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ABSTRACT

The functional impact of protein mutations is re-
flected on the alteration of conformation and ther-
modynamics of protein–protein interactions (PPIs).
Quantifying the changes of two interacting proteins
upon mutations is commonly carried out by compu-
tational approaches. Hence, extensive research ef-
forts have been put to the extraction of energetic
or structural features on proteins, followed by sta-
tistical learning methods to estimate the effects of
mutations on PPI properties. Nonetheless, such fea-
tures require extensive human labors and expert
knowledge to obtain, and have limited abilities to
reflect point mutations. We present an end-to-end
deep learning framework, MuPIPR (Mutation Effects
in Protein–protein Interaction PRediction Using Con-
textualized Representations), to estimate the effects
of mutations on PPIs. MuPIPR incorporates a contex-
tualized representation mechanism of amino acids
to propagate the effects of a point mutation to sur-
rounding amino acid representations, therefore am-
plifying the subtle change in a long protein sequence.
On top of that, MuPIPR leverages a Siamese residual
recurrent convolutional neural encoder to encode a
wild-type protein pair and its mutation pair. Multi-
layer perceptron regressors are applied to the pro-
tein pair representations to predict the quantifiable
changes of PPI properties upon mutations. Experi-
mental evaluations show that, with only sequence in-
formation, MuPIPR outperforms various state-of-the-
art systems on estimating the changes of binding
affinity for SKEMPI v1, and offers comparable per-
formance on SKEMPI v2. Meanwhile, MuPIPR also

demonstrates state-of-the-art performance on esti-
mating the changes of buried surface areas. The soft-
ware implementation is available at https://github.
com/guangyu-zhou/MuPIPR.

INTRODUCTION

Protein–protein interactions (PPIs) govern a wide range of
biological mechanisms ranging from metabolic and signal-
ing pathways, cellular processes, and immune system (1,2).
Mutations in proteins can affect protein folding and sta-
bility (3–5); consequently, these mutations alter the kinetic
and thermodynamics of PPIs (6,7). Such mutations can ei-
ther be selectively advantageous to the organism through
evolution (8), or be deleterious and causing a disease phe-
notype (9). Understanding the effects of these mutations,
specifically the conformation and thermodynamic changes
of the interacting proteins, is vital to various biomedical ap-
plications, including disease-associated mutation analyses
(10), drug design (11) and therapeutic intervention (12).

The quantitative measures of different aspects of PPIs
are often determined experimentally through biophysical
techniques, including but not limited to, isothermal titra-
tion calorimetry for measuring the binding affinity (13),
and BN-PAGE for the stability of the protein complex (14).
However, these in vivo or in vitro techniques are laborious
and expensive due to the need of purifying each protein. In
addition, estimating the mutation effects requires the phys-
ical presence of both wild-type and mutated proteins, while
the interaction involving a mutated protein is not always
available.

To enable large scale studies of the mutation effects of
PPIs, significant efforts have been made to computation-
ally estimating the changes of PPIs properties upon muta-
tions. One of these estimates, the change of binding affinity
(��G), has been widely investigated. The binding affinity
(�G) measures the strength of the interaction between two
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single biomolecules, and is reported by the equilibrium dis-
sociation constant. Here, the basis of a biomolecule can be
a protein or a sub-unit of a protein. Earlier methods esti-
mating the ��G derive empirical linear functions based on
physical energies (15) or known protein structures (16,17).
Instead of training parameters on existing data, these meth-
ods require a set of pre-determined coefficients for the lin-
ear models. Hence, they suffer from poor generalizability
and lead to low accuracy. With the increasing availability
of large mutation databases, statistical learning algorithms
have been proposed to capture the relations between a vari-
ety of energetic or structural features and the binding affin-
ity of two biomolecules (8,18–20). Nevertheless, features
used in these methods are hand-crafted, requiring extensive
human labors and expert knowledge.

Recently, deep learning methods show the potential of
automatically extracting comprehensive features from pro-
tein sequences, and gain unprecedented success in PPI tasks.
Corresponding methods, including DNN-PPI (21), DPPI
(22) and PIPR (23) employ various neural sequence pair
models to predict PPI information based on protein se-
quences. In the application of predicting the structural
properties of a protein complex, NetSurfp-2.0 (24) employs
a neural sequence model to predict the solvent accessible
surface area (ASA) of a protein. A more pronounced fea-
ture to describe the PPI property is the buried surface area
(BSA), which measures the size of the interface in a protein-
protein complex. Estimating the change of BSA upon muta-
tion provides insight to the potential deleterious mutations
buried inside an interacting protein pair, which is crucial
for understanding diseases (25). However, none of the ex-
isting methods can directly estimate the BSA score, or the
change in BSA upon mutation. BSA is often computed from
the ASA scores of individual proteins and the protein com-
plex (19).

To capture the features of the raw protein sequence from
scratch, neural sequence models require a mechanism to
characterize and represent the amino acids in a protein se-
quence. Such mechanisms deploy fixed representations, e.g.
one-hot vectors (21), physicochemical property-aware en-
coding (23) or static amino acid embeddings (23). However,
these representations face several crucial problems for PPI
property predictions upon mutations. First, these represen-
tation mechanisms fall short of reflecting mutations, inas-
much as point mutations will only lead to subtle differences
in the corresponding amino acid representations of a long
protein sequence. Second, as these mechanisms indepen-
dently characterize each amino acid, they do not consider
the contextual information of surrounding amino acids and
do not highlight those that are critical to PPIs. Moreover,
the aforementioned methods fail to deploy a learning archi-
tecture dedicated to modeling the change between a wide-
type protein pair and its mutant counterparts.

In this paper, we introduce a comprehensive learning
framework, MuPIPR (Mutation Effects in Protein–protein
Interaction PRediction Using Contextualized Representa-
tions), to estimate the changes of quantifiable PPI prop-
erties upon amino acid mutations. MuPIPR incorporates
a contextualized representation learning mechanism of
amino acids, which seeks to sensitively capture mutations.

In particular, MuPIPR pre-trains a multi-layer bidirectional
long short-term memory (LSTM) (26) language model on
a collection of protein sequences, and alters the representa-
tion of each amino acid based on the surrounding context
captured by the language model. The benefits of this repre-
sentation learning mechanism are two-fold: (i) it automat-
ically extracts more refined amino-acid-level features that
are differentiated between different contexts of the proteins;
(ii) it propagates the mutation effects to the representations
of surrounding amino acids, therefore amplifying the sub-
tle signal of each mutation in a long protein sequence. On
top of the contextualized animo acid representations, a deep
neural learning architecture is carefully designed to subse-
quently estimate the quantifiable PPI property changes be-
tween a wild-type pair and a mutant pair of proteins. The
architecture features an end-to-end learning of two stages:
(i) a 4-fold Siamese residual recurrent convolutional neu-
ral network (RCNN) encoder characterizes the two protein
pairs based on their contextualized amino acid representa-
tions, which seeks to seize the differences of their latent fea-
tures; (ii) a main multi-layer perceptron (MLP) regressor is
stacked to the encoder to estimate the property change be-
tween the two protein pairs, with two auxiliary regressors
to enhance the estimation by jointly estimating the individ-
ual PPI properties of each protein pair. In practice, MuPIPR
demonstrates the benefits of alleviating the need of hand-
crafted features, and generalizes well to tasks of estimat-
ing the changes of different PPI properties upon mutations.
The evaluation on the protein binding affinity change esti-
mation task and protein buried surface area change estima-
tion task on three benchmark datasets shows that MuPIPR
significantly outperforms state-of-the-art methods on both
tasks. Detailed ablation study on MuPIPR also provides in-
sightful understanding of the effectiveness of each model
component.

MATERIALS AND METHODS

In this section, we present the detailed design of the pro-
posed framework MuPIPR to address two regression tasks
in PPI. Figure 1 illustrates the architecture of MuPIPR with
three components: (i) a contextualized amino acid represen-
tation mechanism, (ii) a protein sequence level Siamese en-
coder by leveraging the RCNN, (iii) multiple-layer percep-
tron regressors for estimating quantifiable property changes
in PPIs upon mutations.

Preliminary

We represent a protein as a sequence of amino acid residues
S = (r1, r2, ···, rN), where each ri is an amino acid residue.
Let I = {(pw, pm)} be a set of doublets, where each dou-
blet contains a wild-type protein pair pw = (Sw

1 , Sw
2 ) and its

corresponding mutant protein pair pm = (Sm
1 , Sm

2 ). The mu-
tant pair contains at least one mutant of the proteins from
the wild-type pair, such that Sm

· could be the mutant form
of the Sw

· . Our goal is to estimate the change of quantifiable
PPI properties between a wild-type pair and its mutant pair.
Such changes can be that of binding affinity, buried surface
area or other quantifiable properties.
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Figure 1. Architecture of MuPIPR.

Protein sequence encoding with contextualized representa-
tions

Primary sequence is the fundamental information to de-
scribe a protein. Apprehending the sequence information
serves as the basis of estimating the effects caused by protein
mutations. To better characterize the sequence information
and the mutation, MuPIPR adopts two levels of encoding
processes respectively on individual amino acids and on the
sequence.

Contextualized amino acid embedding. Given an amino
acid in a protein sequence, we seek to generate an adaptive
representation according to its surrounding amino acids (re-
ferred as the context). The contextualized amino acid em-
bedding produces a sequence of vector representations for
the amino acid residues, [vS

r1
, vS

r2
, · · · , vS

rn
], where each vec-

tor vS
ri

is the representation of residue ri that is specific to
the context of protein S. The detailed framework of train-
ing the contextualized amino acid embedding (Eco) is shown
in Figure 2A.

Compared to the static representations of the amino acid
such as the one-hot encoding and co-occurrence based em-
beddings (23), the contextualized embedding seeks to in-
corporate the information of neighboring amino acids. In-
spired by the recent success of ELMo (27) for word repre-
sentations under different linguistic contexts, we obtain the
contextualized representations of amino acids by leverag-
ing a pre-trained bidirectional language model (BiLM). The
BiLM is crucial to capturing the context information of a
given amino acid in a sequence.

The forward language model computes the sequence
probability of residue ri given the context (r1, r2, ..., ri − 1):

−→
P (r1, r2, ..., rN) =

N∏
i=2

P(ri |r1, r2, ..., ri−1) (1)

The backward language model computes the sequence
probability in the reverse order. Given the later context,

(ri + 1, ri + 2..., rN), it predicts the previous residue as:

←−
P (r1, r2, ..., rN) =

N−1∏
i=1

P(ri |ri+1, ri+2..., rN) (2)

The language model of each direction is implemented with
M stacked layers of LSTM models (26). The LSTM layers
of both directions output intermediate embedding vectors
(i.e. hidden state vectors)

−→
h i, j or

←−
h i, j based on the con-

text for the forward and backward language models respec-
tively, where j = 1, ...M. These intermediate embedding vec-
tors from different layers represent different levels of con-
textual information. The vectors from higher-level layers
capture the information of more long-term contexts, while
lower-level vectors extract more fine-grained information of
the neighboring amino acids. Specially, the output of the
LSTM’s top layer,

−→
h i,M or

←−
h i,M, is passed through a Soft-

max layer to predict the next or previous residue ri + 1 or
ri − 1.

By combining the above two language models, the objec-
tive of the BiLM is defined as follows:

arg max
−→
θS,

←−
θS

N∑
i=1

[−→
P (ri |r1, · · · , ri−1;

−→
θS) + ←−

P (ri |ri+1, · · · , rN;
←−
θS)

]
, (3)

where
−→
θS and

←−
θS are the learnable parameters of either di-

rection of LSTM.
We pre-train our BiLM on a selected set of raw protein

sequences from the STRING protein database (28), which
is described in detail in the ‘Datasets’ section. Then the pre-
trained BiLM can be applied on each protein sequence of
up to N amino acid residues. For each amino acid ri, the
M-layer BiLM computes a total of 2M + 1 embeddings,
denoted as E(ri ) = {h i, j | j = 0, ..., M}. Here, h i,0 is a train-
able single-layer affine projection (29) on one-hot vectors
of amino acids and h i, j = [

−→
h i, j ;

←−
h i, j ] are the intermediate

results for each layer of the BiLM. Different layers of the
stacked BiLM capture different widths of the neighboring
contexts of the amino acid in the sequence. Therefore, for
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Figure 2. The detailed framework of the two encoders.

each amino acid, we aggregate the representations of differ-
ent BiLM layers to obtain its contextualized representation:
Eco(ri ) = ∑M

j=0 h i, j . Then the encoding for S = (r1, r2, ...,
rN) is produced as a sequence of contextualized amino acid
embedding vectors: Eco(S) = [Eco(r1), Eco(r2), ···, Eco(rN)].

Protein sequence encoding. Upon obtaining the embed-
dings of amino acids for the protein sequence, we employ
a deep 4-fold Siamese architecture of neural network to
capture latent semantic features of the protein sequence
doublets. Following PIPR (23), we choose to build a se-
quence level encoder based on the RCNN, due to its ben-
efits with sequential and multi-granular feature aggregation
for the protein sequence. MuPIPR can be easily adapted to
use other sequence encoding techniques such as convolu-
tional neural network (CNN) (21,22) or self-attentive en-
coders (30,31).

As depicted in Figure 2B, the residual RCNN sequence
encoding process ERCNN starts with an iterative process
of the residual RCNN unit, consisting of two modules: a
convolution module and a recurrent module. The convo-
lution module serves as the initial encoder to extract lo-
cal features from the input, followed by a recurrent mod-
ule. Then the output of the recurrent module is used as
the input of the next convolution module. This iterative
process helps to generate and aggregate features while
maintaining the contextualized features across different
layers.

The convolution module contains a convolution layer
with pooling. Let X be the input sequence of vectors. The
convolution layer (Conv) applies a weight-sharing kernel of
size k to generate a latent vector h i from each k-gram Xi: i + k
of X. By sliding through the whole sequence, the convolu-
tion layer produces a sequence of the latent vectors: H(1) =
[h1, h2, ..., h |X|+1−k]. Then the p-max-pooling applies on ev-
ery p-strides of the sequence (i.e. non-overlapping subse-
quences of length p). We use the max-pooling mechanism
to preserve the most significant features within each stride.

The output of this module is summarized as below:

H(1) = MaxPool(Conv(X)). (4)

The recurrent module consists of the bidirectional gated
recurrent units (BiGRU). Note that the gated recurrent
units (GRU) is an alternative to LSTM without extra pa-
rameters on memory gates. Typically GRU performs bet-
ter than LSTM on small data (32). Consider that there
are much fewer data for protein pairs with mutations than
the raw sequence data for pre-training the BiLM, we use
GRU instead of LSTM in this module. We also add the
residual mechanism, which is designed to improve the
learning of non-linear neural layers (33). Given an input
vector v, the recurrent module with residual is defined
as: ResBiGRU(v) = [

−−−→
GRU(v) + v,

←−−−
GRU(v) + v]. A resid-

ual RCNN unit stacks two modules:

H(2) = ResBiGRU(MaxPool(Conv(X))) (5)

After a chain of residual RCNN units, the output of the
last iteration H(n) = [h (n)

1 , h (n)
2 , ..., h (n)

|H(n)|] is passed through
a final convolution layer with global average pooling (34).
This produces the final sequence embedding:

ERCNN(X) = GlobalAvgPool(Conv(H(n))) = 1
|H(n)|

|H(n)|∑
i=1

h(n)
i (6)

Design and learning objective of MuPIPR

Learning architecture. In order to estimate the changes of
PPI properties upon mutations, our model needs to handle
the inputs of four sequences of a doublet (pw, pm) at a time,
i.e two from a wild-type pair pw and the other two from
a mutant pair pw. Therefore, we deploy a 4-fold Siamese
architecture to capture the mutual interaction between pw
and pm.

Given two protein pairs pw = (Sw
1 , Sw

2 ) and
pm = (Sm

1 , Sm
2 ), where Sw

1 , Sw
2 and Sm

1 , Sm
2 are the wild-
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type proteins and their mutant respectively, the pre-
trained contextualized model is applied to obtain the
amino acid level representations for each sequence:
Eco(Sw

1 ), Eco(Sw
2 ), Eco(Sm

1 ), Eco(Sm
2 ). The amino acid em-

beddings of these four sequences are then served as inputs
to one RCNN encoder, which yields Z1 = ERCNN(Eco(Sw

1 )),
Z2 = ERCNN(Eco(Sw

2 )), Z3 = ERCNN(Eco(Sm
1 )), and

Z4 = ERCNN(Eco(Sm
2 )). The encodings of two proteins

in each pair are then combined by the concatenation
of their element-wise product (�) and their absolute
element-wise differences: Zw = [Z1�Z2; |Z1 − Z2|], and
Zm = [Z3�Z4; |Z3 − Z4|], where Zw and Zm refer to the
final encoding of the wild-type pair and the mutant pair,
respectively. Intuitively, we use the integration technique
defined for Zw and Zm to apprehend the mutual influence
of a pair of protein sequences, as this is a widely used
technique for symmetric pairwise comparison in neural
sequence pair modeling. Afterward, Zc is obtained by the
ordered concatenation of Zw and Zm, i.e., Zc = [Zw; Zm],
as we specify the second pair to be the mutant one.

Primary learning objective. The property change upon
mutation is estimated with an MLP-based regressor. Partic-
ularly, an MLP with leaky ReLU (35) is stacked on Zc, and
outputs a scalar to estimate the PPI property change. The
main learning objective is to minimize the following mean
squared loss:

Lchange = 1
|I|

∑
(pw,pm)∈I

|ŷ(pw,pm) − y(pw,pm)|2, (7)

where I is the set of doublets; ŷ(pw,pm) and y(pw,pm) are the
predicted and the true scores changes, respectively. Both
scores are normalized to [0,1] by using the min–max scal-
ing during the optimization process.

Joint learning with auxiliary regressors. It has been ob-
served in many prior works that jointly learning of multiple
correlated tasks can help improve the performance of each
task (36,37). In addition to predicting the property changes
in PPI by the main MLP regressor, MuPIPR is able to pre-
dict the original measure of the properties for the wild-type
pair and the mutant pair. This is achieved by using two
auxiliary regressors, which is jointly learned to enhance the
estimation of the changes. Similar to Lchange, we use the
mean squared loss for both the wild-type pair and the mu-
tant pair: Lwild = 1

|I|
∑

(pw,pm)∈I |ŷpw − ypw |2, and Lmutant =
1
|I|

∑
(pw,pm)∈I |ŷpm − ypm |2. Then, the learning objective is to

minimize the joint loss Ljoint = Lchange + Lwild + Lmutant.

Implementation details

The BiLM for contextualized amino acid embeddings is im-
plemented as two stacked layers of bidirectional LSTMs,
for which the hidden dimension is set to 32. The protein se-
quence encoder ERCNN consists of 3 RCNN units. The ker-
nel size k of the convolution layer is set to 3 and 3-max-
pooling is adopted. The hidden state of the convolution size
is set to be 50, and the residual RCNN output size is set
to be 100. We also zero-pad short sequences to the longest

sequence length in the dataset, as a widely adopted tech-
nique in bioinformatics (38–40) for efficient training. Both
the main MLP and the auxiliary MLP have 1 hidden layer
with 100 neurons.

We use batched training based on the AMSGrad opti-
mizer (41) to optimize the parameters, for which we fix
the batch size as 32, the learning rate � as 0.005, the lin-
ear and quadratic exponential decay rates as 0.9 and 0.999,
respectively. We also implement 5 simplified variants of
MuPIPR. Specifically,MuPIPR-noAux removes the two aux-
iliary MLP regressors in the estimation stage. MuPIPR-
static uses the same four-sequence residual RCNN en-
coders, but replaces the contextualized amino acid repre-
sentations with the static amino acid embeddings as used in
PIPR (23). MuPIPR-static-noAux removes the two auxiliary
MLP regressors and uses the static embeddings simulta-
neously. MuPIPR-CNN substitutes the residual RCNN en-
coder with convolution layers by removing the residual Bi-
GRUs. At last, MuPIPR-CNN-noAux further removes the
auxiliary regressors. All model variants are trained until
converge for each fold of the cross-validation.

Datasets

We obtain data from three resources for different pur-
poses. Data from the SKEMPI (Structural database of
Kinetics and Energetics of Mutant Protein Interactions)
database (42) are used to conduct the task of binding affin-
ity change estimation. The dataset for the task of BSA
change estimation is constructed from the PDB (protein
data bank) (43). To pre-train the contextualized represen-
tations of amino acids, we collect protein sequences from
the STRING database (28). Details of these datasets are
described below. The processed data are available at our
GitHub repository.

SKEMPI datasets. Two datasets generated from the
SKEMPI database are used for the binding affinity task.
The first one is a benchmark dataset extracted by Xiong
et al. (20). We denote it as SKP1400m. This dataset contains
the changes of binding affinity between wild-type and mu-
tated protein complexes that are experimentally measured.
These mutations include single and multiple amino acid
substitutions on the protein sequences. For duplicated en-
tries of two protein pairs with the same mutations, we take
the average ��G of those reported in SKEMPI.

As a result, this dataset contains 1400 doublets for 113
proteins, among which, 1129 doublets contain single-point
mutations, 195 contain double-points mutations and 76
contain three or more mutations. The second dataset is pro-
vided by Geng et al. (19), which considers only single-point
mutation of dimeric proteins. It contains 1102 doublets for
57 proteins. We denote this dataset as SKP1102s. Of these
1102 doublets, the majority (759 doublets) are new entries
that are not found in SKP1400m.

PDB dataset. We use this dataset for the task of estimat-
ing BSA changes. To construct the wild-type pairs and their
mutant pairs, we extract protein sequences from PDB and
keep those with only two chains. Sequences with <20 amino
acids are removed. Here a wild-type pair or a mutant pair
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Table 1. Corr and RMSE (kcal/mol) of ��G estimation by different methods using the SKP1400m dataset

Nmut All 1 2 ≥3

Methods Corr RMSE Corr RMSE Corr RMSE Corr RMSE

BeAtMusic NA NA 0.272 2.389 NA NA NA NA
mCSM NA NA 0.579 2.019 NA NA NA NA
Mutabind NA NA 0.816 1.675 NA NA NA NA
Dcomplex 0.183 3.068 0.056 2.684 −0.057 4.435 0.015 3.999
FoldX 0.480 2.629 0.470 2.265 0.289 3.487 0.095 4.471
BindProfX 0.690 1.914 0.663 1.854 0.584 2.558 0.840 2.304
MuPIPR 0.883 1.324 0.854 1.299 0.899 1.462 0.898 1.303

refers to the two chains of a protein. We concatenate such
two chains of a protein for pairwise sequence comparisons
and retain those with one amino acid substitution. Note
that given each doublet of protein complexes, we always
regard the complex with a smaller PDB ID in the lexico-
graphical order as the wild-type and the other as the mu-
tant one. This process produces 2948 doublets. To compute
the true value of BSA, we first run DSSP (44) to obtain the
ASA of the proteins based on the 3D structures provided
by PDB. The standard estimation of BSA is calculated by
taking the difference between the sum of ASA for the in-
dividual chains in a protein complex and the ASA of the
protein complex (19).

Contextualized amino acid training corpus. We obtain the
corpus to pre-train the contextualized amino acid encoder
from the STRING database. A total of 66 235 protein se-
quences of four species from the STRING database are ex-
tracted, i.e. Homo sapiens, Bos taurus, Mus musculus and
Escherichia coli. These are the four most frequent species in
the SKP1400m dataset.

RESULTS

To demonstrate the effectiveness of MuPIPR, we conduct
comprehensive experiments on two tasks. These two tasks
estimate the mutation effects on different aspects of the al-
teration of the PPI properties: the change of binding affinity
(ΔΔG) and the change of buried surface area (ΔBSA).

Task 1: binding affinity change estimation

Binding affinity change estimation is a widely attempted
task in previous works (8,15,17,18,20,45). Given a wild-type
protein pair and its mutant pair, the goal is to estimate the
difference of their binding affinities (��G).

Evaluation protocol. Following the convention (8,18), the
performance of binding affinity change estimation is evalu-
ated based on the Pearson’s correlation coefficient (Corr)
and the root mean square error (RMSE), which are two
widely used metrics for regression tasks. To be consistent
with the baseline experiments, we carry out a 5-fold cross-
validation on SKP1400m and a 10-fold cross-validation on
SKP1102s. Note that the configurations of MuPIPR is de-
scribed in Implementation details of the ‘Materials and
Methods’ section, and the study of different hyperparame-
ter values is presented in Hyperparameter study of this sec-
tion.

Baseline methods. We compare MuPIPR with two groups
of baselines for this task: (i) BeAtMusic (17), Dcomplex
(16) and FoldX (15) are empirical linear methods; (ii)
mCSM (8), BindProfX (20) and Mutabind (18) are statis-
tical learning methods leveraging structural and/or energy
features. Note that we cannot run iSEE (19) on SKP1400m,
since the service of generating features used in iSEE is not
provided. Hence, the comparison of iSEE is only conducted
on the SKP1102s dataset used by Geng et al. (19).

Experimental results. The results are reported in Table 1.
For ��G estimation on single-point mutation, empirical
linear methods perform the worst. This shows that the pre-
determined coefficients cannot be generalized well to re-
flect the mutation effects. On the contrary, statistical learn-
ing methods generally perform better. The best-performing
baseline on SKP1400m is Mutabind, which trains a Ran-
dom Forest regressor based on a variety of energetic, struc-
tural and conservation features. MuPIPR outperforms Mu-
tabind by 0.038 in Corr and 0.376 kcal/mol in RMSE. As
for the comparison with iSEE, we achieve Corr of 0.858
and RMSE of 1.236 kcal/mol on SKP1102s, outperform-
ing iSEE which achieves a Corr of 0.80 and an RMSE of
1.41 kcal/mol. This is attributed to the fact that MuPIPR
is able to discover important features reflecting the muta-
tion effects. The average evaluation time ofMuPIPR for each
mutant is around 0.03 seconds on one NVIDIA Tesla V100-
SXM2-16GB GPU.

For cases with multiple mutations, explicit feature-based
learning methods often fall short of modeling more than
one mutation. Therefore, we evaluate the capabilities of
MuPIPR in capturing the effects of different numbers of mu-
tations (Nmut) in Table 1, and compare with baselines that
support multiple mutations. Dcomplex is the only empiri-
cal linear method that can model multiple mutations; how-
ever, it performs poorly in all cases. The estimations un-
der multi-mutation cases are further impaired compared to
single-point mutations. The statistical learning baseline that
supports estimation upon multi-point mutations, i.e. Bind-
ProfX, shows better generalizability and offers better per-
formance. MuPIPR significantly outperforms BindProfX in
all cases with different number of mutations. In particular,
MuPIPR offers a drastic improvement of 0.280 in Corr on
two-mutation cases, and that of 0.058 on cases with more
than two mutations. Hence, MuPIPR can precisely capture
the effects of multi-point mutations, where other systems
typically fall short.

To further demonstrate the contributions of each com-
ponent of MuPIPR, we conduct an ablation study with sim-
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Table 2. Corr and RMSE (kcal/mol) of ��G estimation by different variants of MuPIPR using the SKP1400m dataset

Nmut All 1 2 ≥3

MuPIPR variants Corr RMSE Corr RMSE Corr RMSE Corr RMSE

MuPIPR-static-noAux 0.773 1.832 0.741 1.783 0.794 2.032 0.744 2.001
MuPIPR-static 0.795 1.721 0.754 1.684 0.821 1.946 0.858 1.654
MuPIPR-CNN-noAux 0.819 1.596 0.779 1.559 0.829 1.728 0.797 1.773
MuPIPR-CNN 0.856 1.449 0.822 1.410 0.869 1.663 0.867 1.435
MuPIPR-noAux 0.853 1.462 0.829 1.406 0.848 1.751 0.860 1.473
MuPIPR 0.883 1.324 0.854 1.299 0.899 1.462 0.898 1.303

Table 3. Corr and RMSE (kcal/mol) of ��G estimation on the external
validation sets NM and MDM2-p53

Blind test set NM MDM2-p53

Methods Corr RMSE Corr RMSE

mCSM 0.154 1.828 0.225 0.826
BeAtMuSic 0.242 1.703 −0.226 0.913
FoldX 0.720 1.147 −0.140 0.903
iSEE 0.731 1.367 0.238 0.805
MuPIPR 0.742 1.134 0.434 0.697

plified variants as shown in Table 2. Specifically, MuPIPR-
static replaces the contextualized embedding with static
amino acid embeddings; MuPIPR-CNN substitutes the
residual RCNN encoder by removing the residual BiGRUs
and uses convolution layers only; noAux remarks for re-
moving the two auxiliary MLP regressors from the model.
By adopting contextualized amino acid representations,
MuPIPR and MuPIPR-CNN perform better than MuPIPR-
static in both Corr and RMSE. This is due to the fact that
contextualized representation mechanism can extract more-
refined amino-acid-level features to distinguish among dif-
ferent contexts of the proteins. By propagating the muta-
tion effects to surrounding amino acid representations, the
subtle changes in the protein sequence can be competently
captured. The complete version of MuPIPR outperforms
MuPIPR-CNN with the improvement of 0.027 in Corr and
0.12 kcal/mol in RMSE. This shows that residual RCNN is
superior in leveraging sequential and local significant fea-
tures that are important to predict PPI properties.

To verify the effectiveness of adopting auxiliary regres-
sors, we train the noAux variants to learn ��G with-
out the original binding affinities, �Gw for wild-type and
�Gm for mutant. Table 2 demonstrates that the vari-
ants with auxiliary regressors (MuPIPR-static, MuPIPR-
CNN and MuPIPR) consistently outperform their coun-
terparts (MuPIPR-static-noAux, MuPIPR-CNN-noAux and
MuPIPR-noAux) by 0.022, 0.037 and 0.030 in Corr, respec-
tively. The auxiliary MLP regressors jointly learn the origi-
nal scores, which can effectively guide the learning of ��G
and hence improve the performance. We further evaluate
the performance of the auxiliary MLP regressors in esti-
mating the original binding affinities. Table 5 shows that
while all variants perform comparably well on estimating
the �Gw, MuPIPR-CNN and MuPIPR ameliorate the esti-
mation of �Gm through contextualized amino acid repre-
sentations.

To remove the bias of training and testing of our model
on proteins with high sequence similarity, we evaluate the

performance of MuPIPR by removing homologous proteins
at different sequence similarity thresholds. Specifically, we
use CD-HIT (46,47) to cluster the wild-type protein se-
quences from SKP1102s with 75 and 45% as thresholds.
For each cluster, we select one protein as the representa-
tive and remove the entries of other proteins. Accordingly,
we retain 652 and 637 protein pairs at the thresholds of
75 and 45%, respectively. After conducting 10-fold cross-
validation, MuPIPR achieves a Corr of 0.794 and an RMSE
of 1.340 kcal/mol on the subset with less than 75% se-
quence identity. On the subset with <45% sequence identity,
it achieves a Corr of 0.758 and an RMSE of 1.434 kcal/mol.
By removing the homologous proteins in the data, MuPIPR
still performs reasonably well based on the evaluation met-
rics. This demonstrates MuPIPR is robust in identifying the
important physicochemical changes regarding the changes
of binding affinity.

Blind test evaluations. To show the generalizability of
MuPIPR, we evaluate the performance of different methods
on two external validation sets. The first blind test is pro-
vided by Benedix et al. (48), which contains the mutations
on chain B of the interleukin-4 receptor (PDB ID: 1IAR).
We denote this set as the NM test set. The second blind test
contains the mutations of the MDM2-p53 complex (PDB
ID: 1YCR) provided by Geng et al. (19). These mutations
have been shown important in cancer development (49).

We follow the same experimental settings as Geng
et al. (19) and apply the same data filtering criteria for the
test sets. In addition, we use BLASTp (50) to verify that
these test sets are unknown to the training phase. We search
all the sequences from the test sets against all the wild-
type sequences from SKP1102s and find that the best E-
values are 0.35, 2.1 and 0.15 for the interleukin-4 receptor,
MDM2 and p53, respectively. The BLASTp results indicate
that the sequences of these test sets are significantly differ-
ent from those in the training data.

We compare MuPIPR with four baselines including
mCSM, BeAtMuSic, FoldX and iSEE. The results reported
in Table 3 show that MuPIPR outperforms other methods
on NM by achieving a 0.74 in Corr and a 1.13 kcal/mol
in RMSE. While all baseline methods fall short of predict-
ing ��G on MDM2-p53, MuPIPR drastically outperforms
others on MDM2-p53 with a significantly higher Corr of
0.43 and a lower RMSE of 0.70 kcal/mol. The compara-
tive results of MuPIPR on the NM and MDM2-p53 sets
demonstrate that MuPIPR can generalize better than other
methods to mutations on protein complexes that share low
sequence similarity with the training set.
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Table 4. Corr and RMSE (kcal/mol) of binding affinity estimation by dif-
ferent methods on the SKPv2-487 dataset

Methods Corr RMSE

mCSM 0.25 1.35
iSEE 0.25 1.32
FoldX 0.34 1.53
MuPIPR 0.25 1.36

Table 5. Corr and RMSE (kcal/mol) of binding affinity estimation by dif-
ferent variants of MuPIPR using the SKP1400m dataset

�Gw �Gm

Methods Corr RMSE Corr RMSE

MuPIPR-static 0.978 0.722 0.860 1.775
MuPIPR-CNN 0.964 0.872 0.901 1.520
MuPIPR 0.966 0.872 0.903 1.483

Analysis on SKEMPI v2. SKEMPI v2 is a recently re-
leased dataset (51). It features a more diverse set of pro-
teins that are not seen in SKEMPI v1. We use the same
subset as described in Geng et al. (19) to evaluate MuPIPR,
FoldX, mCSM and iSEE. The subset (SKPv2-487) contains
487 mutations in 56 protein complexes. MuPIPR is trained
on SKEMPI v1 (SKP1102s). Notably, none of the predic-
tors perform well as shown in Table 4. FoldX performs the
best in Corr (0.34) but the worst in RMSE (1.53 kcal/mol).
mCSM, iSEE and MuPIPR all achieve a Corr of 0.25.
Among them, iSEE presents a slightly better RMSE of
1.32 kcal/mol.

Using the SKEMPI v1 as the learning resource to predict
new proteins in SKEMPI v2 is very challenging. MuPIPR
extracts the protein features from scratch on raw sequences,
which inevitably fall short for cases where test data have dis-
tinct distributions on the sequence level. Therefore,MuPIPR
is mostly suitable for estimating the mutation effects when
there is adequate sequence relatedness. To support our as-
sumption, we examine the relationship between RMSE and
sequence similarity. Specifically, we run BLASTp for all
wild-type sequences in SKPv2-487 (test set) against the
SKP1102s dataset (training set) and record the smallest
E-value for each test sequence from the BLASTp results.
Then, We divide the protein pairs in the test set into four
groups based on their E-values and report the RMSE of all
methods as shown in Figure 3. The smaller E-value reflects
a higher sequence similarity between the test and training.
It is a clear trend that with the increasing of the E-value,
the prediction performance drops more significantly. This
demonstrates the importance of adequate sequence related-
ness between the training and test set, and shows an intrinsic
limitation of MuPIPR. Yet, we note that MuPIPR still offers
a close performance to the other methods that employ ex-
perimental features.

Analysis of mutation types. Consider that different types
of point mutations can occur to a protein sequence and yield
different impacts on the protein complex, we provide an
analysis to demonstrate howMuPIPR captures the mutation
effect for specific types of mutations. In particular, we con-
sider the most common point mutation where one amino
acid is mutated to alanine. For simplicity, we regard such

Figure 3. The performance of different predictors on SKEMPI v2 based
upon different thresholds of sequence similarity (by the log E-value) when
compared with the SKEMPI v1 training set. The number of samples in the
four bins are 128, 78, 104 and 177, respectively.

Figure 4. Correlations between predicted and experimental ��G values
for different types of mutated amino acids (i.e. ‘ALA’ and ‘NonALA’) in
the SKP1102s dataset.

a mutation as an ‘ALA’ mutation, and others as a ‘Non-
ALA’ mutation. In Figure 4, we use the scatter plot to show
the correlations between predicted and experimental ��G
values for these two groups in SKP1102s, in which 335 out
of 1102 samples are ALA mutations and 767 are NonALA
mutations. MuPIPR achieves a Corr of 0.61 and an RMSE
of 1.17 kcal/mol for the ALA mutations, and a Corr of 0.89
and an RMSE of 1.24 kcal/mol for the NonALA muta-
tions. We compare our findings to the results reported by
iSEE (19). iSEE attains lower Corrs (0.50 for ALA and
0.84 for NonALA) and higher RMSEs (1.21 kcal/mol for
ALA and 1.48 kcal/mol for NonALA) than MuPIPR. Thus,
MuPIPR is more effective in capturing the effects of alanine
mutations.

We further investigate the ability of MuPIPR on predict-
ing the mutation effects of all 20 amino acids. Figure 5 sum-
marizes the distribution of prediction errors for different
amino acids. These amino acids are regarded as the out-
comes of the mutation. The prediction error is calculated
as the difference between experimental and predicted ��G
values. The boxplots show that MuPIPR consistently main-
tains high-quality predictions with all mutation types.

Overall, MuPIPR performs consistently well on different
mutation types, demonstrating that the predictions from
MuPIPR are not biased toward any specific amino acid.
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Figure 5. Boxplots of prediction errors for different mutant types from the
SKP1400m dataset.

Table 6. Corr and RMSE (102 Å2) of BSA and �BSA estimation by dif-
ferent methods using the PDB dataset

BSAw BSAm �BSA

Method Corr RMSE Corr RMSE Corr RMSE

NetSurfP-2.0 0.670 25.994 0.685 22.731 0.329 3.405
MuPIPR-static 0.978 4.833 0.980 4.681 0.624 2.031
MuPIPR-noAux NA NA NA NA 0.667 2.021
MuPIPR-CNN 0.985 4.079 0.987 3.794 0.673 1.913
MuPIPR 0.986 3.844 0.988 3.616 0.695 1.859

Table 7. Case study of the effects of contextual amino acid embeddings
on two chains of a protein complex, 1B3S A for barnase and 1B3S D for
barstar

L2 distances Ground truth ��G Predictions

Mutation(s) Dstatic DEco ��G MuPIPR-static MuPIPR

D F30Y −0.0027 −0.0073 0.596 −5.534 0.185
A A102H 0.0021 −0.0518 −5.682 −5.032 −6.141
A A102H,
D F30Y

−0.0006 −0.0591 −9.549 −2.082 −8.868

Task 2: Buried surface area change estimation

The second task estimates the change of buried surface area
(�BSA) of two chains of a protein complex upon mutations.

Evaluation protocol. Similar to the first task, the perfor-
mance of BSA change estimation is evaluated with Corr and
RMSE. We also carry out a 5-fold cross-validation on the
PDB dataset.

Baseline method. >To the best of our knowledge, the
state-of-the-art methods only focus on estimating the sol-
vent accessible surface area (ASA), instead of BSA and
�BSA. Among these methods, we choose the best perform-
ing one, NetSurfP-2.0 (24), as our baseline. NetSurfP-2.0 is
a deep learning model, which learns an architecture com-
posed of convolutional and LSTM networks using sequence
information. It estimates the ASA at the residue level for
each protein sequence. The ASA of a chain of protein is
then calculated by summing up the ASA of all residues in
the sequence. The BSA and its change are then calculated
based on the predicted ASA. In addition, we take three vari-
ants of MuPIPR into comparison, including MuPIPR-static,
MuPIPR-noAux and MuPIPR-CNN as described in Task 1.

Experimental results. MuPIPR provides a direct estima-
tion of �BSA, BSAw for wild-type and BSAm for mutant,

Figure 6. Scatter plot to compare the absolute errors by the complete
version of MuPIPR and MuPIPR-static variant. The majority of points
(∼ 80.5%) are below the diagonal line, showing the predictions by the com-
plete model to be generally more accurate.

Figure 7. Mutation effects on structures and BSA. The structures of Chain
A and Chain B of the Human Insulin protein complex are depicted respec-
tively on the left and right of the complex. The mutation is highlighted
on Chain B. The wild-type (2HIU) and mutant (2M2P) complexes are re-
trieved from PDB.

without pre-estimating the ASA. Table 6 shows the estima-
tions on the PDB dataset. All the MuPIPR variants dras-
tically outperform NetSurfP-2.0 on both BSA and �BSA.
The worst-performing variant MuPIPR-static, has already
outperformed NetSurfP-2.0 with more than 1.4-fold of
Corr on both BSAw and BSAm, As for �BSA estimation,
MuPIPR-static almost doubles (1.9-fold) the Corr reported
by NetSurfP-2.0. Similar to what we have observed in Task
1, incorporating both contextualized amino acid represen-
tations and auxiliary regressors leads to the best perfor-
mance. MuPIPR offers a fold change of 2.1 in Corr over
the results of NetSurfP-2.0. This once again indicates the
importance of contextualized representations in highlight-
ing the mutations in sequences, and the benefits of jointly
capturing the original BSA. The average evaluation time of
MuPIPR on �BSA estimations for each mutant is similar as
the ��G task, which is around 0.03 s on one GPU.

Case studies of contextualized amino acid embeddings

We further demonstrate the effectiveness of contextualized
representations in capturing the effect of mutations on both
tasks using specific examples.

Table 7 depicts three different cases of mutations on the
barnase-barstar complex (1B3S): (i) The mutation at posi-
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Figure 8. Performance evaluation on using different hyperparameters on
the SKP1400m dataset for ��G estimation. The Pearson’s correlation co-
efficient (Corr) and the root mean square error (RMSE) are reported in
blue squares (left) and red triangles (right), respectively.

tion 25 of Chain D (Phe to Tyr) leads to a small change of
binding affinity; (ii) The mutation at position 102 of Chain
A (Ala to His) causes a substantial change; (iii) Combining
the mutations of these two brings a significant change in
the binding affinity of this complex. For each case, we also
investigate the L2 differences of sequence pair encodings
between the wild-type pair and the mutant pair. The cor-
responding L2 differences under static and contextualized
amino acid representations are denoted by Dstatic and DEco ,
respectively. Dstatic is consistently small, which indicates the
subtle changes to sequences are inadequately captured. As a
result, its ��G is more erroneously estimated. On the other
hand, the ��G for DEco is estimated more accurately. This
shows the contextualized representations amplify the mu-
tation effects, as reflected by DEco . These observations show
that the contextualized amino acid embeddings better ben-

efit the downstream sequence encoder to capture the subtle
changes of a sequence, such as point mutations, and lead to
a more accurate estimation of binding affinity changes.

For the change of BSA estimation, Figure 7 depicts the
3D structures of two chains of the Human Insulin complex.
Phe at position 25 of Chain B is mutated to His, causing a
significant conformational alteration of the complex. The
BSA therefore changes from −1401Å2 to −1055Å2. The
true �BSA here (−346Å2) is more precisely estimated by
MuPIPR with an absolute error of 1.61 than MuPIPR-static
with an absolute error of 126.95. The static amino acid em-
beddings again fall short of capturing the changes upon mu-
tation and lead to a notably less accurate estimation.

In addition, we provide a comprehensive analysis of all
the samples in the PDB dataset to further demonstrate the
merits of using the contextualized amino acid embeddings
over the static embeddings. Based on the predictions, we cal-
culate the absolute errors for both model variants and use
a scatter plot to compare this metric in Figure 6. The ab-
solute error is calculated as the absolute difference between
experimental and predicted ��BSA values. As we can see,
there are many more points (∼ 80.5%) below the diagonal
line than above (∼ 19.5%), which indicate that most cases
predicted by the complete version of MuPIPR have smaller
errors than those predicted by MuPIPR-static. The errors
of the complete version of MuPIPR are also statistically sig-
nificantly smaller than the errors of MuPIPR-static by the
one-tailed paired Student’s t-test (t-statistic of −5.58 and
P-value < 0.001). This improvement in performance is due
to the contribution of the contextualized amino acid em-
beddings, which help the downstream sequence encoder to
capture the subtle changes of a sequence, therefore leading
to a more accurate estimation of BSA changes.

Hyperparameter study

We conduct the study on the configuration of critical factors
that affects the performance of the amino acid contextual-
ized embeddings: (i) the dimensionality of hidden states for
Eco; (ii) the number of LSTM layers used in Eco; (iii) the di-
mensionality of hidden states for the residual RCNN; (iv)
the number of residual RCNN units. Figure 8 shows the
performances of different settings for these four hyperpa-
rameters based on the change of binding affinity estimation
task using the SKP1400m dataset.

The dimensions of hidden states for Eco are chosen from
{2, 4, 8, 16, 32, 64}. As illustrated in Figure 8A, the per-
formance of MuPIPR gets better as we increase the dimen-
sionality of the hidden states until it reaches 32 and then
the performance slightly drops with dimension of 64. The
number of LSTM layers in Eco is another factor. Different
layers of the stacked LSTM captures different widths of the
neighbouring contexts of the amino acid on the sequence
and we examine the cases with one to four layers. Figure 8B
shows that two layers is the optimum.

Apart from the parameters of Eco, we also exam the hid-
den states and the number of residual RCNN units for
ERCNN. As shown in Figure 8C, the model offers the best
performance when the hidden states of residual RCNN
is 100. As for the residual RCNN unit, it contributes to
the different levels of granularity in feature aggregation
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where more units correspond to more aggregation. Fig-
ure 8D demonstrates that the performances increase with
more residual RCNN units. However, the improvement
from three to five units is marginal because too many resid-
ual RCNN units can lead to over-compressing the features.
Our framework is robust to this setting as long as there are
more than three residual RCNN units.

CONCLUSION

In this paper, we introduce a novel and comprehensive
learning framework to estimate mutation effects on protein-
protein interactions. Our proposed framework, MuPIPR,
incorporates a contextualized representation mechanism of
amino acids, which automatically extracts amino-acid-level
features that are differentiated among different contexts of
the proteins. Therefore this mechanism propagates the mu-
tation effects to surrounding amino acid representations.
By incorporating the contextualized representation mech-
anism to a carefully designed 4-fold Siamese deep learning
architecture, MuPIPR effectively captures the PPI property
changes between a wild-type pair and a mutant pair of pro-
teins. Moreover, auxiliary regressors are provided to further
improve estimation whenever original measures of the PPI
property are available. Extensive experiments conducted on
two different tasks demonstrate the promising performance
of MuPIPR. As a future direction, we plan to explore more
tasks of PPI property changes upon mutations. To further
improve the performance, we seek to incorporate multi-task
learning (36) to augment the learning of tasks that comple-
ment each other.
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