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Oral squamous cell carcinoma (OSCC) is the eighth most common cancer

worldwide and presents high mortality. Oxidative stress, caused by reactive

oxygen species accumulation, plays a crucial role in tumorigenesis, cancer

progression, and drug resistance. Nevertheless, the specific prognostic and

clinical values of oxidative stress-related genes (OSGs) in OSCC remain unclear.

Here, we developed an oxidative stress-related prognostic signature according

to mRNA expression data from The Cancer Genome Atlas (TCGA) database and

evaluated its connections with the prognosis, clinical features, immune status,

immunotherapy, and drug sensitivity of OSCC through a series of bioinformatics

analyses. Finally, we filtered out six prognostic OSGs to construct a prognostic

signature. On the basis of both TCGA-OSCC and GSE41613 cohorts, the

signature was proven to be an independent prognostic factor with high

accuracy and was confirmed to be an impactful indicator for predicting the

prognosis and immune status of patientswithOSCC. Additionally, we found that

patients with high-risk scores may obtain greater benefit from immune

checkpoint therapy compared to those with low-risk scores, and the risk

score presented a close interaction with the tumor microenvironment and

chemotherapy sensitivity. The prognostic signature may provide a valid and

robust predictive tool that could predict the prognosis and immune status and

guide clinicians to develop personalized therapeutic strategies for patients

with OSCC.
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Introduction

Oral squamous cell carcinoma (OSCC) accounts for most

head and neck squamous cell carcinomas, and is the eighth most

common cancer worldwide (Bray et al., 2018; Huang L. et al.,

2021). Tobacco consumption is thought to be a major etiological

factor of OSCC (Das et al., 2007). Although the progress in

treatment techniques of OSCC has been notable in recent

decades, the overall 5-years survival rate and recurrence rate

(approximately 50%) remain disappointing (Nör and Gutkind,

2018). Therefore, it is crucial to develop an efficient and

personalized therapeutic strategy for patients with OSCC.

Recently, extensive efforts have been dedicated to the

identification of prognostic biomarkers or signatures for

OSCC based on gene expression or DNA methylation (Huang

Z. et al., 2021; Huang et al., 2021b; Zou et al., 2021), whereas their

specific roles in guiding personalized treatment still need to be

explored in depth.

Oxidative stress is characterized by the imbalance between

oxidant and antioxidant production, which contributes to an

excess of reactive oxygen species (ROS) and can activate proto-

oncogenes and inactivate cancer suppressor genes (Gorrini et al.,

2013; Biselli-Chicote et al., 2019). ROS have been identified as a

potentially critical factor in driving tumorigenesis and cancer

progression (Qiu et al., 2020). Patients with OSCC have been

shown to present an elevated level of oxidative stress and a

compromised capacity of antioxidant defense (Choudhari et al.,

2014). Oxidative stress can induce oxidative damage of DNA and

protein, enhancing lipid peroxidation and antioxidant defense

disorders, which, if unrepaired, can promote the formation and

progression of oral cancer (Toyokuni et al., 1995; Choudhari

et al., 2014). Additionally, ROS production is involved in the

development of oral cancer in chewers of tobacco and areca nuts

(Stich and Anders, 1989), and strictly correlates with the clinical

stage in patients with advanced cancer (Mantovani et al., 2002).

Furthermore, oxidative stress, as an additional metabolic feature,

plays a pivotal immunoregulatory role in the tumor

microenvironment (TME) (Cubillos-Ruiz et al., 2015; Maj

et al., 2017). Previous studies have demonstrated that

oxidative stress could not only alter the phenotype and

function of myeloid dendritic cells (DCs) in the TME

(Cubillos-Ruiz et al., 2015) but also control tumor Treg cell

functional behavior and temper the therapeutic efficacy of

immune checkpoint therapy (Maj et al., 2017). Importantly,

aberrant levels of ROS can profoundly affect the tumor

heterogeneity by modifying the DNA structure of cancer cells,

frequently leading to chemotherapeutic resistance (de Sá Junior

et al., 2017). Nevertheless, the specific roles of oxidative stress

genes (OSGs) in the prognosis, immune status, and

chemotherapy response of OSCC remain largely unclear.

In this study, we filtered out six prognostic OSGs to construct

a predictive signature according to mRNA expression data from

The Cancer Genome Atlas (TCGA) database. Then, the

prognostic value of the signature and its connection with

clinical features were thoroughly explored in TCGA-OSCC

cohort and validated in an independent OSCC cohort

GSE41613. Additionally, this signature was shown to have

close connections with immune status, immunotherapy

response, and chemotherapy sensitivity. Overall, our results

demonstrate the potential roles of OSGs in the prognosis,

immune status, and drug response of OSCC, and provide a

reliable tool for predicting the prognosis of patients with

OSCC and guiding clinical treatment.

Materials and methods

Raw data collection

The RNA-sequencing and somatic mutation data of

330 OSCC samples and 32 normal oral tissues with

corresponding clinical information were acquired from the

TCGA GDC portal (https://portal.gdc.cancer.gov/repository).

Additionally, gene expression profiles and clinical information

of 97 patients in OSCCwere obtained from the GSE41613 dataset

in the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). A total of 1,399 protein domains related

to oxidative stress were downloaded from the GeneCards

database (https://www.genecards.org/), with a relevance score

of ≥7 (Qiu et al., 2020). The immunohistochemistry (IHC)

validation data was obtained from the Human Protein Atlas

(HPA) database (https://www.proteinatlas.org/).

Identification of differentially expressed
OSGs and functional enrichment analysis

Firstly, we removed the batch effect between TCGA and GEO

cohorts using “ComBat” function of “sva” R package. Then,

based on the training dataset from TCGA database, we used the

“limma” R package to identify the differentially expressed OSGs

in OSCC samples and para-cancerous oral tissues via the

Wilcoxon test, with a |log2fold change (FC)| > 1 and a false

discovery rate (FDR) < 0.05. Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were used to analyze the functions and

pathways associated with the differentially expressed OSGs using

the R packages “clusterProfiler” and “enrichplot,” with an

FDR <0.05.

Construction of an oxidative stress-
related prognostic signature

Based on the expression of differentially expressed OSGs

filtered above and the survival information of patients from
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TCGA cohort, univariate Cox analysis of overall survival (OS)

was applied to screen the prognostic OSGs via the coxph

function of “survival” R package, with p < 0.01. Next, to

minimize the risk of overfitting, we constructed a

prognostic model based on the prognostic OSGs using

LASSO Cox regression analysis using the R packages

“survival” and “glmnet.” According to this oxidative stress-

related gene signature, we calculated the risk score of each

patient with OSCC on the basis of the regression coefficient

and expression level of each model gene. The median risk

score was regarded as a boundary to classify patients

with OSCC into low-risk (LRisk) and high-risk (HRisk)

groups.

Efficacy evaluation of the gene signature

We used the R packages “survival” and “survminer” to

explore the OS difference between the LRisk and HRisk groups

and to draw Kaplan–Meier (KM) survival curves. Next, to

evaluate the predictive accuracy and sensitivity of the gene

signature, the “survival”, “survminer” and “timeROC” R

packages were used to plot time-dependent receiver

operating characteristic (ROC) curves and the area under

the curve (AUC) values were calculated using the additive

Aalen model in “timeROC” function of “timeROC” R package.

The independent prognostic value of the signature was

analyzed via univariate and multivariate Cox regression

analyses. Additionally, we explored the correlations

between the prognostic signature and clinical traits via the

Wilcoxon test.

Gene Set Enrichment Analysis in different
risk groups

We performed GSEA to define the activated pathways in

different risk subgroups according to the expression of the model

genes. The annotated gene set “c2. cp.kegg.v7.4. symbol.gmt”was

used for reference. The number of permutations was set as

1,000 and the top five pathways in each risk group were

obtained to plot the enrichment results.

TME and immunotherapy analysis

We compared the immune scores, stromal scores, and

tumor purity between the LRisk and HRisk groups using the

“ESTIMATE” R package. Next, the single-sample GSEA

(ssGSEA) was used to estimate the infiltration levels of

16 immune cells and the enrichment scores of 13 immune-

related functions in different risk groups. The different

expressions of human leukocyte antigen (HLA) genes were

explored in TCGA-OSCC and GEO-OSCC cohorts. Although

immune checkpoint inhibitors (ICIs) can provide long-lasting

clinical benefits to patients with cancer, only a fraction of

patients fully respond to immunotherapy (Jiang et al., 2018).

There is evidence indicating that the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm and

the tumor mutation burden (TMB) score can serve

as predictive markers for the efficacy of ICIs (Jiang et al.,

2018; Choucair et al., 2020). Therefore, to define

the correlation between the prognostic signature and

immunotherapy response to ICIs, we calculated the

TIDE score of each patient with OSCC from the TCGA

cohort online (http://tide.dfci.harvard.edu/) and analyzed

the TMB score based on somatic mutation data from

TCGA database. On the basis of TCGA dataset, we

simultaneously calculated the RNA stemness score (RNAss)

and the DNA stemness score (DNAss) based on the

transcriptome data and DNA methylation data,

respectively, to assess the tumor stemness of each patient

with OSCC (Malta et al., 2018).

Drug sensitivity analysis

To analyze the correlation between chemotherapeutic

drug response and the risk signature, we estimated the

half-maximal inhibitory concentration (IC50) of

chemotherapeutic agents in TCGA cohort based on drug

response data from the Cancer Genome Project (CGP)

(Garnett et al., 2012) and the two largest publicly available

screening efforts, the Genomics of Drug Sensitivity in Cancer

(GDSC) (Yang et al., 2013) and the Cancer Therapeutics

Response Portal (CTRP) (Basu et al., 2013). The CGP-

derived drug response data was downloaded from the

website https://osf.io/5xvsg/and processed via the

“pRRophetic” package (Geeleher et al., 2014). Moreover, we

retrieved GDSC2 and CTRP-derived drug response data from

the website https://osf.io/c6tfx/and analyzed them using the

“oncoPredict” R package (Maeser et al., 2021).

To predict potential small molecular drugs that could

reverse the gene expression of high-risk patients with

OSCC, the differentially expressed genes (DEGs; FDR <0.05
& |log2FC| > 1) between the high- and low-risk patients were

uploaded to the Connectivity Map (CMap, http://www.broad.

mit.edu/cmap/) and some small molecule drugs related to the

risk signature were obtained online using a modified

Kolmogorov–Smirnov test. A negative enrichment score

indicated an inhibiting effect on the expression of high-risk

genes. Finally, we set p < 0.05, enrichment <0, mean < −0.

4 and percentage non-null ≥ 75 as the cut-off criteria (Cheng

et al., 2021). The 2D chemical structures of the selected small

molecule drugs were obtained from the PubChem website

(https://pubchem.ncbi.nlm.nih.gov/).
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Statistical analysis

The drug sensitivity analysis via the oncoPredict R

package was implemented with R software (version 4.1.1;

https://www.R-project.org) and all other statistical tests

were analyzed using Perl software (version 5.32; https://

strawberryperl.com/) and R software (version 4.0.3). The

differential analysis between two continuous variables was

performed via the Wilcoxon test, and correlation analysis

between two continuous variables was estimated using the

Spearman’s correlation coefficient. All results were taken as

statistically significant when p < 0.05.

FIGURE 1
The functional enrichment analysis of oxidative stress-related differentially expressed OSGs between OSCC samples and matched adjacent
normal tissues and the immunohistochemistry of signature genes from theHPA database. (A)GO term enrichment analysis of differentially expressed
OSGs. (B) KEGG pathway enrichment analysis of differentially expressed OSGs. (C) Representative images showing the expression of HPRT1, ADA,
PLAU, and VEGFA in OSCC tissues vs. normal oral cavity mucosal tissues. OSGs, Oxidative stress-related genes, OSCC, Oral squamous cell
carcinoma, GO, Gene ontology, KEGG, Kyoto Encyclopedia of Genes and Genomes, HPA: Human Protein Atlas.
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Results

Identification of OSCC samples and OSGs

We included 459 OSCC samples in our study, including

362 from TCGA cohort (330 tumor samples and 32 normal

samples) and 97 from the GSE41613 cohort. After excluding

patients with no survival information and follow-up

time <30 days, 322 patients in TCGA-OSCC cohort and

96 patients in GEO-OSCC cohort remained for further

analyses. Detailed clinical information of the included patients

is shown in Supplementary Table S1. Among 1,399 OSGs,

1,108 genes were present in both cohorts (Supplementary

Table S2).

Establishment of an oxidative stress-
related prognostic signature

Of the 1,108 OSGs, 239 DEGs were obtained in OSCC tissues

vs adjacent non-cancerous tissues, including 136 upregulated and

103 downregulated genes (Supplementary Table S3). As

expected, GO enrichment analysis demonstrated that these

differentially expressed OSGs were generally enriched in

oxidative stress-related biological processes (BPs) and

cytokine-related molecular functions (MFs). Furthermore,

KEGG pathway enrichment analysis indicated that they were

mainly associated with cancer and inflammation-related

pathways (Figures 1A,B). Next, we filtered out eight

differentially expressed OSGs associated with OS using

univariate Cox regression analysis, among which HPRT1,

ADA, CCNA2, PLAU, IL1A, VEGFA, and CXCL8 were risk-

associated OSGs (p < 0.01, hazard ratio [HR] > 1) and CTLA4

was a protection-associated OSGs (p < 0.01, HR < 1)

(Supplementary Figure S1). Finally, an oxidative stress-related

prognostic model was constructed using LASSO Cox regression

analysis based on TCGA-OSCC cohort and the expression of

eachmodel gene was contributing to the risk score independently

with different weight according to their corresponding regression

coefficient (Coef). The risk score of each patient in both TCGA-

OSCC and GEO-OSCC cohorts was calculated according to the

expression values of the model genes and their corresponding

regression Coefs (Table 1) with the following formula: Risk

score = HPRT1*CoefHPRT1 + ADA*CoefADA + PLAU*CoefPLAU
+ CTLA4*CoefCTLA4 + VEGFA*CoefVEGFA + CXCL8*CoefCXCL8.

As a result, patients in TCGA-OSCC cohort were divided into

LRisk (n = 161) and HRisk (n = 161) groups according to the

median risk score, which was set as the cut-off value of risk score

(0.499883). The validation cohort comprised 47 low-risk patients

and 49 high-risk patients. Most signature genes (including

HPRT1, ADA, PLAU, and VEGFA) were validated with IHC

data from the HPA database (Figure 1C).

Prognostic evaluation of the gene
signature in the training and validation
cohorts

To test the prognostic values of the gene signature, we

performed KM survival analysis, time-dependent ROC

exploration, and univariate and multivariate Cox regression

analyses in both the training and validation cohorts. As

expected, patients in the HRisk group had a significantly

worse OS than those in the LRisk group according to the

KM survival curves of the two cohorts (TCGA: Figure 2A,

p < 0.001; GEO: Figure 2B, p < 0.05). The accuracy of the gene

signature in survival prediction was explored with time-

dependent ROC curves and their corresponding AUC values

(Figures 2C,D, Supplementary Figures S1B,C). The AUC values

of the risk score reached 0.688 in TCGA-OSCC cohort and

0.709 in GEO-OSCC cohort at 3 years, which were both higher

than those of the clinical variables (Figures 2C,D). To test the

independent prognostic value of the model, we generated

univariate and multivariate Cox regression analyses of OS.

On the basis of univariate Cox analysis, the risk score in

both the training and validation cohorts was significantly

associated with OS (TCGA: Figure 2E, HR = 3.224, 95%

confidence interval [CI] = 2.119–4.904, p < 0.001; GEO:

Figure 2F, HR = 4.724, 95% CI = 1.793–12.541, p < 0.01).

After adjusting for other confounding clinical factors using

multivariate Cox analysis, the risk score was found to be an

independent prognostic predictor of patients with OSCC

TABLE 1 The prognostic model genes and their risk coefficients.

Gene symbol Full name Risk coefficient

HPRT1 Hypoxanthine Phosphoribosyltransferase 1 0.0128324683391926

ADA Adenosine Deaminase 0.0128202152397187

PLAU Plasminogen Activator, Urokinase 0.00139422373731424

CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4 -0.0960167392715765

VEGFA Vascular Endothelial Growth Factor A 0.0196888754184647

CXCL8 C-X-C Motif Chemokine Ligand 8 0.000372634652081389
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FIGURE 2
Prognostic analyses of the conducted signature in OSCC based on TCGA and GEO cohorts. The Kaplan–Meier survival curves of the prognostic
signature in TCGA (A) and GEO (B) cohorts. The ROC curves and AUC values of the signature and clinical features in TCGA (C) and GEO (D) cohorts.
Univariate Cox regression analyses of the signature and clinical features in TCGA (E) and GEO (F) cohorts. Multivariate Cox regression analyses of the
signature and clinical features in TCGA (G) and GEO (H) cohorts. OSCC, Oral squamous cell carcinoma, TCGA, The Cancer Genome Atlas, GEO,
The Gene Expression Omnibus, ROC, Receiver operating characteristic, AUC, Area under curve.
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(TCGA: Figure 2G, HR = 2.81, 95% CI = 1.79–4.413, p < 0.001;

GEO: Figure 2H, HR = 3.779, 95% CI = 1.435–9.954, p < 0.01).

Expression levels and clinical features
underlying the prognostic signature

Among patients in the training and validation cohorts, we

compared the expression levels of all model genes between the

HRisk and LRisk groups. As expected, the expression levels of risk-

associated model genes were all significantly upregulated in the

HRisk group, while the protection-associated CTLA4 was notably

overexpressed in the LRisk group on the basis of both TCGA-OSCC

and GEO-OSCC cohorts (Supplementary Figure S2, all p < 0.001).

Based on the optimal cut-off expression value, we performed

survival analysis of each model gene using the “survival” and

“survminer” R packages, which demonstrated that the expression

levels of all model genes were significantly correlated with OS in

TCGA-OSCC cohort Supplementary Figures S3A–F, p < 0.01), and

similarly, except for VEGFA (Supplementary Figure S3L, p = 0.072),

FIGURE 3
The correlations between clinical features and the prognostic signature. Different risk scores in OSCC patients with different age (A), gender (B),
grade (C), clinical stage (D), T stage (E) andN stage (F) according to TCGA cohort. Different risk scores in OSCC patients with different age (G), gender
(H), and clinical stage (I) on basis of the validation cohort. OSCC, Oral squamous cell carcinoma, TCGA, The Cancer Genome Atlas.
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the expression of the other model genes was significantly correlated

with OS in the GEO-OSCC cohort (Supplementary Figures S3G,F,

p < 0.05). However, patients with lower expression of VEGFA had

longer OS in the GEO-OSCC cohort, although the p-value was not

significant, possibly due to the small number of patients with lower

expression of VEGFA (n = 13). The above results suggest that the

prognostic model genes could serve as potential therapeutic targets

for patients with OSCC. According to KM survival analyses, we

found that clinical stage, T stage, and N stage had significant

prognostic values in OSCC. As shown in Supplementary Figure

S4, patients with clinical stage I–II, T1–2, or N0 had significantly

better OS than those with stage III–IV (p < 0.001), T3–4 (p < 0.001),

or N1–3 (p < 0.01) in TCGA-OSCC cohort. Additionally, survival

analyses in the GEO-OSCC cohort confirmed that the stage I–II

group was significantly correlated with better OS compared to the

stage III–IV group (p < 0.001) (there were no data on the clinical T

and N stages of OSCC in the GEO cohort). Next, by analyzing the

correlation between the clinical features and risk score via the

Wilcoxon test, we confirmed that patients with stage III–IV or

T3–4 were significantly related to a higher risk score, while patients

with stage I–II or T1–2 understandably had a lower risk score in

TCGA-OSCC cohort (Figures 3D,E, p < 0.001), which might

determine the worse OS of patients in HRisk group. Moreover,

patients with stage III–IV still presented a higher mean risk score

than those with stage I–II in the GEO-OSCC cohort, although there

was no significant difference in the risk score between patients with

different clinical stages (Figure 3I, p = 0.058). Therefore, the

identified signature could be involved in the occurrence and

development of OSCC.

Functional enrichment analysis in the
HRisk and LRisk groups

To explore the main functions enriched in different risk

subgroups, we performed GSEA in both TCGA-OSCC and GEO-

OSCC cohorts. The results indicated that pathways that were

active in the HRisk group were mainly cell cycle-related, while

those enriched in the LRisk group were mostly related to

autoimmunity and cell adhesion in both the training and

validation cohorts. The detailed results of GSEA are shown in

Figure 4.

TME and immunotherapy response
analysis

Next, we evaluated the correlation between the prognostic

signature and the TME in TCGA-OSCC and GEO-OSCC

cohorts. The ESTIMATE results demonstrated that patients

in the LRisk group presented notably higher immune and

stromal scores, but a lower level of tumor purity compared to

those in the HRisk group (all p < 0.001, Figures 5E–J).

Consistently, the risk score negatively correlated with both

the immune score and stromal score, whereas it showed a

positive relationship with the level of tumor purity (all p <
0.001, Supplementary Figure S5). Meanwhile, the tumor

stemness of the patients with OSCC was estimated using

DNAss and RNAss based on the TCGA dataset. Both

DNAss (p < 0.001, Figure 5A) and RNAss (p < 0.01,

Figure 5C) were obviously higher in the HRisk group

compared to those in the LRisk group. Similarly, both

DNAss (p < 0.001, Figure 5B) and RNAss (p < 0.01,

Figure 5D) were positively related to the risk score. We

then estimated the enrichment levels of immune cells and

immune-related functions in different risk groups using

ssGSEA to accurately assess their immune status. The

LRisk group displayed significantly higher infiltration levels

of some innate immune cells, including mast cells,

neutrophils, natural killer (NK) cells, DCs, immature DCs

(iDCs), activated DCs (aDCs), and plasmacytoid DCs (pDCs),

as well as adaptive immune cells, including B cells, CD8+

FIGURE 4
Gene Set Enrichment Analyses based on the conducted signature. (A) Active pathways in the HRisk and LRisk groups in TCGA cohort. (B) Active
pathways in the HRisk and LRisk groups in GEO cohort. GEO: The Gene Expression Omnibus, TCGA, The Cancer Genome Atlas, HRisk, high-risk,
LRisk, low-risk.
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T cells, helper T cells, regulatory T (Treg) cells, T helper 1

(Th1) cells, Th2 cells, T follicular helper cells (Tfh),

and tumor-infiltrating lymphocytes (TILs). The LRisk

group also presented higher enrichment scores of some

immune-related functions, including cytolytic activity,

checkpoint, promoting inflammation, type II IFN response,

T cell co-stimulation, and HLA (Figures 6A,B). KM survival

curves based on the optimal cut-off value demonstrated that

immune cells (including DCs, aDCs, iDCs, mast cells,

neutrophils, NK cells, B cells, and helper T and Treg cells)

and immune functions (including cytolytic activity,

checkpoint, type II IFN response, T cell co-stimulation, and

HLA) showed a beneficial effect on the prognosis of patients

with OSCC according to both the training and validation

cohorts (all p < 0.05, Supplementary Figure S6), which

may result in the better prognosis of the LRisk

group. Considering HLA markers play a crucial role in

anti-tumor immunity by driving antigen presentation

(Anderson et al., 2021), we analyzed the differential

expression of 24 HLA genes between two risk groups. The

results demonstrated that the LRisk group had higher

expression levels of most HLA genes according to

both TCGA-OSCC and GEO-OSCC cohorts (Figures 6C,D).

Overall, patients in the LRisk group showed more

active immune activity, which may explain their better

prognosis.

FIGURE 5
The tumor stemness and immune microenvironment between different risk subgroups. (A,B) Comparison of DNAss and RNAss in different risk
subgroups. (C,D) The relationship between risk score and DNAss or RNAss based on TCGA cohort. (E–G) The immune score, stromal score and
tumor purity between different risk groups in TCGA cohort. (H–J) The immune score, stromal score and tumor purity between different risk groups
in GEO cohort. TCGA, The Cancer Genome Atlas, GEO, The Gene Expression Omnibus.
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Next, to evaluate the predictive effect of the risk signature on

the immunotherapy response, we explored the relationship

between the risk score and the TIDE/TMB score. On the basis

of the TIDE algorithm, the results revealed that patients in the

HRisk group presented prominently lower TIDE scores (p <
0.001, Figure 7A), higher immune exclusion scores (p < 0.001,

Figure 7B), and greater immunotherapy response (p < 0.001,

Figure 7G). Meanwhile, the risk score was positively associated

with the TIDE score (p < 0.001, Figure 7D) and negatively related

to the immune exclusion score (p < 0.001, Figure 7E). To estimate

the sensitivity of the risk score for predicting an immunotherapy

response, a ROC curve was plotted using “pROC” R package and

the AUC value was 0.766 (95% CI: 0.695–0.837, Figure 7H).

Moreover, we found that the TMB score in the HRisk group was

notably higher than that in the LRisk group (p < 0.01, Figure 7C),

and the risk score had a positive relationship with the TMB score

(p < 0.001, Figure 7F). In view of the above results, the risk

signature is an appropriate predicting indicator of ICI treatment

with high sensitivity.

Selecting appropriate chemotherapy
drugs and uncovering potential small
molecular drugs

To identify the relationship between drug response and the

risk signature, we evaluated the differential drug response

between HRisk and LRisk groups (p < 0.05 was considered

significant) and performed the Spearman correlation test

between the IC50 of selected chemotherapy drugs and the

risk score (|R| > 0.2 and p < 0.05 were set as the threshold

values). Eight common OSCC chemotherapy drugs (Cisplatin,

Paclitaxel, Cytarabine, Docetaxel, Doxorubicin, Gemcitabine,

Methotrexate, and 5-Fluorouracil) were selected for predicting

the drug response on the basis of National Comprehensive

Cancer Network (NCCN) guidelines Version 2.2021.

Additionally, Gefitinib, an orally active selective EGFR

(epidermal growth factor receptor) inhibitor, was explored

based on previous studies (Brown et al., 2010; Tang et al.,

2019). The detailed results of all selected drugs are shown in

FIGURE 6
Analyses of immune cells and immune functions of the prognostic signature. Evaluation of infiltrating scores of 16 immune cells and activity of
13 immune-related pathways in different risk groups via ssGSEA according to TCGA cohort (A) and GEO cohort (B). Differentially expressed analysis
of 24 HLA genes based on TCGA cohort (C) and GEO cohort (D). The p values were showed as: *p < 0.05; **p < 0.01; ***p < 0.001. ssGSEA: single-
sample Gene Set Enrichment Analysis, TCGA, The Cancer Genome Atlas, GEO, The Gene Expression Omnibus, HLA, Human leukocyte antigen.
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Supplementary Figure S7. Consequently, patients with low-risk

scores showed a more sensitive response to CTRP-derived

drugs (5-Fluorouracil and Gemcitabine, Figures 8I–L) and

CGP-derived Gefitinib (Figures 8C,D), while patients with

high-risk scores were more sensitive to GDSC2-derived

Paclitaxel (Figures 8E,F) and CGP/GDSC2-derived Docetaxel

(Figures 8A,B,G,H).

To uncover novel drugs for treating patients with OSCC in

the HRisk group, we analyzed the DEGs between the LRisk and

HRisk groups using the CMap algorithm. CMap analysis was

used to screen out 10 small molecule drugs (including etifenin,

cortisone, sulfaguanidine, cyclopenthiazide, alcuronium

chloride, xylometazoline, dextromethorphan, AH-6809,

methylprednisolone, and oxybuprocaine) (Table 2), which

were considered likely to reverse the expression of high risk-

related genes and may be novel drugs showing anti-tumor effects

in HRisk patients with OSCC. Furthermore, we obtained 2D

chemical structures of the selected small molecule candidates

FIGURE 7
Evaluation of the predictive effect of the prognostic signature on ICI treatment response. (A–C) The scores of TIDE, immune exclusion and TMB
in different risk subgroups. (D–F) The relationship between the risk score and the score of TIDE, immune exclusion and TMB. (G) Predicted ICI
treatment responses in different risk subgroups based on TCGA cohort using TIDE algorithm. (H) The ROC curve and AUC value to estimate the
accuracy of the signature for predicting ICI treatment response. ICI, Immune checkpoint inhibitor, TIDE, Tumor Immune Dysfunction and
Exclusion, TMB, Tumor Mutation Burden, TCGA, The Cancer Genome Atlas, ROC, Receiver operating characteristic, AUC, Area under curve.
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online to facilitate future studies, which are shown in

Supplementary Figure S8.

Discussion

Oxidative stress, caused by ROS accumulation, plays a crucial

role in cancer cells throughout the initiation, progression,

metastasis, recurrence, and therapy of multiple tumors (Hayes

et al., 2020). Accumulating evidence shows that the ROS levels not

only correlate with tumor growth but also affect both the TME and

the sensitivity of cancer cells to chemotherapeutic agents (Sosa

et al., 2013; de Sá Junior et al., 2017). Additionally, oxidative stress-

related gene signatures have been identified to be a reliable and

efficient tool to predict the prognosis and progression of cancers

(Qiu et al., 2020; Wu et al., 2021). Considering the above views,

OSGs may represent valuable biomarkers for predicting the

prognosis, immune status, and drug sensitivity of cancers and

thus help clinicians define individual treatment plans for patients.

However, the predictive effect of OSGs in OSCC remains unclear

and is yet to be thoroughly investigated. Hence, in this study, we

first filtered out 239 aberrantly expressed OSGs in OSCC and

explored their potential functional pathways in OSCC. Next, we

selected eight prognostic OSGs, according to which an oxidative

stress-related signature with six OSGs was conducted. Moreover,

the main functions active in different subgroups classified by the

risk signature were identified using GSEA analysis. Finally, to

further define the specific roles of OSGs in OSCC, we deeply

FIGURE 8
Drug sensitivity analyses on basis of TCGA cohort. The IC50 of some selected chemotherapeutic drugs, including CGP/GDSC2-derived
Docetaxel (A–G), CGP-derived Gefitinib (C), GDSC2-derived Paclitaxel (E) and CTRP-derived drugs, 5-Fluorouracil and Gemcitabine (I,K) in different
risk subgroups. The correlations between the risk score and some selected chemotherapeutic drugs, including CGP/GDSC2-derived Docetaxel
(B–H), CGP-derived Gefitinib (D), GDSC2-derived Paclitaxel (F) and CTRP-derived drugs, 5-Fluorouracil and Gemcitabine (J,L). TCGA, The
Cancer Genome Atlas, IC50, Half-maximal inhibitory concentration, CGP, the Cancer Genome Project, GDSC, Genomics of Drug Sensitivity in
Cancer, CTRP, Cancer Therapeutics Response Portal.

Frontiers in Genetics frontiersin.org12

Lu et al. 10.3389/fgene.2022.977902

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.977902


evaluated the correlations between the oxidative stress-related

signature and the prognosis, clinical features, immune status,

immunotherapy, and drug sensitivity of OSCC.

The oxidative stress-related prediction signature comprised

five risk-associated OSGs (HPRT1, ADA, PLAU, VEGFA, and

CXCL8) and one protection-associated OSG (CTLA4), which

were verified to be prognostic indicators in OSCC via univariate

Cox regression and KM survival analyses. Moreover, these five

risk OSGs were significantly upregulated in the HRisk group,

while CTLA4, as a protection gene, was notably overexpressed in

the LRisk group.HPRT1, a salvage enzyme involved in nucleotide

production and recycling in cell cycle modulation, has been

shown to promote proliferation and metastasis of head and

neck squamous cell carcinoma (HNSCC) through direct

interaction with STAT3 and has been implicated as a

promising prognostic indicator and potential therapeutic

target for HNSCC (Wang et al., 2021b). ADA, a housekeeping

enzyme crucial in purine metabolism, makes a certain

contribution to the regulation of inflammatory reactions and

immune status (Bagheri et al., 2019), and its inhibitor has been

shown to be obviously associated with reduced tumor size and

decreased aggressiveness of cancer cells (Kutryb-Zajac et al.,

2018; Bagheri et al., 2019). Additionally, Wang et al. reported

that pre-operative serum ADA levels could be a reliable

independent prognostic predictor of OSCC (Zhu et al., 2019).

Previous studies demonstrated that the upregulated expression of

PLAU (uPA), VEGFA, and CXCL8 (IL8) could promote the

occurrence and progression of OSCC and might be important

prognostic factors for patients with OSCC (Hundsdorfer et al.,

2005; Sales et al., 2016; Magnussen et al., 2017; de Matos et al.,

2019; Reyimu et al., 2021). The immune checkpoint inhibitory

receptor CTLA4 has also been identified as a potential

therapeutic target for OSCC (Bundela et al., 2014) and can

enhance the therapeutic efficacy of anti-PD-1 immunotherapy

in patients with HPV+ OSCC (Dorta-Estremera et al., 2019).

Combining the results of the current and previous studies, we

believe that these six OSGs could serve as reliable prognostic

biomarkers and provide potential treatment targets for OSCC.

The prediction signature, composed of six prognostic OSGswith

different weighting coefficients, was verified to be an effective

prognostic indicator of OSCC according to the training and

validation cohorts using univariate Cox regression and KM

survival analyses. Additionally, patients with OSCC in the HRisk

group had significantly shorter OS than those in the LRisk

group. Multivariate Cox regression analysis indicated that the six-

gene prediction signature was an independent prognostic predictor

of OS of patients with OSCC. Furthermore, the results of ROC

curves andAUCvalues validated the high prediction accuracy of this

signature. In terms of the relationship between the risk score and

clinical features, patients with tumor stage III–IV or T3–4 were

significantly associated with a higher risk score, which suggested that

the risk score increases with the progression of OSCC, showing the

poorer prognosis of patients with the higher risk score.

We next performed GSEA analysis in both the training and

validation cohorts to define the specific signal pathways involved

in the oxidative stress-related signature. The results

demonstrated that cell cycle-related pathways such as the cell

cycle, spliceosome, and base excision repair were apparently

activated in the HRisk group. Moreover, oxidative stress-

mediated ROS production exerts a key influence on cell cycle

dysregulation by incorporating phosphorylation, ubiquitination,

and receptor activation, which can contribute to aberrant cell

proliferation and promote tumor progression (Verbon et al.,

2012; Ahmad et al., 2020). Therefore, the activated cell cycle-

related pathways may relate to the poor prognosis of patients

with OSCC in the HRisk group. Meanwhile, autoimmunity-

related pathways (i.e., autoimmune thyroid disease and

systemic lupus erythematosus) were enriched in the LRisk

group, illustrating that the patients with OSCC in the LRisk

group might present an active immune state.

Growing evidences suggest that the TME plays a critical role in

carcinogenesis, tumor progression, and survival, among which the

TABLE 2 Potential small molecular drugs targeting high-risk OSCC patients.

Drug name enrichment P Value mean percent non-null

etifenin −0.907 0.0001 −0.634 100

cortisone −0.931 0.0005 −0.648 100

sulfaguanidine −0.761 0.00144 −0.424 80

cyclopenthiazide −0.826 0.00175 −0.413 75

alcuronium chloride −0.918 0.01368 −0.579 100

xylometazoline −0.677 0.02425 −0.456 75

dextromethorphan −0.664 0.02863 −0.511 75

AH-6809 −0.871 0.03314 −0.588 100

methylprednisolone −0.65 0.03537 −0.435 75

oxybuprocaine −0.626 0.04852 −0.513 75

OSCC, oral squamous cell carcinoma.
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immune microenvironment serves as a determinative factor

(Hinshaw and Shevde, 2019). Thus, we next explored the

relationship between the constructed signature and the immune

status of OSCC. According to the ESTIMATE algorithm, a higher

risk score was notably correlated with a lower immune score based

onTCGA-OSCC andGEO-OSCC cohorts, suggesting that the high-

risk score indicated an immune-suppressive state of patients with

OSCC. Additionally, patients in the HRisk group displayed

significantly higher tumor immune evasion scores compared to

low-risk patients, and the immune evasion score showed a positive

correlation with the risk score on the basis of the TIDE results in

TCGA-OSCC cohort, further demonstrating the poor prognosis and

immune-suppressive state of patients in the HRisk group. When we

estimated the correlation between the prognostic signature and

immune functions using ssGSEA, we found that compared to

patients in the HRisk group, those in the LRisk group presented

higher enrichment scores of cytolytic activity, promoting

inflammation, the type II IFN response, and HLA. Of note, the

abovementioned immune functions were all positively associated

with a favorable prognosis in patients with OSCC according to both

the training and validation cohorts via KM survival analysis, which

contributes to the beneficial prognosis of low-risk patients. Rooney

et al. reported that the cytolytic activity was associated with amodest

but significant pan-cancer survival benefit and was connected to

counter-regulatory immune responses (Rooney et al., 2015).

Consistently, high cytolytic activity in tumor-free tongue tissue

conferred improved prognosis in patients with tongue squamous

cell carcinoma (Gu et al., 2019). Type II IFN (IFNγ) is thought to
play a crucial role in cancer immunosurveillance, with the ability to

promote anti-tumor immunity by increasing tumor

immunogenicity (Dunn et al., 2006). Naturally, HLA markers are

essential for antigen presentation and display a pivotal role in anti-

tumor immunity by enhancing immunosurveillance and preventing

immune escape. Additionally, high HLA class I expression in OSCC

shows a significantly positive connection with a better prognosis

(Koike et al., 2020; Anderson et al., 2021). Besides, it is worth

emphasizing that various immune cells in the TME participate in

anti-tumor immune responses as main components. Hence, we

simultaneously calculated the enrichment level of immune cells in

different risk subgroups using ssGSEA. The results showed that

patients in the LRisk group displayed significantly higher infiltration

of DCs, NK cells, mast cells, neutrophils, B cells, helper T cells, and

Treg cells, each of which had a positive relationship with favorable

prognosis in patients with OSCC. As the most potent antigen-

presenting cells, DCs underpin the successful generation of anti-

tumor immune responses by initiating and regulating innate and

adaptive immune responses in the TME, and thus, targetingDCs is a

promising strategy to improve the efficacy of current

immunotherapies (Verneau et al., 2020). NK cells, with the

potent ability to kill tumor cells, induce remodeling of the oral

TME via IFN-γ and TNF-α, as well as prevent tumor growth and

metastasis (Jewett et al., 2018). Furthermore, both CD103+ DCs and

activated NK cells have been shown to have a favorable prognosis in

OSCC (Hadler-Olsen and Wirsing, 2019; Xiao et al., 2019).

Interestingly, Tregs were significantly connected to an improved

prognosis of OSCC in our study, despite being recognized as

immunosuppressive cells in numerous cancers. Among patients

with OSCC, a high level of infiltrated Tregs has been proven to be

notably associated with a lower frequency of lymph node metastasis

and prolonged OS (Bron et al., 2013). Moreover, Hanakawa et al.

suggested that Tregs in the TME may prevent tumor cell invasion

and metastasis by inhibiting inflammatory processes (Hanakawa

et al., 2014). In brief, the immune-related results in our study

expectedly cohere with those in previous studies and the

improved prognosis of patients in the LRisk group may be a

result of the active immune state and increasing anti-tumor

immune responses in these patients.

In addition to the TME, as the central component of cancers,

tumor cells naturally play a vital role in tumorigenesis. Tumor cells

present distinct phenotypic states with different functional

attributes, among which, cancer stem cells (CSCs) possess the

principal properties of self-renewal, clonal tumor initiation

capacity, and clonal long-term repopulation potential (Plaks

et al., 2015). From this perspective, CSCs can facilitate the

initiation and progression of tumors, which may induce drug

resistance (Plaks et al., 2015; Malta et al., 2018). Thus, we

evaluated the correlation between the prognostic signature and

the tumor stemness of OSCC. Based on DNAss and RNAss,

patients with OSCC in the HRisk group presented higher tumor

stemness than those in the LRisk group, and the risk score showed a

positive connection with tumor stemness. These results suggested

that this oxidative stress-related signature could predict tumor

progression and invasion for patients with OSCC and

simultaneously explain the poor prognosis of high-risk patients.

Presently, personalized medicine, concentrating on designing

specific therapeutics that are best suited for an individual patient

based on genome information, is considered to be the future

direction in oncotherapy (Jackson and Chester, 2015). To verify

whether the prognostic signature could guide clinicians to develop

an effective personalized treatment decision for patients with OSCC,

we thoroughly investigated the correlation between the constructed

signature and response to immunotherapy or chemotherapy.

Immunotherapy, particularly ICI treatment, offers a reliable

alternative or adjunctive therapy to conventional therapies for

refractory patients with OSCC (Dorta-Estremera et al., 2019).

The TIDE score has been identified as a potent biomarker to

predict the tumor response to anti-PD1 or anti-CTLA4 (Jiang

et al., 2018), while the TMB score has also been validated as an

available tool to help oncologists select patients who may benefit

from ICIs (Choucair et al., 2020). Encouragingly, the signature in

our study was not only closely correlated with both TIDE and TMB

scores but was also efficient in predicting the immunotherapy

response with high accuracy (AUC = 0.766). Next, we

comprehensively evaluated the efficacy of chemotherapy drugs in

different risk subgroups and their relationship to the risk score on

the basis of three public drug sensitivity databases (CGP, GDSC, and
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CTRP) (Garnett et al., 2012; Basu et al., 2013; Yang et al., 2013). The

IC50 values of eight common chemotherapy drugs for OSCC

(Cisplatin, Paclitaxel, Cytarabine, Docetaxel, Doxorubicin,

Gemcitabine, Methotrexate, and 5-Fluorouracil), on the basis of

the NCCN guidelines Version 2.2021, and one novel anti-cancer

drug, Gefitinib, based on previous studies, were calculated and

estimated. Consequently, we found that patients with low-risk

scores were more sensitive to 5-Fluorouracil, Gemcitabine, and

Gefitinib, while those with high-risk scores showed more

sensitive responses to paclitaxel and docetaxel, which indicated

that the prognostic signature could facilitate personalized

chemotherapy decisions. Furthermore, 5-Fluorouracil,

Gemcitabine, and Gefitinib generate ROS, which can cause

cancer cell death by inducing oxidative damage, whereas CSCs

can increase cellular adaptive responses to ROS to result in

chemoresistance (Okon et al., 2015; Blondy et al., 2020; Xue

et al., 2020). As mentioned above, OSCC patients with high-risk

scores presented notably elevated tumor stemness, which may

explain their higher resistance to 5-Fluorouracil, Gemcitabine,

and Gefitinib. Moreover, paclitaxel and docetaxel are both anti-

cancer agents belonging to the taxane family and can inhibit cancer

cell proliferation by inducing cell cycle arrest (Ashrafizadeh et al.,

2021). On the basis of the GSEA above, cell cycle-related pathways,

such as cell cycle, spliceosome, and base excision repair, were

apparently activated with increased risk scores, which shed light

on the higher sensitivity of high-risk patients to Paclitaxel and

Docetaxel. To summarize, considering the strong correlation of the

prognostic signature with both immunotherapy and chemotherapy,

we present a valid and robust tool that can guide clinicians to make

effective personalized treatment decisions for patients with OSCC

with different risk levels.

Despite considerable strides in treatment regimens and new

drugs for OSCC, the survival rate has been poor and

unsatisfactory in recent decades (Bray et al., 2018; Nör and

Gutkind, 2018). Thus, the development of novel drugs for

OSCC is still necessary. The new use of old drugs is more

cost-effective compared to the exploration and development of

novel drugs (Cheng et al., 2021). CMap, a public database for

predicting small molecule drugs according to transcriptional

expression data, has been used to predict and screen potential

novel drug candidates for cancers in previous studies (Cheng

et al., 2021; Wang M. et al., 2021). Therefore, to uncover novel

drug candidates for patients with OSCC with high-risk scores, we

evaluated DEGs between the two risk subgroups and finally

screened out 10 potential therapeutic agents, including

Dextromethorphan and AH-6809, in the CMap database, all

of which have been barely explored in OSCC. Dextromethorphan

is a safe FDA-approved drug with few undesirable side effects and

usually serves as an effective antitussive agent (Silva and Dinis-

Oliveira, 2020). Wang et al. found that Dextromethorphan and

Metformin, at their pharmacological doses, could synergistically

repress nicotine-enhanced cancer-initiating cell properties and

halt tumor progression by directly targeting CHRNA7 to inhibit

JAK2/STAT3/SOX2 signaling in esophageal squamous cell

carcinoma and perhaps other nicotine-sensitive cancer types

(Wang et al., 2021a). Additionally, AH-6809 was reported to

inhibit the proliferation of non-small cell lung cancer cells by

antagonizing prostaglandin receptors (Casibang and Moody,

2002). Hence, the results of CMap analysis may provide some

new promising drug candidates for high-risk patients with OSCC

and identify a viable direction for the future research on

chemotherapy drugs.

Conclusion

In summary, we established a novel prognostic signature with

six OSGs. On the basis of both TCGA-OSCC and

GSE41613 cohorts, the signature was proven to be an

independent prognostic factor with high accuracy, as well as

an impactful indicator for predicting the prognosis and immune

status of patients with OSCC. Meanwhile, the constructed

signature demonstrated that patients with high-risk scores

might benefit more from ICI treatment compared to those

with low-risk scores, and the risk score presented a close

interaction with the TME and chemotherapy sensitivity. Our

findings may also provide valuable new insight into the roles of

oxidative stress in the prognosis, TME, immune status,

immunotherapy response, and chemotherapy sensitivity of

patients with OSCC. The oxidative stress-related signature

may provide a valid and robust tool that can not only

efficiently predict the prognosis and immune status but also

guide clinicians to develop effective personalized therapeutic

strategies for patients with OSCC.
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SUPPLEMENTARY FIGURE S1
A forest plot of the univariate Cox regression analysis with the prognostic
ORGs (A) and the 1-, 3- and 5-year ROC curves and AUC values of the
signature in TCGA cohort (B) and GEO cohort (C). OSGs, Oxidative
stress-related genes, ROC, Receiver operating characteristic, AUC, Area
under curve, TCGA, The Cancer Genome Atlas, GEO, The Gene
Expression Omnibus.

SUPPLEMENTARY FIGURE S2
Expression levels of model genes between low- and high-risk subgroups
in TCGA (A) and GEO (B) cohorts. *** p < 0.001. GEO, The Gene
Expression Omnibus, TCGA, The Cancer Genome Atlas.

SUPPLEMENTARY FIGURE S3
Survival analyses of model genes in OSCC using Kaplan-Meier algorithm
based on TCGA (A-F) and GEO (G-L) cohorts. OSCC, Oral squamous cell
carcinoma, GEO, The Gene Expression Omnibus, TCGA, The Cancer
Genome Atlas.

SUPPLEMENTARY FIGURE S4
Survival analyses of clinical features in OSCC using Kaplan-Meier
algorithm based on TCGA and GEO cohorts. TCGA cohort: (A) age, (B)
gender, (C) grade, (D) clinical stage, (E) T stage and (F) N stage. GEO
cohort: (G) age, (H) gender, and (I) clinical stage. OSCC, Oral squamous
cell carcinoma, GEO, The Gene Expression Omnibus, TCGA, The Cancer
Genome Atlas.

SUPPLEMENTARY FIGURE S5
Correlations between the risk score and the levels of immune score,
stromal score and tumor purity according to TCGA (A-C) and GEO (D-E)
cohorts. GEO, The Gene Expression Omnibus, TCGA, The Cancer
Genome Atlas.

SUPPLEMENTARY FIGURE S6
Immune cells and immune-related functions with prognostic values in
OSCC on basis of TCGA and GEO cohorts. OSCC, Oral squamous cell
carcinoma, GEO, The Gene Expression Omnibus, TCGA, The Cancer
Genome Atlas.

SUPPLEMENTARY FIGURE S7
The IC50 of selected chemotherapeutic agents between different risk
subgroups of OSCC and correlations between the risk score and the
IC50 of selected chemotherapeutic agents in TCGA cohort based
on CGP, GDSC2 and CTRP databases. OSCC, Oral squamous cell
carcinoma, IC50, Half-maximal inhibitory concentration, TCGA, The
Cancer Genome Atlas, CGP, the Cancer Genome Project, GDSC,
Genomics of Drug Sensitivity in Cancer, CTRP, Cancer Therapeutics
Response Portal.

SUPPLEMENTARY FIGURE S8
The 2D chemical structures of the selected small molecule candidates for
treating OSCC patients using CMap algorithm online. OSCC, Oral
squamous cell carcinoma, CMap, the Connectivity Map.
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