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ABSTRACT: As the most basic indexes to evaluate the quality of tobacco, the
contents of routine chemical constituents in tobacco are mainly detected by
continuous-flow analysis at present. However, this method suffers from complex
operation, time consumption, and environmental pollution. Thus, it is necessary to
establish a rapid accurate detection method. Herein, different from the ongoing
research studies that mainly chose near-infrared spectroscopy as the information
source for quantitative analysis of chemical components in tobacco, we proposed for
the first time to use the thermogravimetric (TG) curve to characterize the chemical
composition of tobacco. The quantitative analysis models of six routine chemical
constituents in tobacco, including total sugar, reducing sugar, total nitrogen, total
alkaloids, chlorine, and potassium, were established by the combination of TG curve
and partial least squares algorithm. The accuracy of the model was confirmed by the
value of root mean square error for prediction. The models can be used for the rapid
accurate analysis of compound contents. Moreover, we performed an in-depth analysis of the chemical mechanism revealed by the
result of the quantitative model, namely, the regression coefficient, which reflected the correlation degree between the six chemicals
and different stages of the tobacco thermal decomposition process.

1. INTRODUCTION
As a special lignocellulose biomass, the chemical composition
of tobacco is complex.1,2 In addition to hemicellulose,
cellulose, and lignin, the three structural substances that
constitute the cell wall, there are also large amounts of
extractives.3 Among these extractives, the contents of routine
chemical constituents, including the total sugar, reducing sugar,
total nitrogen, total alkaloid, chlorine, and potassium, are the
most basic indexes to evaluate the quality of tobacco for the
formulation design,4 quality monitoring,5 and classification of
cigarette products.6 At present, the contents of these routine
chemical constituents in tobacco are mainly detected by
continuous-flow analysis. Unfortunately, this method suffers
from complex operation, time consumption, and environ-
mental pollution caused by the consumption of a large amount
of organic reagents in the testing process.7 Therefore,
developing rapid accurate quantitative analysis of routine
chemical constituents in tobacco is necessary for quality
assurance of cigarettes.
With the rise and development of chemometrics methods,

the coupling of chemometrics with spectroscopy which can
characterize the chemical information of sample has been
widely used in quantitative and qualitative analyses of complex
system.8,9 In the quantitative analysis of tobacco chemical
composition, previous studies were mainly focused on the use
of near-infrared (NIR) spectroscopy due to its high efficiency

and nondestructive characteristic.10−12 For example, Wei et al.
found that NIR spectroscopy combined with deep transfer
learning enabled rapid and accurate analysis of moisture,
starch, protein, and soluble sugars in tobacco.10 Zhou et al.
proposed an ensemble partial least squares (PLS) algorithm
based on variable clustering for quantitative analysis of nicotine
in tobacco by NIR spectroscopy.11

Apart from NIR, which directly characterizes the composi-
tion of tobacco through the molecular vibration of tobacco
endogenous substances,13 we propose an indirect method,
thermogravimetric analysis (TGA). TGA is an important
method to characterize the pyrolysis reaction characteristics of
tobacco, reflecting the chemical composition of tobacco from
the perspective of chemical reaction.14,15 The shape of the TG
curve was comprehensively determined by the physical and
chemical properties of tobacco, including substance composi-
tion, complex cross-linking structure between compounds,
microscopic pores of tobacco, and so on.16 Moreover, chemical
quantitative prediction model based on TG curve can reflect
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the correlation degree between the detected chemical indexes
and the thermal decomposition reaction process of different
chemical substances corresponding to different temperature
ranges, so as to reveal the possible synergistic, coupling,
catalytic, and other interaction effects of quantitatively
analyzed chemical substances such as potassium, chlorine,
glucose, and so forth with other compounds in tobacco during
the pyrolysis process. In the process of cigarette smoking,
pyrolysis is the main stage of the generation of nicotine, aroma
components, and other volatile and semi-volatile compounds.
Therefore, the exploration of pyrolysis reaction mechanism can
provide theoretical guidance for cigarette quality evaluation,
tar, and damage reduction but still remains a grand challenge.
The quantitative analysis model of chemical constituents in
tobacco based on the TG curve can reveal pyrolysis reaction
mechanism from the perspective of data analysis, which is
difficult to be achieved by the quantitative analysis model
based on NIR. However, to the best of our knowledge,
quantitative analysis of tobacco chemical substances based on
the TG curve has not yet been reported due to the complexity.
Herein, we proposed for the first time to use the TG curve

to characterize the chemical composition of tobacco and
established the quantitative analysis model of routine chemical
substances. This method is different from the ongoing
researches that mainly chose NIR as the information source
for quantitative analysis of chemical components in tobacco.
By the combination of TG curve and chemometrics, we
established quantitative analysis models of six routine chemical
constituents of total sugar, reducing sugar, total nitrogen, total
alkaloids, chlorine, and potassium in tobacco, with contents of
19.22−34.10, 17.18−30.82, 1.63−2.42, 1.48−3.27, 0.07−1.10,
and 1.36−2.89%, respectively, in the samples used in this work,
as shown in Table S1 in the Supporting Information. Due to
the differences in testing principles, the response mechanism
and intensity of TG curve to chemical information are different
from that of NIR, which may provide a new idea for qualitative
and quantitative analyses of tobacco. In addition, the numerical
results of the quantitative analysis model based on the TG
curve are deeply analyzed to deepen our understanding of the
pyrolysis reaction mechanism revealed by the model.

2. EXPERIMENTAL SECTION
2.1. Materials. 49 single-grade flue-cured tobaccos used in

this work were obtained from the Technology Center of China
Tobacco Zhejiang Industrial Co., Ltd. (Hangzhou, China).
Before usage, the tobacco was ground into powder. The
powder that passed through 40-mesh but was trapped on a 60-
mesh sieve was collected in a sealed valve bag for subsequent
measurements. The size of tobacco particles ranged from 0.250
to 0.425 mm.
In order to understand the chemical composition character-

istics of the special lignocellulosic biomass of tobacco, the
results of the ultimate and proximate analyses, as well as the
content of hemicellulose, cellulose, lignin, and extractives, were
commonly provided for five representative samples, as shown
in Tables S2 and S3 in the Supporting Information. The
proximate analysis of the tobacco samples was determined
according to the People’s Republic of China (PRC) national
standard, GB/T 28731-2012 (GB/T: Chinese abbreviations of
recommended national standards in PRC). The ultimate
analysis was carried out using an elemental analyzer (VARIO
ELIII, Elementar Analysensysteme GmbH, Germany). The
contents of structural carbohydrates and lignin in tobacco were

determined according to a National Renewable Energy
Laboratory procedure.17

2.2. Pyrolysis Experiment. The weight-loss characteristics
of the samples were analyzed in a TG analyzer (Discovery,
TA). In a typical run, 5.5 mg of sample was used. The sample
was heated from room temperature to 373 K at a rate of 10 K/
min, followed by incubation at 373 K for 30 min to remove
free water completely. The sample weight was regarded as
100% after dehydration pretreatment. We heated the sample to
1173 K at a rate of 10 K/min and recorded the weight loss of
the sample during the temperature-programmed process.
During the whole tests, the flow rates of the carrier gas
(high-purity N2) and protective gas (high-purity N2) were set
at 50 mL/min and 30 mL/min, respectively. Each test was
repeated three times under the same conditions.
2.3. Chemical Analysis of Six Routine Constituents of

Tobacco. The contents of total sugar, reducing sugar, total
nitrogen, total alkaloids, chlorine, and potassium in 49 tobacco
powder samples were determined by a continuous flow
analyzer (Alliance-Futura), according to Tobacco Industry
Standards YC/T159-2002, YC/T 161-2002, YC/T 468-2013,
YC/T 217-2007, and YC/T 162-2011, respectively. Specifi-
cally, the detection principle of sugars, including total sugar
and reducing sugar, is that the sugar in tobacco extract reacts
with 4-hydroxybenzoic acid hydrazide, producing a yellow
azoic compound in the alkaline medium at 85 °C. The
maximum absorption wavelength of this compound is 410 nm
and can be detected by a colorimeter. The analysis principle of
total nitrogen is that the organic nitrogen-containing
compounds are digested and decomposed by strong heat
under the action of concentrated sulfuric acid and catalyst. The
nitrogen is converted to ammonia, which was oxidized into
ammonium chloride by sodium hypochlorite and then reacted
with sodium salicylate to produce an indigo dye. The content
of this kind of dye can be determined by the colorimetric
method at 660 nm. The quantitative analysis of total alkaloids
mainly depends on its reaction with sulfanilic acid and
cyanogen chloride. The products obtained can be detected
by a colorimeter at 460 nm. The detection of chlorine is mainly
through the reaction of chlorine in tobacco extract with
mercuric thiocyanate and the release of thiocyanate ion.
Thiocyanate ion reacts with ferric to form a complex
compound that can be determined by the colorimetric method
at 460 nm. The analysis principle of potassium is that during
the combustion of tobacco extract, the peripheral electrons of
potassium absorb energy and transition from the ground state
to the excited state. The electrons are unstable in the excited
state and release energy to return to the ground state. The
released energy can be detected by the photoelectric system.
When the concentration of potassium is in a certain range, its
radiation intensity is proportional to the concentration.
2.4. PLS Modeling. Before modeling, the data set was

randomly divided into a calibration set (39 samples) and a test
set (10 samples). The PLS method was used to build a
calibration model. Fivefold cross validation was performed to
the calibration set to calculate the RMSECV value. An F test
based on the result of cross-validation was used to select the
optimal number of latent variables (LVs). The significance
level was set to 0.25 as previously suggested.18 Prior to building
the PLS model, all data were mean-centered.
2.5. Evaluation. The root mean square error (RMSE) is

used as a measure of model performance. RMSE for calibration
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(RMSEC), RMSE for cross-validation (RMSECV), and RMSE
for prediction (RMSEP) are defined as follows
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where ypred(i) is the predicted value, and yexp(i) is the experimental
value. NC, NCV, and NP are the numbers of calibration, cross-
validated, and test set samples, respectively.
2.6. Computation. Computations were performed in

MATLAB 7.14 (Mathworks, Inc., Natick, MA, USA). All of
the programs were written in-house and run on a personal
computer with a 3.20 GHz Intel Core i5 processor, 8 GB
RAM, and Windows 7 operating system.

3. RESULTS AND DISCUSSION
3.1. Analysis of TG Curves. Figure S1 in the Supporting

Information shows the TG and derivative TG (DTG) curves
of 49 tobacco samples during the thermal decomposition
process. Overall, TG curves of 49 tobaccos were similar in

shape. According to DTG curves, tobacco mainly has two rapid
weight-loss stages at about 470 and 600 K, respectively. For
different tobacco samples, there were few differences in the
temperature corresponding to the two maximum weight-loss
rates, namely, the peak temperature. The difference mainly lies
in the relative weight loss of these two stages, which can be
seen from the ratio of DTG peak area around 470 and 600 K,
as shown in Figure S1. In order to compare the pyrolysis
properties of different tobaccos in detail, we randomly selected
four types of tobacco samples, namely, no. 1, no. 5, no. 21, and
no. 38. We calculated their pyrolysis characteristic temper-
atures, including the extrapolated onset temperature (Tonset),
the endset temperatures (Tendset), and two peak temperatures,
T1 and T2. Tonset and Tendset were determined by a tangent
method.19 As shown in Figure 1, the differences of Tonset
among these four tobaccos were most obvious. Tobacco no. 38
had the lowest T1 at 463.5 K, whereas no. 21 had the lowest T2
and Tendset. Hence, the shape of DTG curve and characteristic
temperatures, especially Tonset, of different tobacco samples
were not identical.
We conducted a general analysis of the correlation between

the contents of six routine chemical constituents and TG
curves of 49 tobaccos. The contents of these constituents were
detected by a continuous flow analyzer. The correlation was
analyzed based on the Pearson correlation coefficient, which is
an index used to measure the degree of linear correlation
between two variables.20,21 In general, the absolute value of
Pearson coefficient ranging from 0.9 to 1.0 represents a strong

Figure 1. TG and DTG curves of tobacco (a) no. 1, (b) no. 5, (c) no. 21, and (d) no. 38.
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linear correlation. The range from 0.7 to 0.9 represents a
strong linear correlation. The range from 0.5 to 0.7 represents
a moderate linear correlation. Absolute values below 0.5
indicate a weak or even negligible correlation between the two
variables.22,23

Figure 2a,b reflects the linear correlation degree between
total sugar, reducing sugar, and TG curve. Total sugar and
reducing sugar were mainly composed of water-soluble
reducing sugars such as glucose and fructose in tobacco. The
contents of these components have a highly linear correlation
with the TG curve at approximately 473 K. Specifically, the
coefficients for total sugar and reducing sugar reached 0.95 and
0.89, respectively. The correlation may be derived from the
Maillard reaction. According to previous studies, the reaction
occurring around 473 K mainly comprises the release of
Maillard products and the volatilization of nicotine during the
thermal decomposition process of tobacco.24,25 The TG curve
represents the remaining mass of the sample after the release of
volatile products. As an important reactant of Maillard
reaction, the higher the content of water-soluble reducing
sugar, the faster the release rate of products, resulting in less
remaining mass of the sample. Therefore, the contents of total
sugar and reducing sugar were negatively correlated with the
TG curve at approximately 473 K.

As shown in Figure 2c, a negative linear correlation between
total nitrogen and TG curve appeared at about 423 K, reaching
0.56. This phenomenon may also be attributed to the Maillard
reaction. As the main components of nitrogenous compounds
in tobacco, amino acids and proteins are also another reactant
of Maillard reaction besides water-soluble sugars.
There was a moderate positive linear correlation (0.60−

0.65) between the chlorine content and TG curve in the
temperature range of 450−530 K (Figure 2e). As such,
chlorine was detrimental to the Maillard reaction. This was
also consistent with previous studies that reported high
chlorine content worsens the sensory quality of cigarettes,
possibly because chlorine inhibits the release of aromatic
components such as Maillard products.26,27

The linear correlation of both total alkaloid and potassium
contents with the TG curve was weak within the whole
temperature range, where the absolute values were lower than
0.5, as shown in Figure 2d,f. In this case, the relationship
between the contents of these two compounds and TG curve
was relatively complex.
For clarity, we briefly summarized the correlation of

chemical constituents and TG curves based on Pearson
correlation coefficients. The contents of total sugar, reducing
sugar, and total nitrogen were negatively correlated with the
TG curve at ∼473, ∼473, and ∼423 K, respectively, which may

Figure 2. Pearson correlation coefficients between TG curves and the contents of six routine chemical constituents of (a) total sugar, (b) reducing
sugar, (c) total nitrogen, (d) total alkaloids, (e) chlorine, and (f) potassium. The contents of these constituents were detected by a continuous flow
analyzer.
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be caused by the Maillard reaction. These three substances
showed different degrees of linear correlation with the TG
curve. Among them, total sugar and reducing sugar were
strongly correlated with the TG curve, while total nitrogen was
moderately correlated with the TG curve. A moderate positive
linear correlation between the chlorine content and TG curve
occurred in the temperature range from 450 to 530 K. The
direct linear correlations of both total alkaloid and potassium
contents with TG curves were rather weak in the whole
temperature range, indicating that the mathematical relation-
ships between these two compounds and TG curves were
relatively complex. It may be necessary to carry out principal
component extraction of TG curve and find the linear
combination of TG values at different temperature points as
a new variable to associate with total alkaloid and potassium
contents, so as to improve the correlation between the TG
curve and these two chemical constituents.
3.2. Establishment of the Calibration Model. From

Section 3.1, it was roughly proven that there was a certain
correlation between TG curves and constituents content. In
order to establish a quantitative analysis model, the specific
mathematical relationship between them was further analyzed.
The detailed procedure to establish the quantitative analysis
models is illustrated in Figure S2 in the Supporting
Information. Specially, the 49 tobacco samples were numbered
from 1 to 49 and randomly divided into 39 calibration samples
and 10 test samples according to the ratio (8:2) of calibration
set to test set.28 PLS algorithm written by MATLAB software
was used to correlate the contents of six routine chemical
constituents in 39 calibration samples with the corresponding
TG curves. The quantitative analysis models of six routine
chemical constituents of tobacco based on the TG curve were
finally established via RMSEC and RMSECV. The TG curves
of 10 samples in the test set were input into the calibration
model to predict the contents of corresponding chemical
constituents and then compared with the measured values
obtained by the continuous flow analyzer. The accuracy of the
model was evaluated and verified by calculating RMSEP.
Table 1 shows the number of LVs, RMSEC, RMSECV, and

RMSEP of the model. The mean values [mean (Y)] of six

routine chemical constituents for 49 tobacco samples are also
listed in Table 1. RMSEP of total sugar, reducing sugar, and
total nitrogen were 0.46, 1.06, and 0.05, respectively, which
were relatively small compared with the corresponding values
of mean (Y), indicating high accuracy of the quantitative
analysis models of total sugar, reducing sugar, and total
nitrogen. RMSEC and RMSEP of total alkaloids were 0.15 and

0.26, respectively, which were relatively high with respect to
mean (Y). Therefore, the prediction of the current model for
the total alkaloid content was less accurate than that for sugar
models. The contents of chlorine and potassium in tobacco
were so low that the comparison of relative deviation was not
meaningful. Here, RMSEP values of 0.12 and 0.20 can
guarantee the accuracy of prediction of these two indicators
in an acceptable range.29 The predicted contents of routine
chemical constituents in calibration and test samples obtained
by the quantitative analysis model were compared with the
actual values, as shown in Figure 3. Therefore, the established
model can be used for accurate quantitative analysis of six
conventional chemical substances including total sugar,
reducing sugar, total nitrogen, total alkaloids, chlorine, and
potassium.
In summary, the quantitative analysis models established by

PLS has a strong ability to predict the contents of total sugar,
reducing sugar, and total nitrogen. Their ability to predict the
content of total alkaloids is relatively weak. It may be necessary
to further increase the number of samples to optimize the
model and improve the accuracy of the quantitative analysis
model for total alkaloids. Based on the established models, the
contents of routine chemical components in any unknown
tobacco could be determined efficiently and quickly via its TG
curve, thus avoiding the tedious operation process and
environmental pollution caused by the conventional chemical
analysis method.
3.3. Analysis of Model Results from the Perspective

of Chemical Reaction Mechanism. We tried to explore the
pyrolysis mechanism of tobacco through the results of the
quantitative model established in Section 3.2. For tobacco
samples, the ordinate value [weight (%)] corresponding to
each abscissa [temperature (K)] of the TG curve represents an
independent variable of the sample, while the chemical content
of the sample is the dependent variable. From a mathematical
point of view, the establishment of the model aims to find a
coefficient corresponding to each independent variable. The
dot product of the coefficient and independent variable is equal
to the dependent variable. This coefficient is named as the
regression coefficient, which can reflect the unique contribu-
tion of each independent variable.30,31

Figure 4 shows the regression coefficients of the quantitative
analysis models of six routine chemical constituents based on
TG curves in the whole pyrolysis temperature range. As shown
in Figure 4a,b, the contents of total sugar and reducing sugar
exhibited a strong negative correlation with the TG curve at
about 473 K, which may be attributed to the Maillard reaction,
also consistent with the conclusion in Figure 2. The correlation
between total nitrogen and TG curve mainly existed before
673 K (Figure 4c). According to previous studies, the
temperature range between 373 and 473 K of TG curve
mainly corresponded to the release of Maillard reaction
products and the volatilization of nicotine. The temperature
range between 523 and 623 K was mainly attributed to the
pyrolysis process of glucose, pectin, hemicellulose, cellulose,
and other saccharides.25,32,33 The results showed that there was
a strong correlation between the content of total nitrogen and
these reactions. The thermal decomposition of nitrogen-
containing compounds in tobacco occurred only when the
temperature was above 673 K.25,34 There was no obviously
strong correlation between total nitrogen and this temperature
range, indicating that the current model mainly applies to the
quantitative analysis of nitrogen-containing compounds

Table 1. Prediction Result of the Calibration Modela

routine chemical
constituents LV

RMSEC
(%)

RMSECV
(%)

RMSEP
(%)

mean (Y)
(%)

total sugar 6 0.40 0.60 0.46 28.92
reducing sugar 6 0.76 1.14 1.06 26.10
total nitrogen 6 0.05 0.06 0.05 1.97
total alkaloids 10 0.15 0.24 0.26 2.27
chlorine 11 0.03 0.06 0.12 0.37
potassium 10 0.05 0.11 0.20 2.02

aLVs: latent variables; RMSEC: root mean square error for
calibration; RMSECV: root mean square error for cross-validation;
RMSEP: root mean square error for prediction; mean: the mean
values of six routine chemical constituents for 49 tobacco samples.
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through Maillard reaction, nicotine volatilization, and the
thermal decomposition process of sugar rather than their own
pyrolysis process.
The positive and negative correlations between total

nitrogen and TG curve were opposite to that of total sugar
in the whole temperature range. TG curve records the relative
percentage content of chemical substance consumed rather
than the absolute mass. The content of total sugar in tobacco
(approximately 30%) was much higher than that of total
nitrogen (less than 2%). The higher the relative content of
sugar, the lower the relative content of total nitrogen.
There was a strong positive correlation between total

alkaloids and TG curve at about 520 K, as shown in Figure 4d.
This phenomenon is out of our expectation because more than
90% of total alkaloids in tobacco were composed of nicotine,
which was mainly volatilized at 473−573 K. Accordingly, the
higher the nicotine release amount, the less the residual mass
corresponding to the TG curve. In other words, the nicotine
content and TG curve should theoretically be negatively
correlated. We hypothesize that this phenomenon is also

affected by the correlation between sugar and TG curve, just
similar to total nitrogen.
Based on regression coefficient, the numerical relationship

between the chlorine content and TG curve was relatively
complex (Figure 4e), although chlorine has a significant
positive linear correlation with TG in the temperature range of
450−530 K from the perspective of Pearson correlation
coefficients as shown in Figure 2e. This may be because the
Maillard reaction and the thermal decomposition of sugars are
in essence a complex multi-step reaction process. The
influential mechanism of chlorine on different elementary
reaction steps occurring at different temperature ranges varies.
Therefore, the response mode and intensity of TG curve to
chlorine content at different temperature points are also
different.
There was a strong negative correlation between the

potassium content and TG curve at about 600 K, as shown
in Figure 4f. This temperature range mainly corresponded to
the pyrolysis process of hemicellulose, pectin, and water-
soluble carbohydrates such as glucose and fructose, indicating
that potassium was conducive to the pyrolysis reaction of these

Figure 3. Correlation between the predicted content obtained by the quantitative analysis models and the actual one detected by continuous flow
analyzer of (a) total sugar, (b) reducing sugar, (c) total nitrogen, (d) total alkaloids, (e) chlorine, and (f) potassium. o represents calibration set
data, * represents test set data.
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substances. This was also consistent with previous studies that
potassium salt has a catalytic promoting effect on the
degradation of oxygen-containing organic functional groups
of carbohydrates in tobacco.35

From the analysis of the regression coefficients, we found
that the quantification of total sugar and reducing sugar mainly
depended on the Maillard reaction in which carbohydrate
compounds participate. The correlation of total nitrogen and
total alkaloids with TG curves in the whole temperature range
was affected by total sugar. Although chlorine is detrimental to
Maillard reaction in general, it has different effects on the
different elementary steps of the Maillard reaction. Potassium
can promote the thermal decomposition of hemicellulose,
pectin, and water-soluble carbohydrates such as glucose. In the
process of cigarette smoking, most of the aroma components
and harmful substances in cigarette smoke are generated
through pyrolysis reaction. Therefore, the study on the
pyrolysis mechanism of tobacco has an important guiding
significance for the design and development of new tobacco
products with less harm. However, due to the complexity of
pyrolysis reaction, the understanding of thermal decomposition
process of tobacco is still limited. The regression coefficient of
the quantitative analysis model established in this study can
reveal the synergistic, coupling, catalytic, and other interaction
effects of different compounds in tobacco during pyrolysis, so
as to shed light on the pyrolysis mechanism.

In conclusion, we achieved quantitative analysis models of
routine chemical constituents of tobacco based on the TG
curve and explained the results of the models from the
perspective of pyrolysis mechanism. However, we have to
realize that this work is only based on a limited number of
tobacco samples, namely, 49. In order to improve the accuracy
of the model and ensure that the regression coefficient of the
model has a higher universality, it is necessary to increase the
number of samples studied and continuously optimize the
model. On the other hand, a series of experimental analysis
methods, such as TG−Fourier transform infrared, TG−mass
spectrometry (MS), and Py-gas chromatography/MS, should
be adopted to track and monitor the thermal decomposition
process of tobacco, so as to deeply explore the pyrolysis
mechanism revealed by the model results, which is also the
focus of our future research.

4. SUMMARY AND CONCLUSIONS
In this work, for the first time, quantitative analysis models of
total sugar, reducing sugar, total nitrogen, total alkaloids,
potassium, and chlorine in tobacco based on the TG curve
were established, realizing the rapid and accurate determi-
nation of the contents of these six routine chemical
constituents. The PLS method was adopted to realize the
establishment of the quantitative analysis model. The accuracy
of the model was confirmed by the value of RMSEP. We

Figure 4. Regression coefficients of the quantitative analysis models of (a) total sugar, (b) reducing sugar, (c) total nitrogen, (d) total alkaloids, (e)
chlorine, and (f) potassium based on TG curves.
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performed an in-depth analysis of the chemical mechanism
revealed by the result of the quantitative model, namely, the
regression coefficient which reflected the correlation degree
between the six chemicals and different stages of tobacco
thermal decomposition process.
We believe that this quantitative analysis model of chemical

constituents in tobacco based on the TG curve can not only be
used for the accurate analysis of compound content but also
provide enlightenment for the study of pyrolysis reaction
mechanism from the perspective of data analysis, which is of
great significance for quality control, tar, and damage reduction
of cigarette. In fact, the quality evaluation of tobacco involves
multiple procedures such as purchasing and processing,
cigarette product design and maintenance, and so forth. How
to comprehensively and rapidly monitor tobacco quality is of
pivotal importance to the tobacco industry. In addition to the
routine chemical composition detection, the quality character-
ization of tobacco has many other dimensions, including
aroma, sensory quality evaluation, and so forth, which were
mainly carried out by artificial suction. However, artificial
suction has the disadvantage of strong subjectivity and is
difficult to be quantified. According to this work, it can be
concluded that TG curves can effectively reflect the character-
istics of different tobaccos. Therefore, it has great potential to
use TG curves to predict and characterize various quality
dimensions of tobacco, including sensory quality. This method
can reduce the manual workload and effectively promote the
transformation of tobacco quality evaluation from experience
to fundamental understandings. Moreover, this work can be
extended to the digital quality detection and control of other
industrial systems such as crops and food. On the other hand,
this method can also be used as a strategy for the study of
chemical reaction mechanism, that is, mathematical analysis
methods can be adopted to reveal the objective laws of
chemical reactions hidden behind large amounts of data.
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