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Michael Szarek , PhD; Poulabi Banerjee , PhD; Sergio Fazio , MD, PhD; Garen Manvelian, MD; Robert Pordy , MD;  
Alan R. Shuldiner , MD; Charles Paulding , PhD

BACKGROUND: Statin-associated muscle symptoms (SAMS) are the most frequently reported adverse events for statin therapies. 
Previous studies have reported an association between the p.Val174Ala missense variant in SLCO1B1 and SAMS in simvastatin-
treated subjects; however, evidence for genetic predictors of SAMS in atorvastatin- or rosuvastatin-treated subjects is currently lacking.

METHODS: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During 
Treatment With Alirocumab; n=18 924) was a double-blind, randomized, placebo-controlled study evaluating the efficacy and 
safety of alirocumab (a PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitor) in acute coronary syndrome patients 
receiving high-intensity statin therapy. The goal of this pharmacogenomic analysis was to identify genetic variants associated 
with atorvastatin- and rosuvastatin-mediated SAMS among ODYSSEY OUTCOMES subjects who consented to participate 
in the genetic study (n=11 880). We performed multi-ancestry exome-wide and genome-wide association studies and gene 
burden analysis across 2 phenotypes (clinical SAMS [n=10 617] and creatine kinase levels [n=9630]).

RESULTS: A novel genome-wide significant association for an intronic variant (rs6667912) located within TMEM9 (odds ratio 
[95% CI], 1.39 [1.24–1.55]; P=3.71×10−8) for patients with clinical SAMS (cases=894, controls=9723) was identified. This 
variant is located ≈30 kb upstream of CACNA1S, a locus associated with severe SAMS. We replicated 2 loci, at LINC0093 
and LILRB5, previously associated with creatine kinase levels during statin treatment. No association was observed between 
p.Val174Ala (rs4149056) in SLCO1B1 and SAMS (odds ratio [95% CI], 1.03 [0.90–1.18]; P=0.69).

CONCLUSIONS: This study comprises the largest discovery exome-wide and genome-wide association study for atorvastatin- or 
rosuvastatin-mediated SAMS to date. These novel genetic findings may provide biological/mechanistic insight into this drug-
induced toxicity, and help identify at-risk patients before selection of lipid-lowering therapies.

Key Words: acute coronary syndrome ◼ atorvastatin ◼ creatine kinase ◼ drug-related side effects and adverse reactions ◼ genome-wide 
association study ◼ pharmacogenetics ◼ rosuvastatin calcium

The HMG-CoA (3-hydroxy-3-methylglutaryl-coen-
zyme A) reductase inhibitors (also known as statins) 
are the most prescribed lipid-modifying medications 

globally and are the first-line treatment for primary and 
secondary prevention of atherosclerotic cardiovascular 
disease.1 Muscle symptoms (eg, myalgia and myopathy) 
are among the most common adverse events associated 
with statin use and are collectively referred to as statin-
associated muscle symptoms (SAMS). SAMS comprise a 

clinical spectrum ranging from benign muscle cramping/
weakness to severe, life-threatening rhabdomyolysis.2,3 
This adverse drug reaction can often lead to discontinu-
ation or dosage reduction of statins.4 Since statins are 
effective lipid-lowering treatments in high-risk patients, 
SAMS-dependent statin discontinuation increases the 
risk of developing major adverse cardiovascular events.5

The estimated incidence of SAMS varies depending on 
study design and clinical definition, but occurs in 5% to 
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30% of first-time statin users.3,6 Several clinical character-
istics (eg, age, excess body weight, diabetes, fibromyalgia, 
and hypothyroidism), external factors (eg, concurrent drug 
therapies), and genetic factors have been implicated as risk 
factors for SAMS.3,6,7 A commonly used nonspecific bio-
marker to assess SAMS severity is the level of serum cre-
atine kinase (CK), an enzyme released from injured muscle 
cells.6 CK elevations, however, do not always correlate well 
with SAMS, as this drug-related toxicity can occur in the 
absence of CK elevations, and CK elevations can occur 
due to many conditions other than SAMS.8 Thus, there are 
no reliable clinical predictors or biomarkers of SAMS risk 
for patients in whom statin therapy is indicated.

To date, several genetic variants have been reported 
to be associated with increased susceptibility to SAMS.9 
However, the only variant consistently associated with this 
phenotype has been rs4149056 (c.521T>C, p.Val174Ala) 
in the SLCO1B1 gene, which encodes a basolateral 
transporter (Solute carrier organic anion transporter fam-
ily member 1B1, [OATP1B1]) responsible for the hepatic 
uptake of several statins.10,11 This association is strong with 
simvastatin but has failed to show consistent association 

with atorvastatin- or rosuvastatin-mediated SAMS.12–14 
While studies have shown clear association of SLCO1B1 
variation with atorvastatin and rosuvastatin pharmacoki-
netics,15 these findings do not always correlate with SAMS 
occurrence,10 suggesting potential involvement of addi-
tional factors and/or pharmacodynamic pathways.3

Atorvastatin and rosuvastatin are the most potent and 
among the most prescribed statins in higher-income coun-
tries.16,17 However, in contrast to simvastatin-mediated 
SAMS,11,18 genetic studies investigating atorvastatin- and 
rosuvastatin-mediated SAMS have been potentially under-
powered statistically.10 The largest atorvastatin-mediated 
SAMS discovery genome-wide association study (GWAS; 
n=2529; cases = 28, controls = 2501) to date found no 
genome-wide significant associations.19 Candidate gene 
approaches have been investigated for rosuvastatin-medi-
ated SAMS,13,20,21 but no published rosuvastatin-mediated 
SAMS discovery GWAS currently exist. To gain a better 
understanding of these drug-related adverse effects, larger 
studies are needed to identify additional genetic predictors 
of atorvastatin- and rosuvastatin-mediated SAMS.

The ODYSSEY OUTCOMES trial (Evaluation of Car-
diovascular Outcomes After an Acute Coronary Syndrome 
During Treatment With Alirocumab; n=18 924) was a 
double-blind, randomized, placebo-controlled clinical trial 
to evaluate the safety and efficacy of the PCSK9 (pro-
protein convertase subtilisin/kexin type 9) inhibitor ali-
rocumab in patients with acute coronary syndrome and 
elevated atherogenic lipoproteins, despite optimized statin 
therapy, in 57 countries across 5 continents.22 At the time 
of randomization, 88.8% of trial subjects were taking high-
dose atorvastatin (40 or 80 mg) or rosuvastatin (20 or 
40 mg). The remainder of participants were treated with a 
lower-intensity statin regimen or no statin for reasons that 
included SAMS or elevated CK with prior statin treatment.

The aim of this study was to identify genetic variants 
associated with atorvastatin- and rosuvastatin-mediated 
SAMS by using clinical trial data for 11 880 ODYSSEY 
OUTCOMES subjects who consented to genetic stud-
ies and who had genome-wide genotyping and exome 
sequencing data available for analysis (see Table 1 for 
additional demographic information). Candidate gene 
and exome-wide association study (ExWAS) and GWAS 
analyses were performed for a clinical and a biochemical 
phenotype. This study comprises the largest multi-ances-
try discovery ExWAS/GWAS cohort for atorvastatin- or 
rosuvastatin-mediated SAMS to date.

METHODS
This multicenter study was approved by the appropriate institutional 
review boards and all trial participants provided written informed 
consent.22 Detailed description of methodology may be found in the 
Supplemental Material, including inclusion and exclusion criteria 
and selection of phenotypes in Table S1 and Figure S1. Individual 
clinical and genomic data presented in this study are not publicly 
available due to informed consent and patient privacy restrictions.

Nonstandard Abbreviations and Acronyms

CK creatine kinase
ExWAS  exome-wide association 

study
GWAS  genome-wide association 

study
IGFN1  Immunoglobulin like 

and fibronectin type III 
domain containing 1)

Klf5 kruppel like factor 5
LD linkage disequilibrium
HMG-CoA  3-hydroxy-3-methyl-glutaryl- 

coenzyme A
MAF minor allele frequency
OATP1B1  Solute carrier organic 

anion transporter family 
member 1B1

ODYSSEY OUTCOMES  Evaluation of Cardiovas-
cular Outcomes After an 
Acute Coronary Syn-
drome During Treatment 
With Alirocumab

OR odds ratio
PCSK9  proprotein convertase 

subtilisin/kexin type 9
Q1 first quartile
Q3 third quartile
SAMS  statin-associated muscle 

symptoms
SOAT1  sterol O-acyltransferase 1
ULN upper limit of normal
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RESULTS

ExWAS/GWAS Results for Baseline Statin 
Intolerance or Treatment Period SAMS
This case-control ExWAS/GWAS included trial subjects 
with either baseline statin intolerance (documented 
muscle symptoms with or without elevated CK before 

randomization) or SAMS while taking high-dose ator-
vastatin or rosuvastatin during the treatment period 
(cases=894; controls=9723). The results for this SAMS 
ExWAS/GWAS are shown in the Manhattan plot in Fig-
ure 1A, while the top associated locus is visualized in 
Figure 1B. Table 2 contains a detailed list of genetic 
associations that reached genome-wide (P<5×10−8) or 
suggestive (P<1×10−6) significance. Table 3 provides 

Table 1. Demographics and Baseline Characteristics of ODYSSEY OUTCOMES Subjects and Those Included in Pharmacoge-
nomic Analysis: Distribution Among Phenotypes

Clinical characteristic

ODYSSEY OUT-
COMES trial popu-
lation (n=18 924)

ODYSSEY OUT-
COMES PGx 
analysis subgroup 
(n=11 880)

CK maximum value 
during the treatment 
period ExWAS/GWAS 
subgroup (n=9630)

Baseline statin intolerance or investigator-
documented SAMS ExWAS/GWAS subgroup 
(n=10 617)

Cases (n=894) Controls (n=9723)

Age, y, median (IQR)* 58.0 (52.0–65.0) 58.0 (52.0–65.0) 58.0 (52.0–64.0) 61.0 (54.0–67.0) 58.0 (52.0–65.0)

Female sex, n (%)* 4762 (25.2) 3021 (25.4) 2333 (24.2) 252 (28.2)† 2391 (24.6)

Body mass index, median (IQR)* 27.9 (25.2–31.1) 28.2 (25.5–31.5) 28.3 (25.5–31.4) 28.4 (25.7–31.2) 28.3 (25.6–31.6)

Self-reported race, n (%)*

 White 15 024 (79.4) 10 157 (85.5)‡ 8320 (86.4)‡ 819 (91.6)† 8365 (86.0)

 Asian 2498 (13.2) 818 (6.9)‡ 549 (5.7)‡ 49 (5.5) 546 (5.6)

 Black 473 (2.5) 323 (2.7) 256 (2.7) 14 (1.6)† 282 (2.9)

 Other/unknown 929 (4.9) 582 (4.9) 505 (5.2) 12 (1.3)† 530 (5.5)

Biomarkers at randomization, median (IQR)

 Creatine kinase, IU/L 102.0 (73–148)§ 103.0 (73.0–151.0)‖ 104.0 (75.0–151.0) 105.0 (74.0–166.0)¶ 103.0 (74.0–150.0)#

 HbA1c, % 5.8 (5.5–6.3) 5.8 (5.5–6.3) 5.8 (5.5–6.2) 5.8 (5.5–6.1) 5.8 (5.5–6.3)

Medical history before index acute coronary syndrome, n (%)

 Current smoker 4560 (24.1) 2901 (24.4) 2409 (25.0)‡ 169 (18.9)† 2469 (25.4)

 Diabetes* 5444 (28.8) 3264 (27.5)‡ 2500 (26.0)‡ 214 (23.9)† 2695 (27.7)

 Fibromyalgia 129 (0.7) 80 (0.7) 56 (0.6) 18 (2.0)† 53 (0.5)

 Hepatic/hepatobiliary disorder 530 (2.8) 316 (2.7) 233 (2.4) 15 (1.7) 245 (2.5)

 Hypertension 12,249 (64.7) 7757 (65.3) 6075 (63.1)‡ 585 (65.4) 6308 (64.9)

 Hypothyroidism (controlled)* 645 (3.4) 474 (4.0)‡ 331 (3.4) 69 (7.7)† 348 (3.6)

 Renal impairment 623 (3.3) 436 (3.7) 291 (3.0) 34 (3.8) 355 (3.7)

Statin medication at randomization, n (%)

 Atorvastatin (40/80 mg) 13,428 (71.0) 8821 (74.3) 7965 (82.7) 194 (21.7) 8034 (82.6)

 Rosuvastatin (20/40 mg) 3384 (17.9) 1832 (15.4) 1665 (17.3) 43 (4.8) 1689 (17.4)

 Other** 2112 (11.2) 1227 (10.3) 0 (0) 657 (73.5)†† 0 (0)‡‡

Interacting concomitant medications at randomization, n (% of patients taking victim drug)§§

 Atorvastatin DDI‖‖ 1331 (9.9) 886 (10.0) 715 (9.0) 21 (10.8) 792 (9.9)

 Rosuvastatin DDI¶¶ 164 (4.8) 93 (5.1) 80 (4.8) 4 (9.3) 82 (4.9)

CK indicates creatine kinase; DDI, drug-drug interaction; ExWAS, exome-wide association study; GWAS, genome-wide association study; HbA1c, hemoglobin A1c; IQR, 
interquartile range; IU, international units; ODYSSEY OUTCOMES, Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With 
Alirocumab; PGx, pharmacogenomic; and SAMS, statin-related muscle symptoms.

*Included as a covariate in the ExWAS/GWAS regression model for both phenotypes.
†Statistically significant difference (P<0.05) from control group.
‡Statistically significant difference (P<0.05) from ODYSSEY OUTCOMES trial population.
§A total of 18 897 subjects from the ODYSSEY OUTCOMES trial population with CK level drawn at randomization.
‖A total of 11 865 subjects from the PGx subgroup with CK level drawn at randomization.
¶A total of 892 subjects from the baseline statin intolerance or investigator-documented SAMS ExWAS/GWAS case subgroup with CK level drawn at randomization.
#A total of 9713 from the baseline statin intolerance or investigator-documented SAMS ExWAS/GWAS control subgroup with CK level drawn at randomization.
**Includes lower doses of atorvastatin/rosuvastatin, other statins, or no statin.
††Subjects with baseline statin intolerance due to muscle symptoms with or without elevated CK during the run-in (n=657) were not taking high-dose atorvastatin or 

rosuvastatin at randomization. During the run-in, 555 subjects were deemed intolerant to both atorvastatin and rosuvastatin, while 102 subjects had medical history of 
statin intolerance (specific statin medications unknown) before enrollment.

‡‡Subjects not taking high-dose atorvastatin or rosuvastatin at randomization because of a reason other than statin intolerance due to muscle symptoms with or 
without elevated CK were not included in the analysis/control group.

§§Data on atorvastatin or rosuvastatin DDIs presented from treatment period only; victim drug = atorvastatin or rosuvastatin.
‖‖Medications that interact with atorvastatin included but were not limited to: azithromycin, cyclosporine, clarithromycin, diltiazem, fenofibrate, fluconazole, gemfibrozil, and ritonavir.
¶¶Medications that interact with rosuvastatin included but were not limited to: cobicistat, cyclosporine, gemfibrozil, and ritonavir.
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the top exonic region variant associations. A common 
(minor allele frequency [MAF]=0.34) intronic variant in 
TMEM9 (rs6667912) achieved a genome-wide signifi-
cant association with this phenotype (odds ratio [95% 
CI], 1.33 [1.20–1.48]; P=3.71×10−8; Table 2). Sensitivity 
analyses indicate that this association was consistent in 

both alirocumab and placebo treatment groups and irre-
spective of whether SAMS occurred before or following 
randomization. This variant in TMEM9 (rs6667912) was 
also highly significant in the European subgroup analysis 
(odds ratio [95% CI], 1.39 [1.24–1.55]; P=6.01×10−9; 
Figure S2) and was significantly associated with a 

Figure 1. Manhattan and locus plot of baseline statin intolerance or investigator-documented statin-associated muscle 
symptoms (SAMS) during treatment period exome-wide association study (ExWAS)/genome-wide association study (GWAS; 
cases=894; controls=9723).
A, Manhattan plot with the y axis representing−log10 P values derived from logistic regression analysis of 8 921 030 genetic variants. The x 
axis represents chromosome and position (build GRCh38). The top associated locus in TMEM9 (rs6667912, P=3.71×10−8) is labeled. The 
dotted line represents the genome-wide significance cutoff (P<5×10−8). B, Locus plot of top ExWAS/GWAS association rs6667912 (TMEM9) 
with baseline statin intolerance or SAMS during the treatment period. A missense variant in IGFN1 (p.Arg102His) with modest association 
(P=2.49×10−5) was a finding independent from the top association (rs6667912) and is also labeled. Rs6667912 (TMEM9) is located ≈30 
kb 5′ of CACNA1S (locus previously associated with severe SAMS). Several modest associations (P<1×10−3) were also reported in the 
CACNA1S locus. The dotted line represents the genome-wide significance cutoff (P<5×10−8). SNP indicates single-nucleotide polymorphism.
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skeletal muscle splicing quantitative trait loci in TMEM923 
(P=1.1×10−8; Table S2). No other variants reached 
genome-wide significance. Also at this locus, an analysis 
conditioned on the TMEM9 (rs6667912) variant identi-
fied a common (MAF=0.40) missense variant in IGFN1 
(rs4915221, p.Arg102His) which showed a modest‚ 
but independent association (odds ratio [95% CI], 1.24 
[1.12–1.37]; P=2.49×10−5; Table 3) and was in weak 
linkage disequilibrium (LD; r2=0.36) with an intronic 
IGFN1 variant that had an association just below the 
suggestive significance threshold (P=1.03×10−6).

CK Maximum Value During Treatment Period 
ExWAS/GWAS Results
The median (first quartile [Q1]–third quartile [Q3]) 
increase from baseline CK for subjects taking high-
dose atorvastatin or rosuvastatin at randomization 
included for analysis (n=9630) was 87 (45–167) IU/L. 
In this cohort, median (Q1–Q3) CK considering all 
postrandomization measurements was 114 (80–167) 
IU/L, and the median peak postrandomization CK level 
was 188 (127–292) IU/L. Maximum CK levels >4× or 

>10× the upper limit of normal (ULN) occurred in 317 
and 58 patients, respectively.

An ExWAS/GWAS for maximum circulating CK level 
(as a continuous variable) during the trial treatment 
period was conducted in subjects taking high-dose 
atorvastatin or rosuvastatin at randomization (n=9630). 
Figure 2A shows a Manhattan plot of the findings. The 
top associated locus is shown in Figure 2B. Table 4 con-
tains a detailed list of genetic associations that reached 
genome-wide or suggestive significance. Table 5 pro-
vides the top exonic region variant associations. A total 
of 8 variants, all within the LINC00393 region on chro-
mosome 13, reached genome-wide significance when 
tested for association. The top association, rs7993814 
(β [95% CI], 0.08 [0.06–0.12]; P=9.77×10−9; Table 4), 
is a common variant located at position 13:73612794 
(build GRCh38) and falls within the LINC00393 non-
coding RNA in a region between the KLF5 and KLF12 
genes. All top 8 variant associations are in strong LD 
(r2≥0.8). No variants in other loci reached genome-wide 
significance for this phenotype. However, associations 
for several variants in LILRB5 reached suggestive signifi-
cance (Tables 4 and 5). This includes a common missense 

Table 2. Top Associated Loci for the ExWAS/GWAS of Baseline Statin Intolerance or Investigator-Documented SAMS During 
the Treatment Period

Baseline statin intolerance or investigator-documented SAMS during treatment period ExWAS/GWAS results (cases=894; controls=9723)

Chr:Pos:Ref:Alt rsID-risk allele Region Gene* RAF OR (95% CI) P Value

1:201148730:C:G rs6667912-G Intronic TMEM9 0.34 1.33 (1.20–1.48) 3.71×10−8†

20:58072670:C:T rs76443348-T Intergenic C20orf85 0.01 2.55 (1.78–3.66) 3.22×10−7

2:154457782:G:A rs17815112-A Intergenic GALNT13 0.43 0.77 (0.70–0.85) 4.10×10−7

5:68066791:AC:A rs35136807-A Intergenic PIK3R1 0.26 1.54 (1.30–1.81) 4.36×10−7

2:147667570:C:G rs7564037-G Intergenic ACVR2A 0.10 0.57 (0.46–0.71) 5.78×10−7

11:127318262:A:AC rs11399393-AC Intergenic LINC02712/KIRREL3 0.45 1.30 (1.17–1.44) 7.19×10−7

Genome-wide (P<5×10−8) and suggestive (P<1×10−6) associations derived from logistic regression for ExWAS/GWAS of baseline statin intolerance or investigator-
documented SAMS during the treatment period in the ODYSSEY OUTCOMES cohort. Only the top index variant (lowest P value) is shown per LD cluster (r2>0.2). Alt 
indicates alternative allele; Chr, chromosome; ExWAS, exome-wide association study; GWAS, genome-wide association study; LD, linkage disequilibrium; ODYSSEY 
OUTCOMES, Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; OR, odds ratio; Pos, position; RAF, risk allele 
frequency; Ref, reference allele; rsID, reference variant cluster ID; and SAMS, statin-associated muscle symptoms.

*Nearest gene is reported.
†Genome-wide significant P values.

Table 3. Top Associated Exonic Loci for ExWAS of Baseline Statin Intolerance or Investigator-Documented SAMS During the 
Treatment Period

Baseline statin intolerance or investigator-documented SAMS during treatment period ExWAS results (cases=894; controls=9723)

Chr:Pos:Ref:Alt rsID-risk allele Protein change Gene RAF OR (95% CI) P value

15:52251418:G:T rs72734946-T Ser545Tyr MYO5C 0.01 2.17 (1.52–3.08) 1.6×10−5

1:201197255:G:A rs4915221-G Arg102His IGFN1 0.43 1.24 (1.12–1.37) 2.5×10−5

1:248488770:G:C rs199723306-C Ser61Asn OR2T5 0.08 1.41 (1.17–1.69) 2.5×10−4

11:72232917:C:A rs61749195-A Leu632Ile INPPL1 0.01 1.83 (1.33–2.52) 2.1×10−4

4:185458581:T:C rs6827370-C Gln669Arg CCDC110 0.12 0.74 (0.63–0.88) 3.4×10−4

Top 5 exonic region associations were derived from logistic regression for ExWAS of baseline statin intolerance or investigator-documented SAMS during the treat-
ment period in the ODYSSEY OUTCOMES cohort. Only the top index variant (lowest P value) is shown per LD cluster (r2>0.2). Alt indicates alternative allele; Chr, chro-
mosome; ExWAS, exome-wide association study; LD, linkage disequilibrium; ODYSSEY OUTCOMES, Evaluation of Cardiovascular Outcomes After an Acute Coronary 
Syndrome During Treatment With Alirocumab; OR, odds ratio; Pos, position; RAF, risk allele frequency; Ref, reference allele; rsID, reference variant cluster ID; and SAMS, 
statin-associated muscle symptoms.
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variant (rs12975366, p.Asp247Gly; P=8.68×10−8; 
Table 5) which had previously been associated with SAMS 
and CK levels.24–26 A rare (MAF=~0.02) intronic variant 
in KANK4 (rs149062268, P=7.30×10−7; Table 4) also 
showed a suggestive association with this phenotype.

ExWAS/GWAS analysis was also performed for CK 
>4× ULN (cases=317, controls=9313) and CK >10× 
ULN (cases=58, controls=9572) using the same 

methodology as detailed above. No genome-wide or 
suggestive associations of note were identified for either 
phenotype (Figure S3).

Phenotype Intersection Analysis
Among patients who developed SAMS after randomiza-
tion who were eligible for CK analysis (n=219), median 

Figure 2. Manhattan plot and locus plot of maximum creatine kinase (CK) during treatment period exome-wide association 
study (ExWAS)/GWAS (n=9630).
A, Manhattan plot with the y axis representing−log10 P values derived from linear regression analysis of 8 921 030 genetic variants. The x 
axis represents chromosome and position (build GRCh38). The top associated loci in LINC00393 (rs7993814, P=9.77×10−9) and LILRB5 
(rs12986064, P=7.64×10−8; p.Asp247Gly, P=8.68×10−8) are labeled. The dotted line represents the genome-wide significance cutoff 
(P<5×10−8). B, Locus plot of top association (rs7993814, LINC00393) and variants previously associated with CK levels in statin and 
nonstatin users (rs9600129, LINC00393; rs7318906, LINC00393). Both rs9600129 (r2=0.61) and rs7318906 (r2=0.48) are in modest 
linkage disequilibrium (LD) with the top association/reference variant (rs7993814). The top variant (rs7993814) is located ≈80 kb 3′ of 
KLF12. Both rs7993814 and rs9600129 have associated skeletal muscle expression quantitative trait loci (eQTLs) in KLF5 (not pictured, 
located ≈500 kb from top association, rs7993814). The dotted line represents genome-wide significance cutoff (P<5×10−8). SNP indicates 
single-nucleotide polymorphism.
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(Q1–Q3) peak CK was 222 (146–356) IU/L. Addition-
ally, for subjects with peak postrandomization CK in the 
first through the fourth quartiles, 1.5%, 2.3%, 2.5%, and 
3.4% developed SAMS, respectively.

An intersection analysis did not identify any genetic 
associations stronger than P<1×10−4 across the clinical 
(binary SAMS) and biochemical (CK levels) phenotypes. 
Genome-wide and suggestive associations listed in 
Tables 2 and 3 were also investigated and did not show 
any association (P<0.05) with the other phenotype.

Candidate Gene/Variant Analysis
No variants in candidate gene regions previously asso-
ciated with atorvastatin and/or rosuvastatin pharmaco-
kinetics or pharmacodynamics showed genome-wide 
significant associations with either phenotype. No 
genome-wide or suggestive associations were seen 
in the SLCO1B1 locus for either phenotype. Of note, 
no association was observed between p.Val174Ala 
(rs4149056) in SLCO1B1 and baseline statin intol-
erance/investigator-documented SAMS (odds ratio 
[95% CI], 1.03 [0.90–1.18]; P=0.69) or maximum CK 
levels (β [95% CI], 0.003 [−0.04 to 0.04]; P=0.87) for 
this cohort. In addition to variants in LILRB5, some vari-
ants previously associated with CK levels in both statin 
users and nonusers showed genome-wide and sug-
gestive significance (Table S3).

Gene Burden Analysis
One exome-wide significant association (P<1×10−6) was 
identified for a singleton mask (M3) in SOAT1 with the 
baseline statin intolerance or investigator-documented 
SAMS during treatment period phenotype (Table S4). 
Additionally, one candidate gene mask (ABCB1, M2) 
demonstrated a near exome-wide significant association 
(P=3.23×10−5) with the same phenotype. No exome-
wide significant associations were observed with the CK 
maximum value during the treatment period phenotype.

DISCUSSION
This large multi-ancestry ExWAS/GWAS analysis of 
SAMS and CK levels in atorvastatin/rosuvastatin-treated 
patients from the ODYSSEY OUTCOMES trial identi-
fied a novel genome-wide association on chromosome 1 
for an intronic variant in the TMEM9 gene (rs6667912, 
P=3.71×10−8; Table 2, Figure S4) in patients with either 
statin intolerance before randomization or who devel-
oped SAMS while taking high-dose atorvastatin or rosu-
vastatin during the treatment period. This finding was 
even more significant in the European-only subgroup 
analysis (P=6.01×10−9; Figure S2). TMEM9 is expressed 
ubiquitously across most human tissues23 and encodes 
a transmembrane protein involved in vesicular trans-
port through the Wnt/β-catenin pathway.27,28 A recent 

Table 4. Top Associated Loci for ExWAS/GWAS of CK Maximum Value During the Treatment Period

CK maximum value during treatment period ExWAS/GWAS results (n=9630)

Chr:Pos:Ref:Alt rsID-risk allele Region Gene* RAF Per allele β (95% CI) P value

13:73612794:C:T rs7993814-T Intergenic LINC00393/KLF12 0.38 0.08 (0.06 to 0.12) 9.77×10−9†

19:54251270:T:C rs12986064-C Intronic LILRB5 0.47 −0.10 (−0.06 to −0.14) 7.64×10−8

1:62285404:G:A rs149062268-A Intronic KANK4 0.02 −0.23 (−0.14 to −0.32) 7.30×10−7

Genome-wide (P<5×10−8) and suggestive (P<1×10−6) associations derived from linear regression for ExWAS/GWAS of the maximum CK value during the treatment 
period in the ODYSSEY OUTCOMES cohort. Only the top index variant (lowest P value) is shown per LD cluster (r2>0.2). Per-allele β-effect size was reported based on 
RINTed values. Alt indicates alternative allele; Chr, chromosome; CK, creatine kinase; ExWAS, exome-wide association study; GWAS, genome-wide association study; 
LD, linkage disequilibrium; ODYSSEY OUTCOMES, Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; 
Pos, position; RAF, risk allele frequency; Ref, reference allele; RINT, rank-based inverse normalized transformation; rsID, reference SNP cluster ID; and SAMS, statin-
associated muscle symptoms.

*Nearest gene is reported.
†Genome-wide significant P values.

Table 5. Top Associated Exonic Loci for ExWAS of CK Maximum Value During the Treatment Period

CK maximum value during treatment period ExWAS results (n=9630)

Chr:Pos:Ref:Alt rsID-risk allele Protein change Gene RAF Per allele β (95% CI) P value

19:54255498:T:C rs12975366-C Asp247Gly LILRB5 0.42 −0.08 (−0.11 to −0.05) 8.7×10−8

10:84196512:C:A rs12781048-A His53Gln CDHR1 0.04 −0.16 (−0.23 to −0.08) 3.1×10−5

15:40266281:A:G rs3743135-G His215Arg PAK6 0.08 0.10 (0.05 to 0.17) 5.8×10−5

17:66220697:C:T rs8178847-T Arg154His APOH 0.06 0.12 (0.06 to 0.17) 6.8×10−5

19:55391573:G:A rs45448592-A Gly115Glu RPL28 0.06 0.12 (0.06 to 0.18) 1.2×10−4

Top 5 exonic region associations were derived from linear regression for ExWAS of the maximum CK value during the treatment period in the ODYSSEY OUTCOMES 
cohort. Per-allele β-effect size was reported based on RINTed values. Only the top index variant (lowest P value) is shown per LD cluster (r2>0.2). Alt indicates alternative 
allele; Chr, chromosome; CK, creatine kinase; ExWAS, exome-wide association study; LD, linkage disequilibrium; ODYSSEY OUTCOMES, Evaluation of Cardiovascular 
Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; Pos, position; RAF, risk allele frequency; Ref, reference allele; RINT, rank-based inverse 
normalized transformation; and rsID, reference variant cluster ID.
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study demonstrated significant upregulation of Tmem9 
skeletal muscle mRNA in a muscular atrophy mouse 
model, suggesting its potential role in skeletal muscle 
energy conservation.29 Additionally, the TMEM9 locus 
is located near CACNA1S (≈30 kb upstream), a region 
previously associated with severe myopathy in patients 
taking atorvastatin, rosuvastatin, or simvastatin.30 The 
significantly associated CACNA1S missense variants 
previously reported by Isackson et al30 had MAF<0.01 
and were, therefore, not included in the present ExWAS/
GWAS analysis. Thirteen CACNA1S variants from the 
prior study were investigated separately and were not 
associated (P<0.05) with either phenotype. Several 
intronic CACNA1S variants and a single missense vari-
ant (rs12742169, p.Leu458His) showed modest asso-
ciations (P<1.0×10−3) in our data set (Figure 1B and 
Table S3). Interestingly, the p.Leu458His variant was 
not in LD (r2<0.2) with the top CACNA1S intronic vari-
ants, and showed similar association when conditioned 
on these variants, suggesting an independent finding. 
Last, a conditional analysis with the top TMEM9 variant 
(rs6667912) identified intronic and missense variants in 
the nearby IGFN1 gene with associations of P<1×10−5, 
which may suggest another independent SAMS associa-
tion at this locus (Figure 1B). IGFN1 is expressed almost 
exclusively in skeletal muscle23 and encodes immuno-
globulin- and fibronectin-like protein domains. IGFN1  
(Immunoglobulin like and fibronectin type III domain 
containing 1) downregulates protein synthesis during 
muscle denervation,31 suggesting a potential role in mus-
cle wasting. Interestingly, Igfn1 and Tmem9 were both 
significantly downregulated in skeletal muscle following 
treatment with a promyogenic agent (ie, soluble activin 
type IIB receptor)32 and upregulated following treatment 
with an atrophy-inducing agent (ie, activin A).33

CK is an enzyme released into systemic circula-
tion following skeletal muscle or myocardial injury and 
is a commonly used nonspecific biomarker to assess 
SAMS severity. Our ExWAS/GWAS analysis of CK lev-
els in atorvastatin/rosuvastatin-treated patients iden-
tified a significant genome-wide association with a 
variant in the LINC00393 noncoding RNA on chromo-
some 13 (Table 4). Variants in LINC00393 had previ-
ously been reported to be associated with CK levels in 
statin and nonstatin users in Icelandic (rs7318906)25 
and Japanese (rs9600129)34 populations. These vari-
ants are located <10 kb away from the top association 
(rs7993814) identified in our study and are in partial LD 
(rs7318906, r2=0.48; rs9600129, r2=0.61) with this 
variant (Figure 2B). These previously associated variants 
showed modest association (rs7318906, β [95% CI], 
−0.06 [−0.03 to −0.09]; P=2.30×10−4; rs9600129, β 
[95% CI], 0.07 [0.03–0.10]; P=3.30×10−5) in our study 
(Table S3). Notably, rs7993814 (the top finding in our 
study) and rs9600129 (the variant previously associated 
with CK levels in a Japanese population34) both have 

expression quantitative trait loci in KLF5 associated with 
reduced gene expression in skeletal muscle (Table S2).23 
KLF5 is located ≈500 kb from the top association in this 
study (rs7993814) and encodes a zinc-finger transcrip-
tion factor involved in the promotion and suppression of 
cell proliferation; it is ubiquitously expressed in human 
tissues. While no previous association has been reported 
for KLF5 with CK levels or SAMS, Klf5 (kruppel like fac-
tor 5) was shown to be an essential regulator of skel-
etal muscle regeneration and differentiation in mice.35 
However, its mechanistic role in human skeletal muscle 
and CK levels needs further investigation. Additionally, 
validated colocalization data is needed to confirm the link 
between LINC00393 variation and KLF5 expression. We 
also examined several candidate genes reported to be 
associated with CK levels. Variants in LILRB5 have been 
consistently associated with CK levels in statin and non-
statin users.36 A LILRB5 missense variant (p.Asp247Gly), 
previously associated with CK in 2 large European 
ancestry studies25,26 and SAMS independent of CK lev-
els,24 had an association (P=8.68×10−8) with CK levels 
in our analysis that nearly reached genome-wide signifi-
cance (Table 5). However, the top association in LILRB5 
in our study was an intronic variant (rs12986064; 
P=7.64×10−8) that had not been previously associated 
with CK levels (Table 4). This variant (rs12986064) was 
in partial LD (r2=0.61) with p.Asp247Gly.

Of note, some of the strongest genetic associations 
(Tables 2 through 5) were observed to have protective 
effects (ie, associated with decreased risk of SAMS 
or lower maximum CK levels). While the same protec-
tive association with CK levels has been previously 
observed with rs1297536625 in LILRB5, the physi-
ological mechanism has yet to be elucidated despite 
speculation that LILRB5 is involved in systemic CK 
clearance.25,26 Variation in GALNT13, KANK4, ACVR2A, 
CCDC110, and CDHR1 has not been previously asso-
ciated with SAMS or CK levels, and it is unclear how 
these variants might exert their protective effects from 
a mechanistic standpoint.

Other phenotypes during the treatment period, such 
as CK elevation (>4× ULN) in the presence of muscle 
symptoms (ie, clinical myopathy) attributed to statin use 
by study investigator (19 cases) and statin-induced 
rhabdomyolysis (9 cases), were also investigated. Both 
traits were underpowered due to small case sizes and 
not included in this study. Additionally, atorvastatin/
rosuvastatin pharmacokinetic and pharmacodynamic 
candidate genes and previous associations were inves-
tigated, none of which reached genome-wide or sug-
gestive significance (Table S3).

While candidate gene/variant analysis failed to show 
any variants with genome-wide significance, some vari-
ants did show modest associations. An intronic variant 
in CACNA1S (rs12239772, P=8.08×10−5) had mod-
est association with the baseline statin intolerance 
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or investigator-documented SAMS during treatment 
period phenotype (Table S3). The lack of any associa-
tion between p.Val174Ala (rs4149056, SLCO1B1) with 
SAMS or CK levels in our study is consistent with results 
from other atorvastatin/rosuvastatin pharmacogenetic 
studies12–14,37 and suggests that this association is spe-
cific for simvastatin-treated patients.

Genetic burden analysis identified one exome-wide 
association (P<1×10−6) between a singleton mask 
(SOAT1) and the baseline statin intolerance or investi-
gator-documented SAMS during treatment period phe-
notype (Table S4). Interestingly, the protein product of 
SOAT1 (sterol O-acyltransferase 1) acts downstream 
from HMG-CoA reductase (statin pharmacological tar-
get) and is responsible for esterification of intracellular 
cholesterol as a mechanism to store excess cholesterol 
before removal by efflux.38 SOAT1 variation has not 
been previously associated with SAMS, and the potential 
mechanistic role of this association is unclear. We also 
observed a modest association (P=2.81×10−5) between 
a candidate gene mask (ABCB1) and the binary SAMS 
phenotype. ABCB1 encodes the drug efflux transporter 
P-glycoprotein, and a small study (n=98) showed an 
association with a common ABCB1 missense variant and 
atorvastatin-mediated SAMS.39 No exome-wide associa-
tions were observed with the CK maximum value during 
treatment period phenotype.

An inherent limitation of our study is that this clinical 
cohort was primarily assembled to investigate the effi-
cacy and safety of alirocumab, rather than genetic pre-
dictors of SAMS. While ODYSSEY OUTCOMES did not 
exclude statin intolerant patients from study random-
ization, subjects with concomitant disease states (eg, 
uncontrolled hypothyroidism, significant renal or hepatic 
disease) that may increase SAMS risk were excluded, 
resulting in the potential for a healthy-user bias in our 
study population. The study protocol did not mandate 
statin withdrawal and/or rechallenge for muscle symp-
toms as per the standardized definition of SAMS for 
pharmacogenomic studies,40 but rather specified statin 
dose reduction and/or substitution of a nonstatin lipid-
lowering agent. Identification of SAMS cases with con-
comitant CK elevations <4× ULN during the treatment 
period was also restricted, preventing stratification of 
SAMS cases with and without CK elevation, and further 
limited the study’s ability to adhere to phenotype stan-
dardization. This may explain the absence of associa-
tion with SLCO1B1. Another limitation of our study is 
the absence of a control group not treated with a statin. 
Muscle symptoms and mild-to-moderate CK elevations 
are common in the absence of statin treatment, and 
frequently occur in placebo arms of randomized trials 
with statins.41 Recent literature has highlighted uncer-
tainties surrounding associations between statin use 
and muscle symptoms in the absence of extreme CK 
elevation.42,43 Accordingly, some muscle symptoms or 

CK elevations attributed to statin treatment by investiga-
tors may have had another cause (eg, excessive physical 
activity). We are unable to explore whether the genetic 
associations identified in the current analysis also exist 
with muscle symptoms or elevated CK in the absence of 
statin use. Another limitation is that the reported genetic 
findings do not discriminate between statins, since 
many participants categorized as having SAMS before 
randomization were intolerant to both atorvastatin and 
rosuvastatin, and in some cases other statins. A strength 
of this study is that it was multiracial and international, 
including 818 Asian and 323 Black patients in the over-
all pharmacogenomic analysis subgroup. However, the 
proportion of patients of non-European ancestry is still 
too small to confidently generalize these results across 
different ancestry populations. It should also be noted 
that White patients were significantly over-represented 
in the genetic substudy compared with the parent trial 
(Table 1). The results identified here will need to be rep-
licated in other external clinical trial datasets.

The findings from this study demonstrate the com-
plex, multifactorial nature of SAMS and highlight the 
need for more large-scale studies investigating associa-
tions of rarer variants (MAF<0.01) with this drug-related 
adverse event. Results of this study implicate genes 
likely involved in different pharmacodynamic pathways in 
skeletal muscle (eg, calcium signaling [CACNA1S] and 
cell differentiation/proliferation [IGFN1, KLF5, TMEM9]). 
In summary, novel genome-wide associations in TMEM9 
(rs6667912) and LINC00393 (rs7993814) are reported 
and warrant further investigation through validation in 
separate cohorts and in vitro studies to understand their 
potential role in SAMS.
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