutathione S-transferase [7-10], and the metabolite that contains 
the cysteine-S-bond is cleaved by microbial C-S-β-lyases and further metabolized [11]. 
These microbial enzymes can also directly metabolize drugs in the gastrointestinal tract to 
their active or inactive form. Thus, the gut microbiome affects drug metabolism or efficacy 
indirectly via microbial regulation of host metabolism and transportation of drugs and their 
metabolites or by altering host immune responses [12].
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Figure 1. Overview of drug metabolism throughout the host and the gut microbiome. Orally administered drugs are metabolized by hepatocytes, enterocytes, 
and other cells of the body as well as by the gut microbiome. Host- and gut microbiome-mediated drug metabolism is influenced by various factors, such as 
host genetics, health conditions, disease, diet, and drug use, including antibiotics and non-antibiotics. In addition to human drug metabolizing enzymes, the 
microbial species and enzymes are involved in the metabolism of some drugs, which can alter production of the active and non-active metabolites and further 
control drug responses such as pharmacokinetics and/or pharmacodynamics. Both targeted metabolomics for drugs and their metabolites and untargeted 
metabolomics for host- and microbiome-derived metabolites can help in better understanding the mechanisms underlying host and microbiome-related 
interindividual differences in drug metabolism.



Interactions between drugs and microbial activities hold the potential of being an important 
clue for further understanding of differences in drug responses. In this review, we briefly 
summarized the current knowledge of the interactions between the gut microbiome and 
drug response. Moreover, we suggest gut microbiome-derived metabolite(s) as the possible 
modulator(s) of drug response and recommend metabolomics as a powerful tool to achieve 
such understanding.

MICROBIAL INFLUENCES ON DRUG RESPONSES

Drug responses are influenced by the host microbiome. For example, acarbose, an 
α-glucosidase inhibitor, is negatively correlated with increased Lactobacillus and Dialister 
spp. and blood glucose levels [13]. Drugs other than antidiabetic agents also have been 
shown to be associated with the microbiome. Digoxin, which is used to treat heart failure, 
is affected by the cgr gene cluster identified in specific strains of E. lenta. The cgr operon 
that encodes two proteins enables certain strains of E. lenta to metabolize digoxin into 
dihydrodigoxin, leading to decreased exposure of the host to digoxin [14,15]. Bacteroides also 
produce (E)-5-(2-bromovinyl) uracil metabolite, which increases the toxicity of sorivudine 
[16]. Statins are known to have a correlation with both bile acids and microbiome. For 
example, the increased plasma concentration of simvastatin is positively correlated with 
higher levels of several secondary bile acids produced from the gut microbiome [17]. Also, 
rosuvastatin reduces the hepatic expression of CYP27a1, resulting in a decreased level of 
cholic acid and chenodeoxycholic acid [18]. Microbial composition and rosuvastatin have 
been reported to have a bilateral correlation. In detail, higher complexity in the microbial 
composition is positively correlated with rosuvastatin's efficacy on low-density lipoprotein-
cholesterol [19], and rosuvastatin treatment has been reported to lower the species richness 
and phylogenetic diversity [18]. Responses of immune checkpoint inhibitors to the gut 
microbiome have also been studied. Bacteroides caccae has been shown to have a positive effect 
on several types of immuno-cancer therapeutic agents [20].

MICROBIAL CHANGES INDUCED BY ANTIBIOTICS

Orally administrated antibiotics are often used as concomitant medication to treat or 
prevent infection, especially in the digestive system. A common concern while administering 
concomitant medication is drug–drug interaction. However, it is also important to consider 
the effects of concomitant medication on the gut microbiome, which may affect the 
metabolism of the primary drug. Most antibiotic agents have a wide target concentration 
range, eventually disrupting gut microbiota and affecting non-pathogenic organisms, leading 
to the risk of long-term or permanent loss of certain members of the gut microbiota. In this 
review, we elaborate on the three most commonly used antibiotic agents and summarize the 
findings of the agents.

Vancomycin is used to treat various infections caused by gram-positive bacteria and has been 
widely studied. Some reports have confirmed that vancomycin can alter gut microbiome 
composition [21-23]. Oral treatment of vancomycin has been reported to decrease the species 
richness and diversity indices [24]. Sun et al. [24] reported that the relative abundance of 
Bacteroidetes, Firmicutes and Melainabacteria decreased in mice fecal samples after 3 weeks 
treatment of vancomycin when compared with non-treated mice (5.5% vs. 59.3%, 10.4% 
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vs. 37.1%, and 0.06% vs. 0.2%, respectively). As the gut microbiota itself can be described 
as a community of co-dependence, disruption of the existing balance by the anti-biotic 
effect of vancomycin on gram-positive commensal bacteria can cause long-term side effects. 
Vancomycin treatment indirectly affects species other than its own specific target, which 
exchange secondary metabolites or waste products [25,26]. Another study reported that oral 
vancomycin treatment led to a decrease in the abundance of Bacteroidetes and an increase 
in the abundance of Proteobacteria. This study also reported changes in the fecal metabolic 
profile, such as increased levels of D-glucuronic acid and L-phenylalanine and decreased 
levels of nicotinic acid and D-arabinose. The change in the levels of D-glucuronic acid and 
L-phenylalanine was found to be positively correlated with the abundance of Firmicutes 
and Proteobacteria, and negatively correlated with the abundance of Bacteroidetes. In 
contrast, decreased nicotinic acid and D-arabinose levels were positively correlated with the 
abundance of Bacteroidetes, but negatively correlated with the abundance of Firmicutes and 
Proteobacteria. This study suggests that treatment with antibiotics can alter the composition 
of the microbiota, and consequently affect the metabolomic profile [27].

Streptomycin is another commonly used antibiotic for tuberculosis, which targets 
Mycobacterium tuberculosis; it is also used to treat infective endocarditis. Following oral 
streptomycin treatment, a significant decrease in the total number of bacteria [28] and a 
marked reduction in bacterial diversity have been reported [21]. A report by Sekirov et al. 
[21] indicated that treatment with increasing doses of streptomycin resulted in a gradually 
increased proportion of Cytophaga-Flavobacterium-Bacteroidetes in a dose-dependent 
manner. These findings were confirmed by Grayson, who also found an increase in the 
number of lactobacilli and enterococci/group D streptococci and a gradual decrease in the 
number of Firmicutes [29].

Penicillin, a widely used antibiotic, has been reported to increase the abundance of only 
Proteobacteria, but not of Bacteroidetes and Firmicutes, and to decrease the abundance 
of Cyanobacteria and Actinobacteria [30]. Early exposure to penicillin also leads to a total 
elimination of Deferribacteres, with an increased proportion of Cyanobacteria. Penicillin-
induced reduction in Bacteroidetes and an increase in Firmicutes and Proteobacteria 
have been reported to be maintained until the cessation of penicillin administration 
[30]. Phenoxymethylpenicillin, also known as penicillin V, causes a shift in microbiome 
composition such as increased phylum Proteobacteria with the dominant species Escherichia 
coli. In the other major phylum Firmicutes, the shift to Enterococcus from Streptococcus or 
Anaerostipes has also been reported to be induced by penicillin V treatment [31].

MICROBIAL CHANGES INDUCED BY NON-ANTIBIOTIC 
DRUGS
Maier and co-workers published a report in 2018 detailing the impact of human-targeted 
non-antibiotic drugs on the human gut microbiome. They suggested that 24% of the human-
targeted drugs in the market inhibited the growth of at least one bacterial strain in vitro. The 
susceptibility to antibiotics and human-targeted drugs correlates across bacterial species, 
suggesting a common resistance mechanism. These effects are largely observed with the 
administration of antipsychotics, including antiseptic agents. The effects of human-targeted 
drugs on gut bacteria are reflected in their antibiotic-like side effects in humans and are 
concordant with existing human cohort studies [32].
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Elbere et al. [33] reported a significant reduction in the inner diversity of gut microbiota 
24 hours after metformin treatment. They also reported the association between the 
gastrointestinal side effects of metformin and the increased abundance of common gut 
opportunistic pathogens such as Escherichia-Shigella spp. Another research team from China 
also reported that metformin treatment depletes Lachnospiraceae and Rhodobacteraceae 
abundance, but enriches Verrucomicrobiaceae and Prevotellaceae abundance [34]. Moreover, 
Forslund et al. [35] also reported an increase in Escherichia, Lactobacillus, Akkermansia 
muciniphila along with a decrease in Intestinibacter and Bacteroides fragilis abundance following 
metformin treatment. They also suggested a correlation between microbiome alterations and 
metformin treatment. These findings indicate that the microbial environment is affected by 
metformin action and vice versa.

A study on ursodeoxycholic acid, a secondary bile acid produced by the microbiota, suggested 
that ursodeoxycholic acid treatment induces changes in the microbiome in a way that 
can affect phenylalanine/tryptophan metabolism in patients with nonalcoholic fatty liver 
disease. Chao1 diversity was decreased after ursodeoxycholic acid treatment, and the beta 
diversity showed the difference induced by the treatment. In particular, Bifidobacterium, 
Lactobacillus, and Lactobacillaceae showed decreased relative abundance. This study also 
reported statistically significant changes in the metabolome profile, including increased 
levels of microbe-generated metabolites, along with microbiome changes [36].

MICROBIAL METABOLITES AS THE POTENTIAL KEY TO 
UNDERSTAND INDIVIDUAL VARIABILITIES
The gut microbiota interacts with the host via various pathways, and the metabolites 
produced are involved in many well-known host pathways. Besides secondary bile 
acids, which are produced by bacterial reactions in the colon, lipopolysaccharides, and 
peptidoglycans, which are major components of gram-negative and gram-positive bacteria, 
respectively, enter the host liver through the portal vein [37]. In non-alcoholic fatty liver 
disease, these microbial products are found to activate toll-like receptors on host immune 
cells, thereby promoting inflammatory cytokine production. The increase in the levels of 
inflammatory cytokines such as tumor necrosis factor α or interleukin 1β contributes to 
the development of non-alcoholic fatty liver disease [38-41]. Other metabolites produced 
by gut microbes include short-chain fatty acids such as butyrate, acetate, and propionate. 
These metabolites are mainly produced by Firmicutes, Bacteroidetes, and E. coli [42], and 
get diffused [43] or transported [44,45] to the host's system. In the host's system, they exert 
anti-inflammatory effects on the intestinal mucosa by inhibiting histone deacetylases and 
activating G-protein coupled receptors [46-50].

To achieve the proper analysis and interpretation of such microbial metabolites in the host 
system, the metabolomic technology can be used. The application of metabolomics ranges 
from quantification to global untargeted metabolic profiling. For microbial metabolites 
study, we suggest global metabolic profiling, which can provide multiple potential target 
metabolites (Figure 1). In a previous report on ursodeoxycholic acid, global metabolic 
profiles were obtained from plasma and urine. These findings provided an understanding 
of the mechanism underlying the liver protective effects of ursodeoxycholic acid [36]. In a 
recent study, global metabolic profiling of patients' plasma showed that many microbial 
metabolites, including aryl hydrocarbon receptor ligands such as indolpropionate, 
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significantly changed at the onset of acute graft versus host disease [51]. This study proves 
that the global profile of microbial metabolites can be achieved even without fecal samples, 
because microbial metabolites can circulate in the host system.

Metabolomic analysis of microbial metabolites also have a definite advantage in the field of 
clinical pharmacology. There are many unclear underlying mechanisms in variabilities of 
drug response, and for further understanding, the molecular level of researches is required. 
A famous example of how microbial metabolites influences one's drug response is para-
cresol. The p-cresol formed by Coriobacteriaceae and Clostridia [52], interfere sulfonation of 
acetaminophen through the production of p-cresol sulfate in the liver competitively, and then 
individuals with the higher urinary level of p-cresol sulfate tend to endure acetaminophen 
toxicity than those with a lower level of p-cresol sulfate in urine [53].

APPLICATION OF METABOLOMICS IN PHARMACO-
MICROBIOMICS
“Pharmaco-microbiomics” is an area that deals with how interindividual variation in the 
microbiome influences drug efficacy and side effect profiles [54]. Zimmermann et al. [55] 
performed high-throughput genetic analyses and mass spectrometry to systematically 
identify microbial gene products that metabolize drugs. They found that many drugs are 
chemically modified by microorganisms, by measuring the ability of 76 human gut bacteria 
from diverse clades to metabolize 271 orally administered drugs. Mallory et al. [56] have 
made some early progress toward establishing a computational tool for the prediction of 
microbial drug metabolism by applying this approach to the MetaCyc database. Recently, two 
research groups have reported the systematic quantification of large drug panels and their 
microbial metabolites using HPLC-MS followed by ex vivo experiments [57,58]. In spite of the 
remarkable progress in the field of pharmaco-microbiomics, further efforts are necessary 
to predict the overall effect of microbial drug metabolism. In particular, better tools, such 
as improved methods for quantifying microbial abundance and activities, systematically 
complementary computational and experimental methods, and multi-omics datasets, are 
required. In this context, targeted and untargeted metabolomics will help in assessing the 
relevance of the identified mechanisms of variability in microbiomes leading to interpersonal 
differences in drug metabolism.

CONCLUSION

The gut microbiome is known to have complex interactions with drugs. Metagenomics 
analysis has revealed that many microbes influence drug responses directly or indirectly 
(through the host system). Although the influence of microbiome-derived metabolites on the 
host body is known, the influence of microbial metabolites on drugs is yet to be studied. To 
understand the correlation between microbiome and drugs clearly, we suggest the application 
of metabolomics to interpret the influence of microbial metabolites on drug responses. This 
approach bares the potential to lead us to clinical advancements in precision medicine.
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