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T cells exhibit heterogeneous functional states, which correlate
with responsiveness to immune checkpoint blockade and prog-
nosis of tumor patients. However, the molecular regulatory
mechanisms underlying the dynamic process of T cell state
transition remain largely unknown. Based on single-cell tran-
scriptome data of T cells in non-small cell lung cancer, we com-
bined cell states and pseudo-times to propose a pipeline to
construct dynamic regulatory networks for dissecting the pro-
cess of T cell dysfunction. Candidate regulators at different
stages were revealed in the process of tumor-infiltrating
T cell dysfunction. Through comparing dynamic networks
across the T cell state transition, we revealed frequent regulato-
ry interaction rewiring and further refined critical regulators
mediating each state transition. Several known regulators
were identified, including TCF7, EOMES, ID2, and TOX.
Notably, one of the critical regulators, TSC22D3, was
frequently identified in the state transitions from the interme-
diate state to the pre-dysfunction and dysfunction state, exert-
ing diverse roles in each state transition by regulatory interac-
tion rewiring. Moreover, higher expression of TSC22D3 was
associated with the clinical outcome of tumor patients. Our
study embedded transcription factors (TFs) within the tempo-
ral dynamic networks, providing a comprehensive view of dy-
namic regulatory mechanisms controlling the process of
T cell state transition.

INTRODUCTION
T cell immune checkpoint blockade (ICB) therapy has revolutionized
cancer treatment to induce durable responses in patients through re-
activating tumor-specific T cell responses.1 However, only a subset of
patients could achieve long-term effective clinical benefit, and our un-
derstanding of the mechanisms underlying response or resistance to
these therapies is still incomplete. Recent studies of single-cell analysis
have provided evidence for heterogeneous compositions of tumor-
infiltrating CD8+ T cells.2–4 The main components of intratumoral
CD8+ T cells comprise “naive-like” cells marked by CCR7, LEF1,
and TCF7, “cytotoxic effector” cells characterized by CX3CR1,
PRF1, and KLRG1,5 and “dysfunction” or “exhaustion” T cells, which
occupy a higher proportion in the tumor.6 Dysfunctional T cells,
which are characterized by the increased co-inhibitory receptors,
such as PD1, LAG3, TIM3, CTLA4, and TIGIT, have limited effector
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function compared with effector CD8+ T cells. Dysfunctional T cells
may be further divided into subgroups, such as pre-dysfunctional,
progenitor exhausted, and terminally exhausted T cells.7 Moreover,
these heterogeneous state compositions exhibit different intrinsic
effector functions and reinvigoration potential,8 indicating the likeli-
hood to form a determining factor in therapy outcome.

Indeed, the composition and relative proportions of different states of
CD8+ T cells in tumors are related to the clinical outcome, such as the
tumor stage,6 response to immune therapy,3 and survival probability
of patients.9 Zheng et al.6 demonstrated increased proportions of
dysfunction CD8+ T cells in hepatocellular carcinoma (HCC) patients
at a late stage than at an early stage. Single-cell profiling of T cells in
breast cancer revealed a tissue-resident memory subset, which ex-
pressed signature genes of dysfunction and was associated with
improved prognosis.10 Importantly, a subset of TCF1-expressing
PD1+ pre-dysfunction T cells were revealed to be critical for tumor
control on single agent anti-PD1 therapy or anti-PD1 and anti-
CTLA4 combination therapy in melanoma.11 In addition, the pre-
dysfunction subset of T cells has also been observed in human non-
small cell lung cancer (NSCLC) and colorectal cancer (CRC), and
their cell proportions were increased in tumors treated with ICB
and might indicate better survival of tumor patients.3,11–13 Given
the distinct functions and relationship to clinical outcome and
response to ICB therapy of different states of T cells, there is an urgent
need to identify regulators that modulate the transition among T cell
states in cancer.

In this study, we proposed a comprehensive analysis of the dynamic
network during the T cell dysfunction process and dissected the
cular Therapy: Nucleic Acids Vol. 26 December 2021 ª 2021 1115
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Figure 1. scRNA-seq revealed a bifurcated trajectory of CD8+ T cells

(A) Pseudo-time analysis of CD8+ T cells using Slingshot algorithm, resulting in two lineages (colored lines) in the trajectory. Cells on the trajectory are labeled with cell states,

revealing a dysfunction lineage (red line) versus effect lineage (blue line). (B and C) Pseudo-time density distribution of each state on the dysfunction lineage (B) and on the

effect lineage (C). (D) Expression levels of co-inhibitory receptors along pseudo-time of the dysfunction lineage. (E) Expression levels of effector molecules along pseudo-time

of the effect lineage. (F and G) Tissues of origin for cells on the dysfunction lineage (F) and on the effect lineage (G). Points shaped by ellipse, triangle, and rectangle denote

(legend continued on next page)
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critical transcription factors (TFs) for each state transition stage. First,
we constructed the development trajectory of CD8+ T cells and iden-
tified dynamic genes differentially expressed along the dysfunction
lineage induced by the tumor environment. Next, we assigned cells
into state transition stages along the trajectory, and then constructed
a dynamic regulatory network for each cell state transition stage.
Then, by comparing the regulatory networks among different stages,
we found high-degree rewiring and dissected diverse rewiring pat-
terns of TFs. Furthermore, critical regulators for each stage were pin-
pointed by using centrality metrics.
RESULTS
Constructing the trajectory of state transition of CD8+ T cells in

the tumor microenvironment

We obtained 3,700 CD8+ T cells from 14 NSCLC patients.13 These
cells were isolated from adjacent normal lung tissues (NTC), tumor
tissues (TTC), or peripheral blood (PTC) (Figure S1A). In the original
study, all T cells underwent unsupervised clustering and were well an-
notated as different states, including naive T cells, intermediate
T cells, effector T cells, two clusters of pre-dysfunction T cells marked
with GZMK and ZNF683, respectively, and dysfunction cells
(Figure S1B).

In order to depict the relationship across CD8+ T cells in different
states, we performed pseudo-time analysis to establish trajectories
across cell states using the Slingshot algorithm.14 The inferred state
transition trajectory contains two lineages, presenting a bifurcated
structure from the naive state to dysfunction and to the effect state,
respectively (Figure 1A). Both lineages started from the naive state
and diverged after the intermediate state. Then, pre-dysfunc-
tion_GZMK and pre-dysfunction_ZNF683 states were sequentially
located in lineage 1 (i.e., dysfunction lineage), which ended with the
dysfunction state (Figure 1B). In contrast, lineage 2 (i.e., effect line-
age) ended directly with the terminal effect state (Figure 1C). The
two lineages were also observed in individual patients, indicating
that the trajectory of T cell state transition was prevailing across
different patients (Figures S2A and S2B).

For each lineage, cells in different states showed different pseudo-time
distributions as expected5 (Figures 1B and 1C), indicating the accu-
racy of the pseudo-time calculation. Moreover, genes that act at the
early and late stages of T cell dysfunction showed pseudo-temporal
kinetics along the dysfunction lineage that were highly consistent
with expectations, with naive state markers (CCR7, SELL, and
IL7R) active early in pseudo-time and co-inhibitory receptors
(PDCD1, CTLA4, TIGIT, LAG3, and HAVCR2) active later (Fig-
ure 1D; Figure S2F), which confirmed the accuracy of the dysfunction
lineage. Likewise, the expression of effector molecules, including
GNLY, PRF1, GZMB, GZMA, and NKG7, increased along the
PTC, NTC, and TTC, which were short for CD8+ T cells from peripheral blood, adjacent n

and state composition (J) of cells from different origins of tissues on the dysfunction lineag

bars represents the number of cells from various tissues in each bin. (I and K) Pseudo-tim

the effect lineage.
pseudo-time of the effect lineage, further confirming the accuracy
of the cell ordering along the effect lineage (Figure 1E; Figure S2G).

Projection of the tissue origin to the state transition trajectory showed
the clear differences of tissue distribution in the two lineages (Figures
1F and 1G). To further clearly dissect the relationship of tissue origin
and trajectory, we evenly split cells into 10 groups according to the
pseudo-time and compared their tissue origin/cell state compositions.
For the dysfunction lineage, peripheral blood-derived naive and inter-
mediate T cells were dominant in the first four groups of cells, then
sharply declined (Figures 1H and 1J). Meanwhile, pre-dysfunction
T cells from the tumor and normal tissues gradually increased. Normal
tissue-derived cells were decreased until cell group 6. In contrast, tu-
mor-infiltrating T cells were further increased and dominant in the
subsequent cell groups. For the effect lineage, blood-derived naive
and intermediate T cells also dominated the start groups, and normal
tissue-derived and tumor-infiltrating effect T cells were gradually
increased along pseudo-time, without obvious bias to any tissue origin
(Figures 1I and 1K). Combining tissue distribution and cell state
composition along the trajectory, these results suggested a tendency
that blood circulating naive T cells are recruited to the tumor, and
persistent antigen stimulation drives intermediate state cells to pre-
dysfunction cells and further differentiate to the dysfunctional state,
which was similar to the CD8+ T cell differentiation model proposed
by Andreatta et al.15 Another lineage differentiated from intermediate
state cells directly to normal effect cells or intratumoral bystander cells.
Characterizing the dynamic genes specific to T cell dysfunction

trajectory

To determine which genes regulated the progression of T cell
dysfunction, we first attempted to identify genes that were differen-
tially expressed along the dysfunction lineage by applying the
tradeSeq algorithm.16 As a result, a total of 1,787 genes were identified
to be dynamically regulated (false discovery rate [FDR] < 0.05; Fig-
ure 2A). In addition to well-known co-inhibitory receptors such as
PDCD1, CTLA4, and HAVCR2, a lot of genes involved in T cell dif-
ferentiation were identified (Figures 2B–2F). For instance, we
observed a continuous increase in effector molecules, such as IFNG,
PRF1, GZMB, and GZMH (Figure 2D), and the tumor necrosis factor
family (Figure 2E), indicating that dysfunction T cells may not have
completely lost their anti-tumor effector potential.17 Furthermore,
genes related to lymphocyte migration were dynamically expressed
along the lineage, including chemokines CXCL13, CCL3, XCL1,
XCL2, CCL4, and CCL5 (Figure 2F).

We next grouped genes with similar expression trends. Three distinct
trends were observed according to the clustering results, with impli-
cations in different biological functions (Figure 2A). Genes in the
cluster 1, which were downregulated early and gradually upregulated
ormal tissues, and tumor tissues, respectively. (H and J) Pseudo-time distribution (H)

e. The lineage is divided evenly into 10 bins according to pseudo-time. The height of

e distribution (I) and state composition (K) of cells from different origins of tissues on
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Figure 2. Dynamic gene analysis on the dysfunction lineage

(A) (Left) Heatmap showing average expression of dynamic genes in 10 bins of cells evenly divided according to pseudo-time. All of the dynamic genes were grouped into

three clusters. (Middle) Expression trends along the dysfunction lineage for all genes in each cluster (gray lines) and for the cluster average (red lines). (Right) Representative

enriched Gene Ontology (GO) terms for each cluster. (B–F) Dynamic changes in the expression of representative genes contained in dynamic genes, including known TFs (B),

co-inhibitory receptors (C), effector molecules (D) tumor necrosis factor family (TNF family) (E), and chemokines (F). (G–I) Dynamic changes in the activities of function entities

for cluster 2 (G), cluster 1 (H), and cluster 3 (I). The top 10 enriched terms for each cluster were displayed.
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late along the pseudo-time, were highly enriched for biological pro-
cesses related to T cell cytotoxicity, including cytokine signaling in
the immune system and interferon signaling (Figure 2A; Figure S3A).
Genes in cluster 2 with early activation and late downregulation along
1118 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
the pseudo-time were involved in ribosome, translational initiation
protein targeting to membrane, and peptide chain elongation (Fig-
ure 2A; Figure S3B). However, the third cluster included many genes
with no obvious consistent dynamic trend and fluctuated randomly
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over time, which played broad roles in lymphocyte activation, leuko-
cyte cell-cell adhesion, and lymphocyte differentiation (Figure 2A;
Figure S3C).

In order to further dissect temporal relationships of biological func-
tions throughout the dysfunction process, we performed a high-reso-
lution functional activity analysis (see Materials and methods).
Signaling pathways related to cell translation were highly active in
the naive stage and rapidly decreased from the intermediate active
stage (Figure 2G), consistent with the recent proposal that immediate
translation accelerated the T cell activation process.18 The decline in
translation-related functions was accompanied by a continuous in-
crease in cytotoxic effect and leukocyte cell migration-related func-
tions. The cytotoxic function continued to be upregulated and
reached the highest activity in the latest dysfunction stage (Figure 2H).
However, the activity of T cell activation and cell migration reached
the peak in the pre-dysfunction stage, and then slightly decreased
in the subsequent stages (Figure 2I). Taken together, gene expression
analysis along the tumor microenvironment-induced dysfunction
lineage revealed the molecular dynamics of the T cell dysfunction
process and depicted the sequential dynamics of biological events.

Constructing dynamic networks along the T cell dysfunction

trajectory

State transition of T cells during the dysfunction process are governed
by TFs and their associated cofactors, which work together to regulate
target expression dynamically. To better understand the molecular
mechanisms that drive the T cell dysfunction, we proposed a pipeline
for dynamic regulatory network construction, with a variable-length
sliding-window approach to split cells (see Materials and methods;
Figure S4). In brief, we binned cells on the dysfunction lineage into
four overlapped windows based on the pseudo-time distribution of
cell states, with each windowmainly composed of cells in two consec-
utive states. For instance, window 1 (W1) was mainly composed of
cells in the naive and intermediate states, and W2 was mainly
composed of cells in the intermediate and pre-dysfunction_GZMK
states (Figure 3A; Figure S5A). Then, gene regulatory networks
(GRNs) were constructed for each window separately to reflect the
regulatory links controlling transition between the corresponding
two states. Overall, 7,117 interactions between 82 regulators and
1,641 targets were inferred in at least one network (Figure 3A), and
the size of each regulon varied from 1 to 229 genes (Figure S5B).
W1, W2, and W3 had similar numbers of nodes and interactions,
Figure 3. Constructing and validating dynamic networks along the dysfunction

(A) (Upper) Pseudo-time densities for cells in different states (naive, intermediate,

consecutive adjacent states were windowed to construct the gene regulatory networ

networks of TFs in each window. For each network, nodes are colored by average expre

of target genes. (Lower) The lollipop plot displays the number of target genes for the top

transition. The pie plot displays the proportions of regulators identified only in the cor

significance was evaluated by a hypergeometric test. (C) The heatmap displays the scale

the network without windowing. The Venn diagram displays the overlap of target gene

genes for top regulators in the two networks were listed, and curated TFs related to T cell

area under the ROC (AUC) depicting the performance on prediction of dysfunction-rela
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while the network of the last window, W4, contained relatively fewer
nodes (1,143) and fewer interactions (1,886) (Figure S5C).

We also applied the dynamic GRN construction pipeline to another
eight single-cell RNA sequencing (scRNA-seq) datasets (Table S1),
involving NSCLC, melanoma, breast cancer, head and neck cancer,
HCC, Merkel cell carcinoma, and squamous cell carcinoma. We
used the SingleR19 method to map cell states across these datasets,
and then applied the variable-length sliding window approach and
GENIE3 to construct dynamic networks for each dataset (Figure S6;
seeMaterials andmethods).We compared the regulators of each state
transition among these datasets. We found that there was significant
overlap between the regulators in the core dataset and those in the in-
dependent datasets, with 85% (from naive to intermediate state), 74%
(from intermediate to pre-dysfunction), and 63% (from pre-dysfunc-
tion to dysfunction) of the regulators having been identified in at least
one additional dataset (Figure 3B, p = 2.10e�06, 2.69e�07, and
5.27e�08, respectively).

To illustrate advantages of using the variable-length sliding window
approach in the dynamic GRN construction pipeline, we imple-
mented the GENIE3 algorithm for all cells in the dysfunction lineage
without windowing cells. We demonstrated that TFs identified
without windowing displayed overlap of target genes with those of
our approach (Figure 3C, left panel), indicating that the GRN con-
structed using all cells (GRN_all) could capture certain information
across the whole lineage. However, GRN_all could be biased toward
large cell subpopulations, with some loss of information from other
cells. Indeed, these TFs mainly capture target genes inW3 (Figure 3C,
left panel), indicating information bias from cells in W3, which had
the largest number of cells. Moreover, we could not distinguish the
actional stages of these TFs based solely on GRN_all. For instance,
we identified 50 targets for TOX in GRN_all, among which 30 target
genes were shared with those identified inW4 (Figure 3C, upper right
panel). TOX is a key transcriptional regulator in the process from the
pre-dysfunctional state to a late dysfunctional state,5 which could not
be determined to play roles in the dysfunctional stage in GRN_all. In
addition, TOX had lower rank in GRN_all than in W4 (Figure 3C,
lower right panel). These results demonstrated advantages and neces-
sity of the variable-length sliding-window approach.

To further estimate the influence of different GRN construction algo-
rithms on the resulting GRNs, we chose the late dysfunction window,
lineage

pre-dysfunction_GZMK, pre-dysfunction_ZNF683, dysfunction). The cells in two

k (GRN), which reflected the transition between the two states. (Middle) The sub-

ssion in the corresponding window. The sizes of nodes were scaled by their numbers

10 regulators. (B) Overlap of regulators identified in different datasets for each state

e dataset (light blue) and identified in at least one independent dataset (blue). The

d Jaccard index estimating overlap of targets for each TF in each window and that in

s of the TOX in network W4 and network without windowing. The number of target

dysfunction were colored red. (D) Receiver operating characteristic (ROC) curve and

ted regulatory factors for six GRN construction algorithms.
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W4, to perform various algorithms for the reason that we could curate
TFs regulating T cell dysfunction from the literature (Table S2). These
algorithms included LEAP,20 PIDC,21 SCENIC,22 SCODE,23 and
SINCERITIES.24 We did not observe performance promotion when
choosing other algorithms (Figure 3D; Figure S7A) than GENIE3,
which was used in this study. Although the SCENIC algorithm also
implemented GENIE3 plus considering motif enrichment, it could
reveal fewer regulators than other algorithms (Figure S7B), poten-
tially resulting in a higher false negative. For instance, the well-known
dysfunction-related regulators ID2 and TOX were totally missed in
the GRN constructed using SCENIC. Thus, we finally chose the
GENIE3 algorithm to construct GRNs.

Next, we extracted candidate regulators with significant differences
of regulon activities between the two consecutive adjacent states in
the window (Figure S7C; Table S3; see Materials and methods).
Many well-known regulators of T cell state transition (Figure S7D)
were detected. For instance, in the early regulatory network of W1,
LEF1, MYC, PRDM1, and TCF7 were among the top differential TFs
in the state transition. Previous studies demonstrated implications
of LEF1, TCF7, and MYC in cell cycle regulation, transcription acti-
vation, and metabolic reprogramming upon antigen encounter,25

confirming their critical roles in early activation of T cells. Taken
together, our computational analysis revealed the temporal dy-
namics of complex regulatory interactions during the dysfunction
of T cells and highlighted the usefulness of our pipeline in charac-
terizing the regulatory mechanisms during the process of state
transition.
Substantial regulatory rewiring controls the state transition

To sophisticatedly characterize dynamics of regulatory interactions
step by step during T cell dysfunction, we systematically compared
the regulatory networks at different transition processes.We observed
substantial overlap of nodes among different networks, with 44.4%
present in all four networks (Figure 4A) and even higher (63.4%)
for TFs (Figure 4B). However, through inspecting the edge overlaps
across the four networks, we found a large number of edges specific
in each window (Figure 4C). Furthermore, we calculated the Jaccard
index (JI) of each TF present in any two networks to measure the
overlap of its regulons. The average JI values between two consecutive
windows (W1_W2,W2_W3,W3_W4) were 0.11, 0.14, and 0.12 (Fig-
ure 4D), respectively, indicating that TFs had substantially recon-
nected to different targets (i.e., “rewiring”) along the T cell trajectory.
PRDM1 was upregulated in the first window and expressed sus-
tainedly in the subsequent states (Figures 3B–3E). However,
PRDM1 regulated specific genes in different windows, and it partici-
pated in window-specific functions. For example, PRDM1 played
roles in interferon-g-related functions in W1, while it participated
in T cell activation and dephosphorylation for W3 and W4, respec-
tively (Figure 4E). Another example was ID2, which was an important
regulator for the formation of terminally differentiated T cells.26 We
showed that ID2 was also rewiring across the four networks and ex-
erted diverse roles (Figure 4F).
T cell exhaustion is manifested by the high expression of co-inhib-
itory molecules. We extracted the subnetworks of co-inhibitory
receptors in each window to investigate their regulatory rewiring
(Figure 4G). The initial event was the activation of TIGIT by
LYAR, KLF6, JUNB, and PRDM1 in the early stage (Figure 4G left
panel), which was expressed significantly higher than other co-
inhibitory receptors (Figures S8A and S8B). Meanwhile, LAG3
was activated by KLF6, SP100, and HOPX (Figure 4G, second
panel), resulting in upregulation in the intermediate state (Figures
S8A and S8C). Subsequently, PDCD1 and HAVCR2 were sequen-
tially activated by PRDM1, IKZF3, STAT1, and ID2 in the networks
of W2 and W3 (Figure 4G, second and third panels; Figure S8A). At
last, CTLA4 was upregulated by TOX and RBPJ in the late dysfunc-
tion stage (Figure 4G, fourth panel; Figure S8A). The dynamic re-
wiring of co-inhibitory receptors showed that they were regulated
by different TFs during the T cell dysfunction process, resulting
in an activation cascade.

Dissecting the dynamic rewiring patterns of TFs

There were a large number of specific edges among the state transition
networks, which was further confirmed by the Spearman correlation
of TF-target pairs in four windows. We observed the highest correla-
tion for regulatory pairs in their corresponding windows as expected
(Figure 5A), and we also noted the gradual changes of the correlation
across the windows. Fluctuations and rewiring of regulatory interac-
tions among the windows during state transitions indicated that TFs
might play dominant regulatory roles in certain stages. In order to
elucidate the dominant regulating stages for each TF, we assigned it
to the windows in which the number of targets of the TF was higher
than the average number in all windows. A total of 11 regulation pat-
terns were obtained, including 4 window-specific and 7 sustained reg-
ulatory patterns (Figures 5B and 5C). For instance, naive state-related
TFs BACH2, LEF1, and MYC27–29 played specific roles in W1, while
dysfunction-related TFs TOX and BATF30 were identified to play
dominant roles in W4. In addition, some TFs played sustained domi-
nant roles in two or three windows. For instance, TCF7 sustained to
play roles in W1 and W2, consistent with its critical role in transition
from naive to pre-dysfunction state.31 SP140, which was related to
T cell dysfunction by regulating co-inhibitory receptors LAG3 and TI-
GIT in viral infection,32 played a regulatory role continuously from
W1 to W3.

In order to explore the synergistic effects of TFs, we estimated regu-
latory similarities between TFs in each window based on the Simpson
index33 and identified two modules for W1 andW2, respectively, and
one module for W3 and W4, respectively (Figures 5D–5G; Figures
S9A and S9B). Strikingly, TFs in the same module tended to have
the same regulation pattern, especially the window-specific pattern.
The module M1 in W1 contained TCF7, LEF1, MYC, SATB1, and
BACH2, all of which played dominant roles in W1, except for
TCF7 (Figure 5D), and this module was involved in eukaryotic trans-
lation elongation (Figure S9C). M2 in W2 contained W2-specific reg-
ulators ZBTB38, EOMES, and ZEB2 (Figure 5E), playing roles in
cell killing and leukocyte activation involved in immune response
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1121
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Figure 4. Large-scale network rewiring during T cell dysfunction

(A and B) Venn diagram showing the overlap of nodes (A) or TFs (B) across the four windows. (C) UpSetR plot showing intersection of network edges across the four windows.

The number of window-specific edges is marked in red. (D) Boxplots showing JI of TFs in any twowindows. Significance of differences across different groups were assessed

with an ANOVA test. (E and F) Regulatory rewiring of transcription factor PRDM1 (E) and ID2 (F). The first four groups of targets represent window-specific targets in W1, W2,

W3, and W4, respectively, and the last group of genes contained targets that were shared by at least two windows. Representative functions of window-specific groups are

shown below the genes. (G) Subnetworks of co-inhibitory receptors (TIGIT, LAG3, PDCD1, HAVCR2, and CTLA4) in each window.

Molecular Therapy: Nucleic Acids
(Figure S9D). M1 in W3 contained W3-specific regulators HOPX,
ZNF683, and ID2, as well as two sustained regulators, which only
regulated a small number of targets (Figure 5F), relating to cytokine
signaling in the immune system and leukocyte activation involved
in the immune response (Figure S9E). M1 in W4 contained TOX,
ETV1, and RBPJ, which played dominant roles in W4 (Figure 5G),
1122 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
which was enriched in lymphocyte activation and T cell co-stimula-
tion (Figure S9F).

Critical regulators contribute to T cell dysfunction

In order to further measure the importance of diverse TFs in the state
transition networks, we established an integrated centrality metric by
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Figure 5. Dynamic regulatory pattern of transcription factors

(A) Median Spearman correlation of TF-target pairs within each window calculated in the four windows respectively. The whiskers denoted the 25th percentile and 75th

percentile values. The significance was evaluated by ANOVA test. (B) Heatmap showing numbers of targets for each dynamic TF normalized by its maximum number of

targets. (C) Sankey diagram showing the relationship between networksW1–W4 and 11 regulatory patterns of TFs. TFs corresponding to each regulatory pattern are listed in

the right table. (D–G) TFmodules identified based on the Simpson index for each window. (Left) Heatmaps showing the Simpson index for TF pairs. (Right) Subnetworks of the

corresponding TF modules with nodes colored by expression levels.
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Figure 6. Critical regulators of the four networks during T cell dysfunction

(A–D) Ranks for TFs in the four networks based on the integrated centrality measure. For each network, the top 10 TFs are labeled and colored by their regulatory patterns.

The arrowmarks the critical TF TSC22D3 present inW2,W3, andW4. (E) Venn diagram denoting overlap of targets of TSC22D3 inW2,W3, andW4. (F) EnrichedGO terms of

TSC22D3-regulated genes in each window. The color showing the �log10 transformed p values of enrichment significance. (G) Violin plots showing expression levels of

TSC22D3 in each cell state. Only cells with expression greater than 5 were used for visualization. (H–J) Boxplots displaying expression levels of TSC22D3 in pre-dysfunction

and dysfunction states for hepatocellular carcinoma (H), melanoma (I), and colorectal cancer (J). The significance was evaluated by Wilcoxon test. Similarly, cells with low

expression were not included for visualization, with a threshold of 5 for Smart-Seq2 datasets (GEO: GSE98638 and GSE108989) and 0.1 for the MARS-seq2 dataset (GEO:

GSE123139). (K and L) Kaplan-Meier survival curves showing significant differences of survival probabilities for patient stratification based on TSC22D3 expression in GEO:

GSE30219 (K) and GEO: GSE50081 (L).
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combining degree, closeness, betweenness, eigenvalue, and PageRank
(see Materials and methods). The top 10 TFs with the highest central-
ity metrics in the four state transition networks are displayed in Fig-
ures 6A–6D. The set of critical regulators included some well-known
regulators of mediating T cell state transition, including TCF7,31

EOMES,34 ID2,26 and TOX.35 Notably, TSC22D3 constantly played
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regulatory roles in W2, W3, and W4 (Figure 5C), and it was among
the most important regulators in all three windows (Figures 6B–
6D). Although TSC22D3 regulated different targets in different win-
dows (Figure 6E), it could regulate some biological functions
constantly over time, such as T cell activation and cell-cell adhesion
(Figure 6F). Ayroldi et al.36 had reported that induction of
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TSC22D3 expression could contribute to the modulation of T cell
activation and apoptosis. Nonetheless, we also observed window-spe-
cific functions for TSC22D3. For instance, it could regulate the cellular
response to biotic stimulus specifically in W2, while regulating T cell
proliferation specifically in W3 (Figure 6F).

Along the state transition timeline, we found that TSC22D3 showed
gradually increased and then decreased expression, with highest
expression in the pre-dysfunction state (Figure 6G). We further inves-
tigated the expression ofTSC22D3 in another three scRNA-seq datasets
of CRC,17, HCC,6 and melanoma37 and observed consistently signifi-
cantly higher expression in the pre-dysfunction state than in the
dysfunction state (Figures 6H and 6I), indicating its critical roles in
pre-dysfunction of T cells. Previous studies reported that a higher pro-
portion of pre-dysfunction state T cells was of benefit to patient sur-
vival.8,11 Here, we attempted to explore whether the expression of
TSC22D3, a potential critical regulator of pre-dysfunction T cell state,
was sufficient to predict prognosis ofNSCLC patients. Based on two co-
horts of NSCLC patients in GEO: GSE30219 and GSE50081, we found
that higher expression of TSC22D3 was significantly associated with
overall survival (Figures 6K and 6L). These results suggested that
TSC22D3 could act as a critical regulator of T cell pre-dysfunction
and was associated with clinical outcome of NSCLC patients.

DISCUSSION
In this study, we combined trajectory inference with GRN construc-
tion based on single-cell transcriptomics to map the gene regulatory
landscape of the cell state transition during the T cell dysfunction pro-
cess. Through constructing the T cell state transition trajectory, we
detected a high degree of transcriptional heterogeneity and expression
dynamics specific in the lineage induced by the tumor microenviron-
ment. Dynamic network analysis revealed candidate regulators and
substantial network rewiring that control the state transition. We
further optimized critical genes in each state transition and demon-
strated that TSC22D3, with high centrality in multiple networks,
was highly expressed in the pre-dysfunction state and correlated
with the clinical outcome of tumor patients.

Under different cellular contexts, TFs may perform dramatic differ-
ential functions by changing their targets.38 The rewiring of regulato-
ry interactions has been found to be a hallmark in state transition, and
the altered regulatory programs generated by network rewiring have
been reported to have strong phenotypic impacts.39 Along the T cell
dysfunction process, we also observed substantial regulatory rewiring
and revealed the altered regulatory programs. For instance, EOMES
(Figure S5D) and PRDM1 (Figure 4E), which have been reported to
modulate different targets with important context-specific function
in acute and chronic infection,40 showed substantial rewiring across
different T cell states.We also observed distinct functions for different
targets of rewired TFs in specific states, suggesting the importance of
network rewiring for controlling state transition. Importantly, our
study dissected the rewiring of co-inhibitory receptors and depicted
their activation cascade, which may facilitate the future identification
of stage-specific targets in immunotherapy.8
Our analysis allowed a broad, unbiased investigation into dynamics
regulatory mechanisms along the T cell dysfunction process in tu-
mors. For example, consistent with published works,41 we identified
TOX and BATF as critical regulators of the transition from the pre-
dysfunction state to the dysfunction state. Our data identified RBPJ
as a new potential regulator of CD8+ dysfunction cells, as RBPJ is up-
regulated after T cell activation, particularly at the peak of dysfunc-
tion, and RBPJ was synergistically targeting co-inhibitory receptors
HAVCR2 and CTLA4 with TOX in the late stage of T cell dysfunction
(Figure 4G). Moreover, another potential regulator, TSC22D3, was
sustained to exert diverse functions after the pre-dysfunction state
until the dysfunction state. TSC22D3 participated in the cell response
to corticosteroid and glucocorticoid stimuli, consistent with a previ-
ous study,42 which demonstrated that endogenous glucocorticoid
signaling can shape T cell differentiation from the naive to dysfunc-
tion state, suggesting that a regulatory cascade from glucocorticoid
stimulation to the dysfunction state was mediated by TSC22D3. Sur-
vival analysis of TSC22D3 demonstrated its prognostic significance in
NSCLC patients. Although we noticed wide expression of TSC22D3
in various immune cell types using the TISCH web resource43 (Fig-
ure S10A), we have normalized the expression levels of TSC22D3
by the geometric mean of CD3 gene expression levels (CD3D,
CD3E, and CD3G) to only consider the relative expression of
TSC22D3 in T cells in tumor samples. We also noticed the expression
of TSC22D3 in CD4+ T cells, which could potentially confound the
results. However, if the expression levels of TSC22D3 in T cells
were positively correlated with those in CD8+ T cells/pre-dysfunction
T cells, the expression level of TSC22D3 in the total T cells would be
proportional to those in CD8+ T cells/pre-dysfunction T cells. Indeed,
we observed a strong positive correlation between TSC22D3 expres-
sion levels in the total T cells and in CD8+ T cells/pre-dysfunction
T cells (Figure S10B). Thus, the prognostic relationship of the relative
expression of TSC22D3 in T cells could reflect the clinical impact of
its expression in CD8+ T cells/pre-dysfunction T cells. In addition,
ID2, ZNF683,HOPX, and IRF9were among themost significantly up-
regulated TFs of network W3 (Figure 3A; Figures S7C and S7D). The
dynamic expression of these TFs indicated that cells gradually acquire
a long-term cytotoxicity and memory phenotype in the dysfunction
process of transition,26,44–46 allowing pre-dysfunctional T cells to
play sustained effector roles in tumors. Taken together, we think
that this strategy for identifying potential regulators of cell trajectory
holds promise and will facilitate the elucidation of complex transcrip-
tional networks that control the differentiation of dysfunction T cells
at various stages.

MATERIALS AND METHODS
Data collection and processing

We downloaded the scRNA-seq data of 14 patients from the GEO
database under GEO: GSE99254.13We extracted the count expression
profile of CD8+ T cells except mucosal-associated invariant T (MAIT)
cells, which had distinct T cell receptors (TCRs) and development
processes relative to other CD8+ cells.13 After removing genes with
a mean count less than 1, count normalization was performed by first
dividing counts by the total counts in each cell, followed by
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1125
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multiplication with the median of the total counts across cells. Then,
we performed log transformation for the expression profile. Finally,
we retained a total of 12,306 protein-coding genes and 3,700 CD8+

T cells with well-annotated cell states, including 303 naive cells
(CD8_C1-LEF1), 206 intermediate cells (CD8_C2-CD28), 1,192
effector T cells (CD8_C3-CX3CR1), 674 GZMKmarked pre-dysfunc-
tion cells (CD8_C4-GZMK), 832 ZNF683 marked pre-dysfunction
cells (CD8_C5-ZNF683), and 439 dysfunction cells (CD8_C6-
LAYN).

CD8+ T cell state transition trajectory inference

To infer CD8+ T cell developmental trajectories, we used the Slingshot
algorithm.14 Slingshot is a fast and robust method for branching tra-
jectories inference, and it was shown to be among the top-perfor-
mance methods in a recent benchmarking study.47 In short, Slingshot
uses pre-exiting clusters to infer lineage hierarchies based on a min-
imal spanning tree, and align cells on a pseudo-time trajectory. Spe-
cifically, we first downloaded the cluster-specific signature genes13

and performed principal-component analysis (PCA) on all cells to
keep the major biological variation among states. Then, we ran Sling-
shot on the top three principal components, with the naive state as the
starting cluster. Using the Slingshot pipeline, we obtained the pseudo-
time values and assigned branches of cells (Figure S2E). In addition,
we performed the same processing flow of trajectory inference for
each patient. After trajectory inference, we obtained three branches
with branch 1 consisting of almost all pre-dysfunction and dysfunc-
tion T cells, branch 2 enriched with effector T cells, and branch
“1,2” composed of naive and intermediate T cells (Figures S2F and
S2G). In order to ensure the accuracy of the trajectory, we removed
the ambiguous cells that did not belong to the enriched states from
the corresponding branches.

Identification of dynamic genes along the trajectory of the state

transition

We used tradeSeq16 version 1.2.1 to identify genes dynamically ex-
pressed along the trajectories of T cell dysfunction induced by the tu-
mor environment. The differential analysis was restricted to genes
with high quality, which passed three filtering criteria, that is, (1)
average expression greater than 0.5, (2) ratio of expressed cells greater
than 0.05, and (3) detected in more than 100 cells. For each gene, we
fit a general additive model (GAM) with parameter K (number of
knots) of six to model the relationships between gene expression
and pseudo-time and tested for the significance of their associations
using the associationTest function. We picked out the significant
genes with FDR-corrected p values <0.05 as dynamic genes. Function
enrichment analyses of dynamic genes were performed using
Metascape.48

Functional activity analysis of gene sets along pseudo-time

We first determined the on/off binary state for each gene throughout
pseudo-time using an hidden Markov model (HMM) approach as
previously described.49 In brief, we divided pseudo-time into 40
bins and averaged the expression level of each gene within each
bin. We assigned the averaged expression values to observed variables
1126 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
for HMM and extracted the most possible emission probabilities and
transition probabilities using a Baum-Welch algorithm. Then, the Vi-
terbi algorithm was applied to predict the on/off binary state for each
gene. For each functional gene set, we averaged the binary states of all
expressed genes within it in each bin, which were further normalized
to represent the proportion of turned-on genes. Finally, the propor-
tions of turned-on genes along pseudo-time were used to estimate ac-
tivity transition of functional gene sets.

Construction of dynamic regulatory network for state transition

A number of computational methods have been developed to predict
GRNs from single-cell gene expression data,50,51 but most of them
ignore the time sequence of cells. In addition, the distribution of cells
along the trajectory is not uniform, which makes the regulatory
network biased toward cells in the high-density areas of pseudo-
time. To avoid these biases, we combined the cell states and
pseudo-times to re-divide the cells with a variable-length sliding-win-
dow approach and constructed regulatory networks across state tran-
sition stages. First, based on the pseudo-time density of cells in
different states, we calculated the intersection of the density curves be-
tween two adjacent states, which was used as the boundary to split
cells into multiple pseudo-time intervals. Then, every two consecutive
intervals were regarded as a window. Therefore, cells on the dysfunc-
tion lineage were divided into 4 windows to represent different state
transition stages. Each window is mainly composed of cells in two
consecutive states. Then, we constructed a GRN for each window
separately.

We first filtered genes in each window to remove genes that are ex-
pressed either at very low levels (average expression less than 1) or
in too few cells (the number of detected cells less than 10 and the pro-
portion of detected cells less than 0.05). Then, unsupervised GRNs
were constructed using GENIE3,52 which was the top-performance
method in the DREAM4 and DREAM5 GRN reconstruction chal-
lenges. GENIE3 takes advantage of the random forest (RF) machine
learning algorithm, can deal with combinatorial and non-linear inter-
actions, and is suitable for single-cell data.50 Briefly, it trains random
forest models to predict the expression variance of each target gene
and uses as input the expression of the TFs. Each model was then
used to derive weights for the TFs. We extract weights higher than
a pre-defined threshold, which was determined as the mean of all
weights plus twice the standard deviation, as the high-confident reg-
ulatory links. Then, the rankings of all target models were aggregated
to get a global ranking of all regulatory links. The links with weights
greater than 0.02 were used to construct the GRN. Furthermore, we
split the targets into positive- and negative-correlated targets (accord-
ing to the Spearman correlations) to separate likely activated and
repressed targets. Finally, only activated links were kept for the
following step. The code of the pipeline is available at https://
github.com/MinYan19940/DynamicGRNPipe.

Constructing networks for independent datasets

We downloaded eight datasets from GEO and ArrayExpress data-
bases, involving seven cancer types. For GEO: GSE120575,

https://github.com/MinYan19940/DynamicGRNPipe
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ArrayExpress: E-MTAB-6149, and GEO:GSE123813, we extracted
CD8+ T cells based on the original cell annotation. For GEO:
GSE110868, GSE140228, GSE118056, GSE103322, and GSE127471,
we extracted CD8+ T cells based on the expression of T cell markers.
After quality control, we obtained 53,842 CD8+ T cells in total (Table
S1). To obtain consistent cell states, we used a unified pipeline to
annotate cells and construct the state transition trajectory. First, the
Seurat R package was used to identify major cell clusters. The top
2,000 highly variable genes were generated and used to perform
PCA. The first five principal components (PCs) were used for
graph-based clustering (with parameter res = 0.3) to identify different
clusters. Second, the SingleR R package was employed to map the
clusters to the six cell states used in this study. In brief, we calculated
the average expression of genes in each cluster. Then, taking the
average expression profile of cell clusters as input, we used the core
dataset (GEO: GSE99254) as the reference to map the clusters to a
known cell state using SingleR (Figure S6A). Next, based on the map-
ped states of cells, we applied the Slingshot algorithm to construct the
state transition trajectory and calculate the pseudo-time of cells (Fig-
ure S6B). Since the pre-dysfunction_GZMK state is missing in the
ArrayExpress: E-MTAB-6149 and GEO: GSE110686 data and the
pre-dysfunction_ZNF683 state is missing in the GEO: GSE103322
data, the pre-dysfunction_GZMK and pre-dysfunction_ZNF683 are
not distinguished when constructing the regulatory network from
pre-dysfunction to dysfunction or the intermediate to pre-dysfunc-
tion state. Finally, we used the cell states, pseudo-time, and dynamic
gene expression profile as input for the pipeline to construct a dy-
namic regulatory network for each dataset. A hypergeometric test
was used to evaluate the significance of overlap of regulators in the in-
dependent datasets and the core dataset.
Comparing with other GRN reconstruction algorithms

To assess the impact of different GRN reconstruction algorithms on
the identification of dysfunction-related TFs, we also implemented
other algorithms to construct GRNs in the fourth window, including
LEAP,20 PIDC,21 SCENIC,22 SCODE,23 and SINCERITIES.24 For
SCENIC, we employed the Docker image of pySCENIC, and for the
others, we employed the corresponding Docker images from the
BEELINE pipeline.53 To compare the performance of these algo-
rithms, we performed receiver operating characteristic (ROC) ana-
lyses by curating T cell dysfunction-related TFs from the literature
(Table S2). ROC analyses were performed utilizing the plotROC
package.54
Refining candidate regulators during state transition

To refine candidate regulators in each window, we first estimated the
average expression of each TF regulon in cells, corresponding to the
two states in each window. Then, we examined the differential signif-
icance of regulon activity between the two states using a Wilcoxon
rank-sum test. p values were then corrected for the multiple testing
problem according to the FDR approach. TFs with FDR <0.05 were
considered as candidate regulators during state transition in the
window.
Measuring node centrality

The node centrality metrics were employed to measure the impor-
tance of TFs in the GRNs. Here, we used degree, closeness, between-
ness, eigenvalue, and PageRank to evaluate the centrality of nodes.55

Then, a rank aggregation method (RRA)56 was applied to integrate all
centrality metrics. Finally, the rank integration score for each TF is
calculated as –log10(p value) to indicate the final centrality measure.

Survival analysis of TSC22D3 in NSCLC patients

We collected two datasets from GEO (GEO: GSE30219 and
GSE50081) to assess association of TSC22D3 expression with clinical
outcome of NSCLC patients. To correct for the effect of T cell infiltra-
tion levels in tumor samples, we normalized the expression of
TSC22D3 by geometric mean of the expression levels of CD3D,
CD3E, and CD3G.35 Then, we stratified NSCLC patients into two
groups according to the third quartile of the normalized TSC22D3
expression levels. Kaplan-Meier survival curves were plotted
using the survminer package.57 A log-rank test was performed to
examine the significance of difference between survival probabilities
between the two groups.

Statistical analysis

A hypergeometric test was used to identify significantly enriched
T cell states on each branch. A Wilcoxon rank-sum test was used to
examine the significance of differences between the expression of
co-inhibitory receptors, as well as the differences between the expres-
sion of critical regulators in the pre-dysfunction and dysfunction
states. A one-way ANOVA was used to test the dynamic of the
Spearman correlation of TF-target pairs across four windows.
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