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Abstract Antagonistic coevolution with selfish genetic elements (SGEs) can drive evolution of

host resistance. Here, we investigated host suppression of 2-micron (2m) plasmids, multicopy

nuclear parasites that have co-evolved with budding yeasts. We developed SCAMPR (Single-Cell

Assay for Measuring Plasmid Retention) to measure copy number heterogeneity and 2m plasmid

loss in live cells. We identified three S. cerevisiae strains that lack endogenous 2m plasmids and

reproducibly inhibit mitotic plasmid stability. Focusing on the Y9 ragi strain, we determined that

plasmid restriction is heritable and dominant. Using bulk segregant analysis, we identified a high-

confidence Quantitative Trait Locus (QTL) with a single variant of MMS21 associated with increased

2m instability. MMS21 encodes a SUMO E3 ligase and an essential component of the Smc5/6

complex, involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our

analyses leverage natural variation to uncover a novel means by which budding yeasts can

overcome highly successful genetic parasites.

Introduction
Host genomes are engaged in longstanding conflicts with myriad selfish genetic elements (SGEs, or

genetic parasites) (Burt and Trivers, 2008; Dawkins, 1976; McLaughlin and Malik, 2017). SGEs

propagate within an organism or population at the expense of host fitness (Burt and Trivers, 2008).

Many SGEs, including viruses, selfish plasmids, and other pathogens, must coopt the host’s cellular

machinery for their own survival: to replicate their genomes, to transcribe and translate their pro-

teins, and to ensure their proliferation by passage into new cells (Burt and Trivers, 2008;

McLaughlin and Malik, 2017). If a host variant arises that can suppress SGEs (host restriction), this

variant will be favored by natural selection and can rise in frequency in a population. If resistance has

no fitness cost, such variants will rapidly fix within host species. Even if these variants are slightly del-

eterious, such variants could be maintained in quasi-equilibrium in host species (Koskella, 2018;

Meaden et al., 2015; Kraaijeveld and Godfray, 1997; Sheldon and Verhulst, 1996).

Studies in diverse biological taxa have leveraged genetic mapping strategies to identify quantita-

tive trait loci (QTL) for host resistance to parasites (Kane and Golovkina, 2019; Cogni et al., 2016;

Kelleher et al., 2018; Duffy and Sivars-Becker, 2007). Such studies have revealed that host popula-

tions are more likely to harbor variation in resistance to coevolved, rather than to recently intro-

duced, parasites (Duxbury et al., 2019). Studying parasites in their native host context therefore

maximizes opportunities to discover host resistance mechanisms. However, it is often difficult to

study natural variation in resistance, because hosts and/or parasites are often intractable in the
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laboratory. Budding yeast provides an ideal system to study host-SGE genetic conflicts, with abun-

dant genetic tools, together with resources for comparative and population genetics. Yeast species

harbor a variety of SGEs including retrotransposable elements, RNA viruses and 2-micron

(2m) plasmids (Rowley, 2017; Wickner, 1996; Kelly et al., 2012; Nakayashiki et al., 2005;

Krastanova et al., 2005; Bleykasten-Grosshans and Neuvéglise, 2011). Yet, despite its long his-

tory as a popular model eukaryote, natural variation in cellular immunity factors against SGEs has

been largely uncharacterized in S. cerevisiae and related species (Rowley et al., 2016; Czaja et al.,

2019; Scholes et al., 2001; Maxwell and Curcio, 2007; Rowley et al., 2018). Here, we investigated

whether S. cerevisiae strains harbor genetic variants that allow them to resist a highly successful

SGE: 2m plasmids.

2m plasmids are nuclear SGEs found in multiple, divergent budding yeast species

(Blaisonneau et al., 1997; Utatsu et al., 1987; Chen et al., 1992; Peter et al., 2018). They are best

characterized in S. cerevisiae, where they are found in high copy numbers:~50 copies per haploid

and ~100 copies per diploid cell (Veit and Fangman, 1988; Zakian et al., 1979). 2m plasmids are

stably transmitted through vertical inheritance. However, even if they are lost stochastically, they can

be reintroduced via sex and transmitted via non-Mendelian inheritance through meiosis: even if only

one haploid parent initially has 2m plasmids, all four meiotic progeny typically receive plasmids

(Futcher and Cox, 1983). Their widespread prevalence in S. cerevisiae and other budding yeast spe-

cies has raised the question of whether 2m plasmids might be more commensal than parasitic. In the

mid-1980s, two seminal studies showed that S. cerevisiae strains carrying 2m plasmids (cir+) grew 1–

3% more slowly than did their cir0 counterparts under laboratory conditions; thus 2m plasmids confer

a clear fitness defect (Futcher and Cox, 1983; Mead et al., 1986). Recent studies have reinforced

the fitness defect associated with carriage of 2m plasmids (Harrison et al., 2012; Harrison et al.,

2014). Furthermore, many mutant yeast strains, which are sick in the presence of 2m plasmids, can

be partially rescued when ‘cured’ of their 2m plasmids (Dobson et al., 2005; Zhao et al., 2004). For

example, nib1 mutants (a hypomorphic allele of ULP1 [Dobson et al., 2005]) form ‘nibbled’ colonies

in the presence of 2m plasmids due to colony sectoring from cells that stop dividing when overbur-

dened with 2m plasmids, but form smooth (wild-type) colonies in their absence (Dobson et al.,

2005). These and other data (Zhao et al., 2004) suggest that 2m plasmids impose a selective burden

on yeast, both under rapid laboratory growth conditions as well as in times of stress. In contrast to

bacterial plasmids, which can harbor host-beneficial ‘cargo’ genes, such as antibiotic resistance

genes, no such beneficial genes have ever been observed in natural 2m plasmids (Bennett, 2008).

Indeed, there are no known conditions in which 2m plasmids are beneficial to the host, further sup-

porting that its presence is likely the result of efficient parasitism. Although they are stable in S. cere-

visiae, experimental studies show that 2m plasmids exhibit lower copy number and decreased

stability when introduced into exogenous species (Murray et al., 1988). These findings suggest that

2m plasmids have co-evolved with host genomes to become a successful genetic parasite of yeasts.

To be successful, 2m plasmids must replicate and segregate with high fidelity into daughter cells

during both yeast mitosis and meiosis. Without these capabilities, plasmids risk being lost from the

population as their host cells are outcompeted by plasmid-less daughter cells. Yet, 2m plasmids

encode just four protein-coding genes (represented by arrows in Figure 1A) in S. cerevisiae. REP1

and REP2 encode plasmid-encoded DNA-binding proteins that bind to the 2m STB locus to mediate

segregation (Jayaram et al., 1983; Velmurugan et al., 1998; Veit and Fangman, 1988). Mutations

in REP1 and REP2 significantly impair segregation fidelity, resulting in failure to transmit plasmid to

daughter cells, and subsequent loss from the host population (Murray and Szostak, 1983). If copy

number drops below a certain threshold within a host cell, 2m plasmids activate an amplification

mechanism that relies on plasmid-encoded FLP1 (Murray et al., 1987; Som et al., 1988). FLP1 enc-

odes a recombinase that creates plasmid structural rearrangements during host S phase via the FRT

sites, facilitating over-replication via rolling circle replication using host replication machinery

(Murray et al., 1987; Som et al., 1988; Zakian et al., 1979; Volkert and Broach, 1986;

Dobson et al., 1988). RAF1 encodes a protein that regulates the switch to copy number amplifica-

tion (Murray et al., 1987). Due to this minimal genome, 2m plasmids rely on host factors for genome

replication and segregation during host cell division (Zakian et al., 1979; Rizvi et al., 2018;

Prajapati et al., 2017; Ma et al., 2013; Sau et al., 2014; Ghosh et al., 2007; Sau et al., 2015).

Previous studies have identified host factors required by the 2m plasmid. For instance, in addition

to DNA replication and origin licensing factors, 2m plasmids require host factors to facilitate proper
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Figure 1. SCAMPR, a novel method to measure 2m plasmid stability and dynamics. (A) Schematic of GFP-reporter 2m plasmid. The endogenous 2m

plasmid encodes an origin of replication (ori), four protein-coding genes (REP1, REP2, RAF1, FLP1) and their interacting DNA loci (STB, and FRT). The

GFP-2m reporter plasmid described here utilizes the full 2m genome with an additional integrated G418-resistance and GFP expression cassette. (B) A

Single Cell Assay for Measuring Plasmid Retention (SCAMPR) utilizes the dual reporter cassette: G418 resistance to ensure plasmid retention while

under selection and GFP to facilitate screening of plasmid-positive cells. Cells with the reporter plasmid are kept on G418 selection to ensure the

plasmid is present at t = 0 and either released to media without selection or passaged with continued G418 selection. Comparing the GFP intensities

of the cell populations with and without G418 selection after 24 hr reveals the plasmid retention dynamics and population heterogeneity of the host

genetic background (Figure 1—figure supplement 1). SCAMPR can therefore distinguish between alternate mechanisms of plasmid instability,

illustrated in (C) and (D), or the relative contribution of both mechanisms. (C) Gross segregation defects in which plasmids are not distributed to both

daughter cells would cause an increase in GFP-negative cells, as well as an increase in ‘super-green’ cells that retain twice as many two plasmids (light

shading, dotted histogram). However, we infer that these cells would either be lost or not proliferate due to growth defects associated with high

plasmid copy number. As a result of this selection, we expect to see a rapid increase in GFP-negative cells but no dramatic change in the median

expression of (surviving) GFP-positive cells. (D) Plasmid instability caused by under-replication or copy number suppression would not cause a

precipitous decline in GFP-positive cells as in (C) but would instead lead to a reduction in the median GFP intensity of the GFP-positive cells.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. SCAMPR analysis for permissive and non-permissive S. cerevisiae strains.
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partitioning into daughter cells, including many spindle-associated proteins (Zakian et al., 1979;

Rizvi et al., 2018; Prajapati et al., 2017; Ma et al., 2013; Sau et al., 2014; Ghosh et al., 2007).

Furthermore, host-mediated post-translational SUMO-modification of plasmid-encoded proteins has

been shown to have a profound effect on 2m plasmid stability and host fitness. For example, failure

to sumoylate the Rep proteins impairs plasmid stability, whereas deficient sumoylation of Flp1

recombinase leads to recombinase overstabilization, resulting in massively increased plasmid copy

number and extreme reduction in host cell fitness (Zhao et al., 2004; Burgess et al., 2007;

Pinder et al., 2013). Indeed, mutations in SUMO E3 ligases Siz1, Siz2, the SUMO maturase Ulp1,

and the SUMO-targeted ubiquitin ligase Slx8 all lead to hyper-amplification and host cell defects

(Zhao et al., 2004; Burgess et al., 2007; Pinder et al., 2013). These host-plasmid interactions pro-

vide potential means for the host to curb deleterious proliferation of plasmids. However, it is unclear

whether gain-of-function alleles exist that restrict or eradicate plasmids.

Until recently, 2m plasmids have been largely omitted from studies of genetic variation in yeast.

Although prior work has predominantly focused on canonical A-type 2m plasmids (found in labora-

tory S. cerevisiae strains), recent studies revealed that 2m plasmids are quite diverse in budding yeast

populations (Peter et al., 2018; Strope et al., 2015). These analyses identified C-type plasmids,

extremely diverged D-type plasmids and a 2m plasmid introgression into S. cerevisiae from the

closely-related species S. paradoxus (Peter et al., 2018; Strope et al., 2015). Moreover, previously

identified B- and newly described B*-type plasmids were shown to be a result of recombination

between A and C types (Peter et al., 2018; Strope et al., 2015; Xiao et al., 1991a; Xiao et al.,

1991b). Furthermore, these studies revealed that there are multiple, distinct strains of S. cerevisiae

that do not harbor any 2m plasmids. Yet, it remains unknown whether 2m plasmid absence in these

strains is the result of stochastic loss or an inherent host trait.

Host cells could influence 2m plasmid fitness by affecting their copy number, stability, or popula-

tion heterogeneity. However, these parameters are not captured in traditional plasmid loss assays,

which measure either plasmid copy number averaged across the entire population, or plasmid pres-

ence versus absence independent of copy number. To quantitatively capture all of these parameters,

we developed a new high-throughput, single-cell, plasmid retention assay, SCAMPR (Single-Cell

Assay for Measuring Plasmid Retention). We identified three yeast strains that naturally lack 2m plas-

mids and reproducibly show a high rate of mitotic instability of 2m plasmids upon plasmid reintroduc-

tion. Focusing on one resistant strain, we used SCAMPR to show that resistance is a dominant,

multigenic trait. Using QTL mapping by bulk segregant analysis, we identified one significant geno-

mic locus that impairs 2m mitotic stability. A candidate gene approach within this locus showed that

a single amino acid change in MMS21 contributes to plasmid instability. MMS21 is a highly con-

served E3 SUMO ligase and an essential component of the Smc5/6 complex, which has not previ-

ously been implicated in 2m biology. Thus, our study reveals a novel pathway by which 2m resistance

has arisen and persists in natural populations of S. cerevisiae.

Results

SCAMPR: Single-Cell Assay for Measuring Plasmid Retention
To determine if there is heritable natural variation in 2m plasmid stability in S. cerevisiae strains, we

needed an assay to measure plasmid maintenance at the single-cell level. Traditionally, plasmid loss

dynamics have been measured by two types of assays. The first of these is the Minichromosome

Maintenance (MCM) assay, in which strains containing plasmids with selectable markers are assessed

for plasmid presence versus absence by counting colonies on both selective and non-selective media

over time (Maine et al., 1984). Due to the labor intensiveness of the assay, MCM is low-throughput

since different dilutions need to be tested to recover and reliably count 30–300 colonies per plate.

Furthermore, as only a single copy of a selectable marker is required for viable cell growth, substan-

tial variation in plasmid copy number can go undetected by the MCM assay.

A second type of assay traditionally used to measure plasmid stability uses molecular methods,

such as quantitative PCR (qPCR) or Southern blotting, to assess mean plasmid copy number, relative

to genomic DNA, across a population of cells (Lee et al., 2006). Compared to the MCM assay,

qPCR has the advantages of being high-throughput and not requiring a selectable marker in the

plasmid of interest. However, qPCR (or Southern blotting) can only measure the average copy
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number of a plasmid in a population. Any heterogeneity in plasmid presence or copy number would

be undetectable by qPCR. Even a combination of the MCM and qPCR assays lacks the resolution to

determine the distribution or variability of plasmid copy number within a host population.

We therefore designed a single-cell assay using a reporter 2m plasmid. To ensure that this plasmid

closely resembles endogenous plasmids, we eschewed the use of the yEP multi-copy plasmids com-

monly used to express yeast ORFs, because they contain only a small portion of the natural 2m plas-

mid. Instead, we built a new 2m reporter plasmid, which contains both a selectable marker (G418

resistance) as well as a screenable (eGFP) marker, each under a constitutive promoter

(Breslow et al., 2008). Previously, others described recombinant 2m plasmid construction and identi-

fied a site that does not impact 2m plasmid stability when less than 3.9 kb DNA is integrated

(Ludwig and Bruschi, 1991). We therefore integrated the marker cassette (2703 bp) into the endog-

enous plasmid at this location using yeast assembly (Figure 1A; Ludwig and Bruschi, 1991;

Gibson et al., 2008). Importantly, we chose this insertion location because it should not impact typi-

cal plasmid function: replication, segregation and copy number amplification should proceed as with

the unaltered endogenous plasmid (Ludwig and Bruschi, 1991). This allows us to monitor natural

plasmid functions relative to variable host compatibility.

These dual markers ensured the reporter plasmid could be both introduced and retained in plas-

mid-lacking strains. In addition the GFP reporter allows strains to be easily assayed for plasmid pres-

ence, absence, and copy number (because GFP intensity scales with copy number in yeast

[Suzuki et al., 2012; Labunskyy et al., 2014; Lauer et al., 2018; Zhu et al., 2015]). Coupling this

reporter with flow cytometry allows us to assay single cells to better understand the dynamics and

mechanism of plasmid loss. Our analyses revealed that GFP intensity for this 2m reporter plasmid is

roughly normally distributed across single cells (Figure 1—figure supplement 1) indicating that GFP

signal did not saturate the detector at high copy number. The endogenous 2m plasmid loss rate

is ~10�5 per cell per generation as estimated by colony-hybridization Southern blots (Futcher and

Cox, 1983). Based on this prior estimate which relied on total loss events, we infer that the stability

of the GFP-2m reporter plasmid is lower than that of the endogenous 2m plasmid. This could either

reflect the difference in precision of plasmid stability measurements or be due to the cost of consti-

tutive expression of the dual markers. Nevertheless, we conclude that the reporter is well suited for

comparative stability studies using the same plasmid in different host backgrounds.

We used this 2m reporter plasmid with flow cytometry analyses (Figure 1B) to simultaneously infer

both total plasmid loss events by measuring the proportion of GFP-negative cells, as well as changes

in the median plasmid copy number based on GFP intensity (Figure 1C–D). Importantly, we could

also assess the population distribution of GFP intensity, revealing the inherent cellular heterogeneity

in plasmid copy number and loss. This assay is also higher throughput than traditional methods. We

refer to this assay as SCAMPR (Single-Cell Assay for Measuring Plasmid Retention).

2m plasmid instability in natural yeast isolates is rare and heritable
2m plasmids are nearly universally present in laboratory strains of S. cerevisiae. However, recent stud-

ies of natural isolates have revealed a diversity of plasmid types in natural populations, and even

strains lacking 2m plasmids altogether (Peter et al., 2018; Strope et al., 2015). We were particularly

interested in plasmid-free strains as these might harbor genetic variants that actively inhibit plasmid

stability. To this end, we surveyed a panel of 52 natural S. cerevisiae isolates for plasmid presence

versus absence via PCR analyses (see Materials and methods). From this panel, we identified three

strains (representative gel in Figure 2—figure supplement 1A) that do not contain the 2m plasmid:

Y9 (from ragi, millet), YPS1009 (from oak exudate), and Y12 (from palm wine) (Supplementary file

1). To rule out the possibility that PCR surveys were confounded by 2m polymorphisms, we also

tested these strains via Southern blotting (Figure 2—figure supplement 1B), which supported our

conclusion of plasmid absence. Wild diploid strains are homothallic, and capable of mating type

switching and self-diploidizing following sporulation. To create stable haploid lines for subsequent

analyses, we deleted HO endonuclease in the natural isolates before sporulating to produce stable

heterothallic haploid strains from each of the three plasmid-free natural yeast isolates

(Supplementary file 2).

Although these three strains lack detectable 2m plasmids, this absence could be either the result

of stochastic loss or host genetic variation that inhibits plasmid stability. Stochastic loss could occur

because of rare bottlenecking events in wild populations or during laboratory passaging
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(Kelly et al., 2012; Nakayashiki et al., 2005). We predict that such losses would not protect these

strains from re-introduction of natural 2m plasmids via sex and subsequent propagation

(Futcher and Cox, 1983). Therefore, if absence were due to stochastic loss, we would expect our

reporter 2m plasmids to be stable in these strains. Alternatively, if the absence of 2m plasmids reflects

true host genetic variation conferring resistance, our reporter 2m plasmid would be mitotically unsta-

ble in these strains. To test these two alternatives, we transformed the GFP-2m reporter plasmid into

haploid cells from these three natural isolates and tested for mitotic plasmid loss using a qualitative

colony sectoring assay. As a control, we examined reporter stability in the permissive lab strain

BY4742 that was ‘cured’ of its endogenous 2m plasmid (Tsalik and Gartenberg, 1998) (see
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Figure 2. Plasmid instability is a heritable trait in three natural S. cerevisiae isolates. (A) A colony sectoring assay qualitatively measures GFP-2m reporter

plasmid loss on solid media. Whereas the majority of colonies in the BY4742 background express GFP, only a small fraction of cells in colonies from

wild isolates Y9, Y12, and YPS1009 express GFP. (B) The MCM assay quantifies the frequency of 2m loss events in different yeast strains. Haploid cells

from three wild isolates (Y9, Y12, YPS1009) have significantly lower plasmid retention than haploid cells from the laboratory BY4742 strain. ***p<0.0001,

Kruskal-Wallis test. (C) SCAMPR assays confirm that a significantly smaller fraction of Y9 strain haploid cells retain the GFP-2m reporter plasmid after 24

hr, relative to haploid BY4742 cells. ***p<0.0001, Kruskal-Wallis test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Three natural S. cerevisiae isolates lack endogenous 2m plasmids.

Figure supplement 2. BY4742 and Y9 show similar growth rates.
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Materials and methods). These analyses showed a clear difference in GFP sectoring (plasmid loss)

between the BY4742 laboratory strain and the three natural isolates (Figure 2A).

To quantify this difference in plasmid stability between the permissive lab strain and the non-per-

missive natural isolates, we next measured plasmid stability of the GFP-2m plasmid over a 24 hr

period (~12 generations) using a traditional MCM assay (Figure 2B; Maine et al., 1984). Consistent

with the colony sectoring assay, we determined that the reporter GFP-2m plasmid is significantly less

stable in the naturally cir0 wild isolates than in the plasmid-permissive laboratory strain. For example,

the Y9 strain maintained 2m plasmids in only ~5% of cells on average, whereas the BY4742 lab strain

maintained plasmids in ~60% of cells. Even after normalization for phenotypic lag (see

Materials and methods), we concluded that Y9 and BY4742 strains retain plasmids at 20% versus

70% frequency, respectively. The other two wild strains showed similar plasmid loss frequencies,

with the YPS1009 strain exhibiting more variability between replicates than the other two strains.

Taken together, these data suggest that 2m plasmids are mitotically unstable in these three natural

isolates. Thus, the absence of endogenous 2m plasmids in these strains is the result of host genetic

variation rather than stochastic plasmid loss.

Dominant 2m plasmid instability in the Y9 strain
Of the three natural isolates in which we observed 2m plasmid instability, the Y9 strain isolate had

the least variable plasmid loss phenotype. Furthermore, in a broad analysis of yeast strains, the Y9

strain was found to be phylogenetically close to the Y12 strain (Hyma and Fay, 2013; Liti et al.,

2009). Based on this phylogenetic proximity, we hypothesized that Y9 and Y12 strains may share the

same genetic basis for host-encoded plasmid instability, which might make this genetic determinant

easier to identify. We therefore decided to focus on further understanding the phenotypic and

genetic basis of plasmid instability in the Y9 strain.

We tested whether growth disadvantages could explain the plasmid instability observed in Y9.

This possibility was suggested by our colony sectoring assays (Figure 2A) in which some GFP-posi-

tive colonies were smaller than GFP-negative colonies. We therefore compared growth rates of

BY4742 and Y9, each with and without the 2m reporter plasmid (Figure 2—figure supplement 2).

We determined that BY and Y9 haploid strains have similar growth rates to one another without the

reporter plasmid. Both Y9 and BY4742 exhibited a similar decrease in growth rate when grown

under G418 selection to retain the reporter plasmid. This growth difference could be due to either

the presence of the selective drug G418, or due to the fitness cost imposed by the reporter plasmid

itself. However, in either condition, Y9 and BY4742 showed similar growth rates to one another. We

therefore conclude that plasmid carriage cost is not the predominant cause of the different plasmid

instability seen in BY4742 and Y9 strains.

We characterized the putative mechanism of 2m plasmid instability in the Y9 strain using the

SCAMPR assay (Figure 1, Figure 2C, Figure 1—figure supplement 1B–C). We measured the

change in distribution of GFP intensity (inferring plasmid copy number changes) among single cells,

and total loss events (determined by increase in GFP-negative cells). If the 2m plasmid were undergo-

ing systematic under-replication due to defects in replication, we might expect an overall and

homogenous decrease in median plasmid copy number across the population (Figure 1D). Alterna-

tively, if the 2m plasmid were being missegregated, we might instead see increasing population het-

erogeneity, with some cells inheriting no plasmid, and their sister cells inheriting twice the number

of plasmids as the original mother cell (Figure 1C). Others have shown that when cells experience

over-amplification of 2m plasmids those cells stop dividing due to the massive fitness cost, as in the

case of nibbled and similar phenotypes (Dobson et al., 2005; Zhao et al., 2004; Zhao and Blobel,

2005). This fitness defect explains why we may see an increase in plasmid-negative cells at the popu-

lation level, without the corresponding increase of super-green high-plasmid cells (dotted line).

In our SCAMPR analyses, we find that even under G418 selection, Y9 cells do not maintain the

reporter 2m plasmid as efficiently as BY strains (52% GFP-positive versus 90% respectively) (Fig-

ure 1—figure supplement 1). Moreover, upon removing pressure to maintain the plasmid (no G418

selection), the proportion of Y9 cells with no GFP (no 2m plasmid) increases significantly, from 48%

to 83%. However, the median GFP intensity (and inferred 2m plasmid copy number) of plasmid-bear-

ing Y9 cells remains largely unchanged (Figure 1—figure supplement 1B); even with G418 selec-

tion, GFP intensity (2m plasmid copy number) is lower in Y9 than BY4742. We therefore conclude

that 2m plasmid loss in Y9 haploid cells occurs primarily via abrupt, complete loss of plasmids from
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cells in the population rather than a steady decrease in copy number (Figure 1—figure supplement

1B). This observed pattern of plasmid loss is consistent with plasmid segregation failure during mito-

sis, rather than a copy number suppression mechanism or plasmid under-replication. As a result of

this segregation failure, ‘non-permissive’ Y9 haploid cells lose the 2m reporter plasmid substantially

more quickly than the permissive BY4742 laboratory strain (Figure 2C), mirroring our observations

from colony sectoring assays (Figure 2A).

Next, we investigated whether mitotic instability of the 2m plasmids in the Y9 strain is genetically

recessive or dominant by examining heterozygous diploids of permissive and non-permissive strains.

To ensure that mitotic instability was not influenced by ploidy itself, we first tested whether the plas-

mid instability phenotype we observed in haploid strains persists in homozygous diploid BY4742 and

Y9 strains. We found an even bigger difference in plasmid instability between homozygous diploid

Y9 and BY4743 strains than between haploid strains (Figures 3A and 2B). We generated a heterozy-

gous diploid strain by crossing the GFP-2m plasmid-containing permissive BY4742 lab strain to the

non-permissive Y9 haploid strain. If plasmid loss in Y9 cells were due to inactivating mutations within

a host ‘permissivity’ factor required for 2m mitotic segregation, we might expect plasmid instability

to be recessive, with the BY4742 allele providing rescue in the heterozygote. Alternatively, if plasmid

instability in Y9 cells were due to a host-encoded, gain-of-function ‘restriction’ factor that impairs

mitotic stability of 2m plasmids, we would expect mitotic instability of 2m plasmids to be dominant;

heterozygous diploids would also exhibit plasmid instability. We found that heterozygous BY4742/

Y9 diploid cells rapidly lose the plasmid after G418 selection is removed (Figure 3A). These findings

could result from haploinsufficiency of a permissivity factor, or dominance of plasmid restriction fac-

tors in the Y9 genome. We therefore considered both possibilities in subsequent analyses.

Genetic architecture underlying 2m plasmid instability in the Y9 strain
Previous studies have shown that 2m plasmids efficiently propagate via non-Mendelian inheritance

through meiosis in laboratory strains of S. cerevisiae (Harrison et al., 2014; Sau et al., 2014;

Brewer and Fangman, 1980; Hsiao and Carbon, 1981). Because BY4742/Y9 heterozygous diploids

exhibit dominant plasmid loss, we maintained G418 selection up to and during sporulation to enrich

for tetrads in which all four spores retained 2m reporter plasmids. We then measured plasmid insta-

bility phenotypes among meiotic progeny of BY4742/Y9 heterozygous diploids to understand the

genetic architecture underlying the Y9 strain’s plasmid instability.

If a single genetic locus were responsible for 2m plasmid instability, we would expect tetrads to

exhibit a 2:2 segregation pattern, with half of the spores phenotypically resembling the permissive

BY4742 parent and the other half resembling the non-permissive Y9 parent. Of the 60 tetrads exam-

ined, approximately 20% of 4-spore tetrads exhibited a roughly 2:2 segregation pattern, and the

remaining 80% tetrads exhibited more complex patterns of inheritance (Figure 3—figure supple-

ment 1). Our results indicate that plasmid instability is heritable but not monogenic. Based on these

findings, we used the Castle-Wright estimator (Lande, 1981; Zeyl, 2005) to estimate that 2m plas-

mid instability is encoded by at least 2–3 independently segregating large effect loci in the Y9

genome, although these estimates could be affected by stochastic variability of the 2m plasmid sta-

bility phenotype.

Next, we performed quantitative trait locus (QTL) mapping using bulk segregant analysis (BSA) to

identify genetic loci that contribute to the Y9 strain’s 2m plasmid instability phenotype (Figure 4—

figure supplement 1; Ehrenreich and Magwene, 2017; Lander and Botstein, 1989). We selected

600 random spores resulting from a heterozygous BY4742/Y9 diploid containing our reporter 2m

plasmid and used SCAMPR to phenotype plasmid stability (Amberg et al., 2005). Most of these

progeny exhibit intermediate 2m plasmid stability between haploids of the parental BY4742 and Y9

strains (Figure 3B–C). We then pooled and bulk-sequenced 132 ‘non-permissive’ progeny strains

that represented ~20% of progeny with the lowest 2m plasmid stability and 126 ‘permissive’ strains

that represented the ~20% of progeny with the highest 2m plasmid stability (Figure 3C).

In addition to the progeny pools, we also sequenced the genomes of the three 2m plasmid-nega-

tive strains we identified (Y9, Y12, and YPS1009), as well as UC5, a 2m plasmid-containing strain (by

PCR) that is closely related to Y9 and Y12 (Hyma and Fay, 2013; Cromie et al., 2013). We mapped

reads from these strains back to the S. cerevisiae reference genome and created de novo assemblies

for each strain (see Materials and methods). Unexpectedly, whole genome sequencing revealed that

the haploid Y9 parent strain was disomic for chromosome XIV (Figure 4—figure supplement 2A),
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Figure 3. Genetic architecture and dominance of the Y9 plasmid instability phenotype. (A) Compared to

homozygous BY4742 diploids, heterozygous BY4742/Y9 diploid cells display low plasmid retention after 24 hr,

similar to homozygous Y9 diploids. This suggests that the plasmid instability of Y9 cells is a dominant trait. All

strains were analyzed with the SCAMPR plasmid retention assay. **p<0.001, ***p<0.0001, Kruskal-Wallis test; n.

s. = not significant. (B–C) Phenotype distribution across ~600 random progeny strains (C) shows that most have an

intermediate phenotype between that of the parental haploids (B). All strains were analyzed in triplicate with the

SCAMPR assay. We selected the bottom ~20% (‘non-permissive’) and top ~20% (‘permissive’) of strains from this

distribution for bulk sequencing and segregant analysis.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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with the aneuploid chromosome segregating in the Y9 x BY4742 cross. The homothallic Y9 diploid

was euploid for chromosome XIV by qPCR and shows a similar plasmid loss phenotype as a homozy-

gous diploid Y9 that has an additional chromosome XIV (Figure 4—figure supplement 2B). These

data demonstrate that the aneuploidy for chromosome XIV is not a large contributor to Y9’s plasmid

instability phenotype (Pavelka et al., 2010). We therefore disregarded the segregating chromosome

XIV disomy in our subsequent analyses.

We identified genomic differences between the Y9 and BY4742 strains (see

Materials and methods), then compared allele frequencies between the ‘permissive’ and ‘non-per-

missive’ pools of meiotic progeny from BY4742/Y9 heterozygotes (Figure 3C, Figure 4—figure sup-

plement 1A). We identified genomic regions in which inheritance of the Y9 allele is significantly

more common in the non-permissive progeny pool than the permissive pool (Figure 4A) using the

MULTIPOOL algorithm to generate likelihood-based ‘LOD’ (logarithm of the odds) scores

(Lander and Botstein, 1989; Edwards and Gifford, 2012). We identified loci that are likely linked

to the plasmid stability phenotype. Although there are a few genomic regions with moderate LOD

scores of ~4 (Figure 4B), the most striking LOD score of 9.996 was seen for a high-confidence QTL

on chromosome V. While it is challenging to establish a concrete LOD score threshold above which

loci are statistically significant, a score of ~10 is comfortably above genome-wide significance thresh-

olds of 3.1–6.3 established empirically in other studies (Treusch et al., 2015; Albert et al., 2014;

Roberts et al., 2017). This locus likely encodes the strongest genetic determinant of plasmid insta-

bility in the Y9 genome.

A single variant of the essential SUMO ligase MMS21 contributes to 2m
mitotic instability in Y9
We focused our efforts on variants within the QTL on chromosome V to identify the genetic basis of

Y9-encoded plasmid instability (Figure 4—figure supplement 3). The 90% confidence interval for

this QTL is ~91 kb wide and contains 54 ORFs, with a 50% confidence interval 23 kb wide (16 ORFs)

(Figure 4—figure supplement 3, Figure 4C). This region contains many polymorphisms between

the Y9 and BY4742 genomes but very few structural variants (i.e., large insertions, deletions, translo-

cations). One of these structural variants is the URA3 gene, which is present in Y9 and was specifi-

cally deleted in BY4742. Although the URA3 gene often falls within fitness-related QTLs in BY4742

crosses, detailed follow-up studies (Figure 4—figure supplement 4) allowed us to conclusively rule

out a role for URA3 in the plasmid instability phenotype of the Y9 strain (Wilkening et al., 2014;

Romano et al., 2010).

After excluding dubious ORFs, 44 bona fide protein-coding genes remained within the 90% confi-

dence interval. 28 of these candidate genes contained a total of 94 missense changes between Y9

and BY4742, while the rest contained no non-synonymous differences between the parental strains

for our QTL cross. We focused on 15 missense polymorphisms (in 11 genes) at which Y9 is identical

to the phylogenetically close non-permissive strain, Y12, but different from the closely-related per-

missive strain, UC5 (Supplementary file 3). Our attention was drawn to MMS21, which contains a

single Thr69Ile missense change common to Y9 and Y12, but distinct from the BY4742 laboratory

strain and the permissive UC5 strain. This polymorphism is only 1.2 kb away from the apex of the

LOD score peak in our bulk segregant analysis. Even though MMS21 has not previously been impli-

cated in 2m biology, it encodes one of the three mitotic SUMO E3 ligases in S. cerevisiae (Zhao and

Blobel, 2005). The two other SUMO E3-ligases, encoded by SIZ1 and SIZ2, have known roles in

SUMO-modification of the plasmid-encoded Rep and Flp1 proteins to cause instability or hyper-

amplification phenotypes (Dobson et al., 2005; Pinder et al., 2013; Chen et al., 2005). Therefore,

we evaluated the consequences of Y9’s MMS21 polymorphism on 2m plasmid mitotic stability.

We first tested whether the Y9 MMS21 allele was sufficient to confer the plasmid loss trait. We

integrated the Y9 MMS21 allele, with the flanking Y9 intergenic regulatory regions, into the ho locus

of BY4742. These engineered BY4742 haploids thus express both the BY4742 and Y9 MMS21 alleles.

Figure 3 continued

Figure supplement 1. Tetrads dissected from meiosis of B4742/Y9 heterozygous diploids reveal a range of

plasmid stability phenotypes.

Hays et al. eLife 2020;9:e62337. DOI: https://doi.org/10.7554/eLife.62337 10 of 25

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.62337


L
O

D

s
c

o
re

L
O

D

s
c

o
re

B

A

C

chrI chrII chrIII chrIV chrV chrVII chrVIII chrX chrXI chrXII chrXIII chrXIV chrXV chrXVI

2

4

6

8

0

10

I II III IV VI VII VIII IX X XI XII XIII XIV XV XVIV
S. cerevisiae chromosome

chrI chrII chrIII chrIV chrV chrVII chrVIII chrX chrXI chrXII chrXIII chrXIV chrXV chrXVII II III IV VI VII VIII IX X XI XII XIII XIV XV XVIV
S. cerevisiae chromosome

10

!"#

$

$"#

%

%"#

&'

()
*

      
  
  
  
  
  
      

                                                            
                                                            

    
  
    
    
  
    
  
  
    
    
    
    
  
  
  
  
  
  
  
    
  
  
  
  
    
  
  
          

  
    
            

    
                                      

    
    
    
  
  
                                        

    
    
    
    
  
    
    
        

  
  
  
  
  

  

  

  

  

  

  

  
  

  
    
      

                                  
      

      
      

              
        

    
        

      
        

    
    
    
    
      

    
    
    
  
    
      

                                          
        

    
    
      

                                                    
    
    
    
    
      

                            
    
            

              
    
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
      

            
      

    
    
    
      

              
    
  
    
  
  
  
  
  
  
  
  
                                                                                                                                            

                        
    
    
    
      

      
                      

      
      

                          
        

                                      
      

    
    
    
          

            
                                                                                                          

    
    
    
    
  
  
    
  
  
  
  
  
  
  
  
      

      
    
  
  
  
  
  
  
  
  
  
    
  
  
    
      

                                        
  
  
  
  
  
  
  
    
                                  

    
  
  
  
  
  
    
    
  
    
  
  
  
    
  
  
  
  
  
  
  
  
  
                                                                                                      

      
      

    
      

      
        

      
      

          
                                                                                                  

    
    
    
    
    
    
                                                            

    
  
  
  
    
      

      
    
    
    
        

                                            
                      

            
    

10 kb

9
8

90% credible interval

(91 kb, 54 genes)
50% credible interval

(23 kb, 16 genes)

chromosome V QTL

RIP1

YEL024W

YEL023C

YEL020C YEL020C YEL014CLTR

RPR1

ncRNA

PXP1

YEL020C

GEA2

YEL022W

PMP2

YEL017C
NPP2

YEL016C

MMS21

YEL019C

URA3

YEL021W

TIM9

YEL019W

EAF5

YEL018W

GTT3

YEL017W

EDC3

YEL015W

VAC8

YEL013W

0.0

0.2

0.4

0.6

0.8

1.0

Y
9

 a
ll

e
le

fr
e

q
u

e
n

c
y

non-permissive pool

permissive pool

Figure 4. QTL mapping identifies a plasmid instability locus on Y9 chromosome V. (A) We plotted the mean Y9 SNP allele frequency in 20 kb windows

for the ‘non-permissive’ (red) and ‘permissive’ (black) pools of meiotic haploid progeny from BY4742/Y9 heterozygous diploid parents. Associations with

a plasmid instability locus would show an increased representation of Y9 alleles in the non-permissive pool and a decreased representation of the

BY4742 haplotype in the permissive pool (dotted line indicates equal representation). The increased representation of Y9 alleles on chromosome XIV in

both pools is a result of a segregating disomy in the Y9 parent that we show does not affect the plasmid instability phenotype (Figure 4—figure

supplement 2). (B) Based on the allele frequencies of individual SNPs, we used MULTIPOOL to calculate LOD scores for association with the plasmid

instability phenotype. We observe a highly significant LOD score (10.00) on chromosome V. The peak is fairly sharp and reaches maximal LOD score at

chrV:122.3–122.7 kb (sacCer3 coordinates). All loci have allele frequencies skewed in the expected direction; the restrictive pool is enriched for Y9

alleles. (C) MULTIPOOL 90% (54 genes, 91.2 kb, chrV:92.4–183.6 kb) and 50% (16 genes, 23.1 kb, chrV:107.3–130.4 kb) credible intervals for the

chromosome V QTL. Among the 16 genes in the 50% credible interval is MMS21, which encodes an essential SUMO E3-ligase.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Schematic of QTL mapping by bulk segregant analysis (Magwene et al., 2011).

Figure supplement 2. Aneuploidy of chromosome XIV in Y9 strain.

Figure supplement 3. Y9 chromosome V is most strongly associated with plasmid instability.

Figure supplement 4. Deletion of URA3 from Y9 haploid cells does not affect their plasmid instability phenotype.
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Although the addition of Y9 MMS21 does lower plasmid stability, this difference is not statistically

significant from BY4742 haploids that only express the BY4742 allele (Figure 5A). Thus, the Y9

MMS21 allele, by itself, does not appear to be sufficient to lower plasmid stability in the BY4742

genetic background.

Next we used reciprocal hemizygosity to test whether loss of Y9 MMS21 from heterozygous

BY4742/Y9 diploids would lead to an increase in plasmid stability. Because MMS21 is an essential

gene, we could not simultaneously delete both the Y9 and BY4742 MMS21 alleles in heterozygous

diploids. Instead, we deleted either the Y9 or the BY4742 allele, yielding BY4742/Y9 diploids that

are hemizygous for one or the other MMS21 allele. If the plasmid stability phenotype were affected

by MMS21 haploinsufficiency, we would expect that deletion of either MMS21 allele would affect

the stability phenotype. Contrary to this expectation, we found that deletion of the Y9 MMS21 allele,

but not the BY4742 allele, results in a reproducible and statistically significant increase in plasmid

stability of nearly 8% (Figure 5B). Indeed, otherwise identical heterozygous Y9/BY4742 strains that

are hemizygous for either the Y9 or the BY4742 allele of MMS21 differ significantly in their plasmid

instability phenotype (Figure 5B). Our results show that MMS21 allelic differences contribute signifi-

cantly to the 2m instability of the Y9 strain. These data are also consistent with Y9 plasmid instability

being due to dominant plasmid restriction, rather than a haploinsufficient permissivity factor. How-

ever, MMS21 does not explain the entire Y9 phenotype, consistent with plasmid instability segregat-

ing as a multigenic trait through the cross. The remaining trait-determining loci in Y9 likely include

some of the minor QTL peaks we found but could also include linked polymorphisms within the chro-

mosome V region.

The phenotypic difference between hemizygous strains (Figure 5B) could be due to the Thr69Ile

coding polymorphism found in Y9 and Y12 strains relative to BY4742, or due to regulatory differen-

ces, or both. We applied the same comparative genomics approach that initially identified Thr69Ile
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Figure 5. A single SNP in Y9 MMS21 contributes to the plasmid instability phenotype. (A) Introduction of the Y9 MMS21 allele into BY4742 haploid cells

is not sufficient to significantly lower plasmid instability. (B) However, removal of the Y9 MMS21 allele but not the BY4742 MMS21 allele increases

plasmid stability in BY4742/Y9 heterozygous diploids, showing that the Y9 allele of MMS21 plays an important role in the Y9 plasmid instability

phenotype. **p<0.001, Kruskal-Wallis test, n.s. = not significant. (C) Plasmid prevalence (by plasmid class) for each MMS21 Thr9Ile genotype within 1011

sequenced S. cerevisiae strains. Plasmid data and genotypes from Peter et al., 2018. Strains with the Y9 MMS21 allele (I69) have a lower frequency of

harboring 2m plasmids in general, and A-type 2m plasmids, in particular. However, this effect can be confounded by the phylogenetic relatedness of

these strains.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparative analysis of MMS21 and flanking regions.

Figure supplement 2. Sequence of MMS21 codon 69 across the Saccharomyces sensu stricto clade, as well as selected S. cerevisiae strains and two

outgroup Naumovozyma species.

Figure supplement 3. The Thr69Ile polymorphism is located at the Mms21-Smc5 binding interface.
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to the intergenic (candidate regulatory) regions flanking MMS21. In addition to the missense poly-

morphism, the Y9 strain differs from BY4742 at four synonymous sites within the MMS21 ORF and at

a total of 11 sites in the two flanking regions (Figure 5—figure supplement 1). Y9 and Y12 are iden-

tical at all 16 of these sites. We next examined the closest outgroup strain, UC5, which still bears

plasmids according to our PCR survey (Figure 2—figure supplement 1B). We found that UC5 differs

from Y9 and Y12 at only three sites in the MMS21 locus: two synonymous SNPs and the single mis-

sense SNP. Thus, only these three sites strictly correlate with the plasmid instability phenotype,

whereas the intergenic SNPs do not. Based on this finding, we chose to focus on the MMS21

Thr69Ile variant. However, regulatory differences between Y9 and BY4742 may still contribute to nat-

ural variation in plasmid stability.

MMS21 natural variation within S. cerevisiae and between sensu stricto
species
The Thr69Ile change found in Y9 and Y12 strains is not found in the third non-permissive strain, oak

YPS1009, suggesting that YPS1009 acquired 2m plasmid instability through an independent evolu-

tionary path. The Thr69 allele found in the BY4742 lab strain appears to be the ancestral allele, with

Ile69 arising more recently in a subset (96) of 1,011 s. cerevisiae strains that were sequenced as part

of a recent large-scale study (Peter et al., 2018). This study also reported which of the 1011 strains

carry 2m plasmids. Upon reanalyzing these data, we find that a smaller proportion of S. cerevisiae

strains homozygous for the MMS21 Ile69 allele harbor 2m plasmids compared to strains homozygous

for the ancestral Thr69 allele (Figure 5C). In particular, the A-type 2m plasmids, which we have tested

using SCAMPR in this study, appear to be particularly depleted in strains with the Ile69 allele, sug-

gesting that this allele might specifically restrict A-type 2m plasmids (Figure 5C). While interesting,

at present we cannot distinguish whether these observations are a result of a causal association or of

shared evolutionary history, due to phylogenetic relatedness of the Ile69 allele-encoding strains.

To explore natural variation in MMS21 beyond S. cerevisiae, we aligned sequences from selected

S. cerevisiae strains as well as other Saccharomyces sensu stricto species and two outgroups (N. cas-

telli and N. dairenensis) (Figure 5—figure supplement 2). Interestingly, S. eubayanus and S. uvarum

also seem to have independently acquired Ile69 but still harbor endogenous 2m plasmids, whereas S.

arboricola has yet another amino acid (alanine) at this position (Strope et al., 2015).

The location of the Y9/Y12 amino acid change in the Mms21 protein also provides important

clues to its functional consequences. The Thr69Ile change occurs in the third of three alpha-helices in

the Mms21 N-terminal domain, which makes contact with the Smc5/6 complex, and is essential for

yeast viability (Duan et al., 2009; Figure 5—figure supplement 3). Yeast cells deficient for MMS21

show gross chromosomal segregation defects and die as large, multi-budded cells (Bermúdez-

López et al., 2010). However, the C-terminal zinc finger RING domain responsible for sumoylation

of substrates is dispensable for Mms21’s essential function (Duan et al., 2009). We therefore specu-

late that the non-permissive MMS21 allele may act by directly affecting the Smc5/6 complex rather

than through its sumoylation function. However, these possibilities may be hard to distinguish

because the SUMO ligase function of Mms21 also depends on its docking with the Smc5/6 complex

(Bermúdez-López et al., 2015). We also examined the Y9 strain for polymorphisms in other mem-

bers of the Smc5/6 complex. While there are other polymorphisms in Smc5/6 complex members, we

observed none in the regions of Smc5 that interact with any segment of Mms21 (Duan et al.,

2009; Supplementary file 4). Despite the Smc5/6 complex’s essential role in the removal of DNA-

mediated linkages to prevent chromosome missegregation and aneuploidy, it has not been directly

implicated in 2m stability. Our finding that a single polymorphism at the Mms21-Smc5 interaction

interface reduces 2m stability thus reveals a novel facet of host control.

Discussion
In this study, we leveraged natural variation to identify a gain-of-function variant that restricts 2m

plasmids in S. cerevisiae. Our approach is complementary to the traditional biochemical and genetic

approaches that have previously used loss-of-function genetic analyses to study host regulation of

2m plasmids. Natural variation studies can identify alleles of host genes that retain host function but

still block SGEs like 2m plasmids. Such studies can reveal novel mechanisms of host control, which

may be otherwise challenging to discover via loss-of-function analysis.
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Although 2m-based vectors have long been used as an important tool in yeast genetics, studies of

2m plasmids as natural SGEs have lagged behind considerably. Our new phenotyping assay,

SCAMPR, makes the 2m plasmid a more tractable system. SCAMPR captures single-cell data that

facilitate studies of population heterogeneity, allowing inferences of the mechanisms by which plas-

mids may be controlled by their hosts. Although recent advances in single-cell genome sequencing

make it possible to directly sequence and infer copy number of 2m plasmids, this would be prohibi-

tively expensive compared to the GFP-based flow cytometry profiling methodology we use.

SCAMPR has potential for expanded use, for example to explore meiotic plasmid transmission

dynamics. SCAMPR could also be paired with host lineage tracking to assess plasmid fitness burden

alongside plasmid loss dynamics in competitive fitness assays. This paired strategy would provide a

powerful approach for understanding the relative contribution of both plasmid fitness cost and host-

plasmid incompatibility across hosts. In general, SCAMPR could be utilized to study high-copy num-

ber SGE plasmid dynamics, DNA replication and segregation, in any system where expression is well

matched to copy number.

Our survey of 52 wild S. cerevisiae isolates identified three strains that naturally lack 2m plasmids.

Detailed studies of one of these strains, Y9, revealed that 2m plasmid instability is heritable, domi-

nant and likely the result of multiple contributing alleles. Through QTL mapping by bulk segregant

analysis, we identified a significant locus on chromosome V associated with 2m plasmid loss. We

found that a single amino acid variant in Y9 MMS21, which encodes an essential SUMO E3 ligase in

S. cerevisiae, contributes to 2m plasmid instability. MMS21 does not fully account for the 2m plasmid

loss phenotype in heterozygous BY4742/Y9 strains. This result is unsurprising based on our tetrad

analysis and QTL mapping, which both suggest that additional independently segregating loci affect

plasmid stability. Although loss of Y9 MMS21 from heterozygous diploids leads to a relatively mod-

est effect on 2m plasmid instability, it may still account for all of the QTL signal we observe in chro-

mosome V. Alternatively, the QTL on chromosome V could contain additional determinants of

plasmid instability in close genetic linkage to MMS21, either in coding or regulatory sequences.

CRISPR-Cas9 based approaches will be useful to test a large number of genomic changes rapidly

and in parallel between Y9 and BY4742 to identify other determinants of plasmid instability in this

QTL and in other candidate loci (Sadhu et al., 2016; Sharon et al., 2018).

The reciprocal hemizygosity experiment (Figure 5B) reveals that the Y9 variant of MMS21 acts

dominantly to restrict mitotic stability of 2m plasmids, ruling out the possibility that this allele is hap-

loinsufficient. We considered two scenarios by which this allele may exert its dominant effect on plas-

mid stability. The first scenario is that the Y9 allele of MMS21 encodes a dominant-negative allele,

which impairs the function of the Smc5/6 complex whether in a haploid or heterozygous state.

Although this impairment does not negatively impact essential host functions when 2m plasmid is

absent (Y9 strains are viable and fit), this allele would have a fitness deficit in the presence of 2m plas-

mids, as host functions become overburdened when hijacked by the parasite. Under this scenario,

we would expect to see a greater fitness loss due to 2m plasmid presence in Y9 compared to

BY4742. However, both Y9 and BY4742 strains suffer an equal fitness loss in the presence of 2m

reporter plasmids (Figure 2—figure supplement 2). Moreover, plasmid-restrictive host alleles would

only arise and propagate in natural populations if their fitness cost did not outweigh the modest 1–

3% fitness cost imposed by the widespread 2m plasmids in S. cerevisiae populations. We therefore

favor a second scenario, in which the Y9 MMS21 allele represents a separation-of-function allele that

is still capable of performing host functions but impairs 2m mitotic stability.

The 2m plasmids appear to have co-evolved with budding yeasts for millions of years and are

prevalent in species such as S. cerevisiae. Long-term coevolution appears to have ‘optimized’ 2m

plasmids as tolerable parasites: not too great of a burden on host fitness, but still high enough plas-

mid copy numbers to ensure stable propagation. This copy number balance is achieved through

both plasmid (e.g., Flp1 repression) and host (e.g., sumoylation) contributions. Nevertheless, there

are hints that this truce between 2m plasmids and yeast may be uneasy. 2m plasmid stability is fre-

quently compromised in heterospecific (other species) hosts, suggesting it is actively adapting to

maintain stability within its native host species (Murray et al., 1988). Our discovery of a natural host

variant of S. cerevisiae that impairs conspecific (same species) 2m plasmid stability further supports

the hypothesis that even the low fitness costs imposed by 2m plasmids are sufficient to select for

host evolutionary resistance.
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Most studies of 2m plasmid plasmids (including this one) have focused on the A-type variant that

is most commonly found in laboratory strains. However, new sequencing studies have revealed that

S. cerevisiae strains harbor a diverse set of 2m plasmid plasmids (Peter et al., 2018; Strope et al.,

2015). This diversity of 2m plasmid plasmids might itself have arisen as a result of host defenses

within S. cerevisiae, leading to plasmid diversification. For instance, although SCAMPR studies

revealed the importance of the Y9 MMS21 variant against the stability of the A-type plasmid, it is

possible that this variant is ineffective against the other 2m genotypes. Thus, 2m plasmids might exist

in a frequency-dependent regime with their budding yeast hosts; A-type plasmids might thrive in

certain host genetic backgrounds whereas B-type plasmids might thrive in others. The simultaneous

presence of multiple 2m plasmid types within species could explain the presence of standing varia-

tion in plasmid instability phenotypes in S. cerevisiae populations, including the low observed fre-

quency of the Y9 MMS21 allele.

Testing the effects of MMS21 and other restrictive alleles on stability of different 2m plasmids

(e.g. B- or C-type) would provide a means to distinguish between universal versus plasmid-type-spe-

cific restriction. Future studies could employ SCAMPR to study the functional consequences of the

natural diversity of 2m plasmids in yeast. In particular, SCAMPR reporters from different types of S.

cerevisiae 2m plasmids and from divergent Saccharomyces species may reveal important biological

determinants behind their co-evolution and long-term success in budding yeast species.

The identification of MMS21 led us to initially suspect that this locus might represent another con-

nection between the SUMO-ligation machinery and 2m plasmid stability (Dobson et al., 2005;

Zhao et al., 2004; Pinder et al., 2013; Ma et al., 2019). However, the location of the Thr69Ile mis-

sense change at the binding interface between Mms21 and Smc5 (Figure 5—figure supplement 3)

suggested a mechanism that relies on the Smc5/6 complex rather than the catalytic RING domain.

Interestingly, a recent study demonstrated that even the SUMO ligase function of Mms21 depends

on its docking with the Smc5/6 complex (Bermúdez-López et al., 2015). Thus, the polymorphism in

the Mms21-Smc5 interaction site could either affect Mms21’s SUMO ligase function or other func-

tions of the Smc5/6 complex. The Smc5/6 complex lies at the nuclear periphery, where it anchors

dsDNA breaks to facilitate repair, resolves X-shaped DNA structures that arise during DNA replica-

tion and repair, and helps mediate sister chromatid cohesion (Bermúdez-López et al., 2010). All

three of these cellular processes might directly impact stability of 2m plasmids (Velmurugan et al.,

2000). Alteration of Mms21 function, an essential component of the Smc5/6 complex, could thus

directly affect both segregation of 2m plasmids as well as interfere with their amplification via Flp1-

induced recombination intermediates.

Although Smc5/6 has not been previously implicated in 2m stability, this complex is involved in

the stability of viral episomes, as human Smc5/6 acts as a restriction factor against hepadnaviruses

such as human Hepatitis B virus (Decorsière et al., 2016; Murphy et al., 2016). To counteract this

restriction function, diverse hepadnaviruses encode antagonist HBx proteins that degrade mamma-

lian Smc5/6 and restore viral fitness (Decorsière et al., 2016; Murphy et al., 2016; Abdul et al.,

2018). Our findings that components of the yeast Smc5/6 complex affect 2m stability suggest that

the Smc5/6 complex might provide a general mechanism to protect host genomes from the deleteri-

ous consequences of multicopy genetic parasites.

Materials and methods

Strain growth and construction
Yeast strains were grown in standard yeast media at 30˚C unless otherwise noted (Amberg et al.,

2005). Transformations were carried out using a high-efficiency lithium acetate method

(Amberg et al., 2005). The GFP-2m plasmid was created by Gibson assembly directly into otherwise

plasmid-less yeast strains cir0 BY4741 (MATa haploid) and BY4742 (MATa haploid), which had been

cured of their endogenous plasmids by previously published methods (Tsalik and Gartenberg,

1998; Gibson, 2011). To avoid disruption of the plasmid’s endogenous replication and segregation

machinery, a cassette containing both markers was integrated into the A-type 2m sequence found in

the S. cerevisiae laboratory strain BY4741 at a restriction site reported to tolerate insertions of up to

3.9 kb without impacting copy number or stability (Ludwig and Bruschi, 1991). We did not use any

bacterial cloning vector sequences to minimize unnecessary or destabilizing changes to the 2m

Hays et al. eLife 2020;9:e62337. DOI: https://doi.org/10.7554/eLife.62337 15 of 25

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.62337


reporter plasmid, so the reporter plasmid was directly assembled in yeast. Assembling in cir0 strain

backgrounds avoided multiple plasmid genotypes within a strain background that could have led to

plasmid competition or recombination.

We used the NEBuilder HiFi DNA Assembly Master Mix (product E2621) for Gibson assemblies.

Yeast plasmids were recovered using Zymoresearch Zymoprep Yeast miniprep kits (D2004). The

assembled plasmids were then retransformed to the same cir0 yeast backgrounds to ensure plasmid

clonality. Genetic crosses were carried out on a Singer Sporeplay dissection scope, for both tetrad

dissection and selection of unique zygotes for mating strains. Strain mating type was confirmed by

halo formation in the presence of known mating type tester strains. Strains used in this work are

listed in Supplementary file 1.

Natural isolates were obtained as homothallic diploids (capable of mating type switching and

self-diploidization). We made stable heterothallic haploid strains (no longer capable of mating type

switching) by first knocking out ho endonuclease prior to sporulation (hoD::HphNT1). We found that

the natural isolates required significantly longer homology arms for proper DNA targeting when

making integrated genomic changes (e.g. gene deletions) via homologous recombination. Where

BY4742 lab strains utilized ~50 bp homology arms for high efficiency recombination, Y9 required ~1

kb flanking homology. Even with longer homology, a substantial number of clones in any transforma-

tion did not contain the desired edit. These hurdles made editing the Y9 genome challenging.

Growth rate measurements
Growth rate measurements were performed in 96-well plates in Biotek Powerwave incubating plate

readers with Gen5 software at 30˚C with shaking. Logarithmically dividing cells were seeded at

approximately 2000 cells in 100 ul of defined medium per well, with or without selection as indi-

cated. Synthetic complete media was prepared with monosodium glutamate as the nitrogen source

to facilitate G418 selection. Twelve replicate wells were run for each strain background and OD660

measurements were taken every 10 min until each well reached saturation. Data were trimmed to

time points during log phase growth, and replicate data points are plotted as the mean value of rep-

licates, with error bars indicating SD. The outside wells of the plate were incubated as media blanks

to measure baseline OD660 and to help monitor and minimize evaporation during the runs.

Colony sectoring
Confirmed transformants were cultured under G418 selection, then plated to YPD medium where

colonies were allowed to form without selective pressure to maintain the reporter plasmid. After 2

days growth at 30˚C, colonies were imaged under white light and GFP excitation to assess qualita-

tive plasmid loss in the different strains using a Leica M165 FC dissection scope with a GFP filter and

Leica DFC7000 T camera. Colony sectoring was visually assessed. We then performed image proc-

essing using ImageJ to split channels and recolor the GFP channel.

MCM assay
MCM assays were performed as previously published (Maine et al., 1984). However, samples were

taken at only two time points. Therefore, we reported changes in frequency of 2m plasmid rather

than an estimated rate of loss per generation. This two-timepoint measurement also provided a

more direct comparison to the SCAMPR assay. At time = 0 hr and 24 hr, cells were plated on both

selective and non-selective media to determine what fraction of the population maintains the plas-

mid by virtue of encoding the selectable marker. Samples were plated at multiple dilutions to ensure

between 30–300 CFU per plate. All strains containing the reporter plasmid were grown under G418

selection to ensure 2m plasmid presence prior to the start of the assay. At time = 0 hr, cultures were

transferred into liquid media with shaking, but without drug selection for 24 hr. After 24 hr, cultures

were diluted in PBS and plated on YPD either with or without G418 selection at multiple dilutions,

targeting 30–300 CFU per plate. Plates were incubated for 2 days, then colonies were manually

counted to determine what fraction of the population were G418 positive. Calculations were based

on whichever dilution gave a countable (30–300 CFU) plate. Multiple replicates (at least 8) were per-

formed for each strain to measure variability in plasmid retention. A subpopulation of GFP-negative,

G418-negative cells can be found even under selection. This ‘phenotypic lag’ occurs because of pro-

tein persistence following DNA loss; while cells that lose the plasmid die under selection, new
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plasmid-free cells are constantly generated as well. We therefore normalize data to account for dif-

ferent starting frequencies of plasmid-negative cells by comparing cells grown with or without G418

selection for 24 hr relative to their starting frequency (Figure 1B).

SCAMPR
SCAMPR samples were prepared as for MCM assays. When grown in 96-well format at 30˚C, cultures

were shaken using a Union Scientific VibraTranslator to ensure aeration. Fluorescence was directly

measured by flow cytometry at 0 and 24 hr timepoints. A BD Canto-2 cytometer was used to collect

cell data. FlowJo software was used for subsequent data analysis: samples were gated for single

cells, omitting doublets/multiple cell clumps and any cell debris. Single cells were gated for GFP-

positive and -negative populations, using GFP-negative strains and single-copy integrated GFP-posi-

tive strains as gating controls. Summary statistics (frequency of GFP-positive and -negative cells,

GFP intensity) were exported from FloJo. Each strain was measured in at least triplicate per assay

and means are reported here.

Statistical analyses
For SCAMPR and MCM assay results, we determined significance by non-parametric tests. To com-

pare two strains we used two-tailed Mann-Whitney tests, and to compare three or more strains, we

used Kruskal-Wallis with Dunn’s multiple comparison tests. Graphs were prepared and statistical

analysis done using GraphPad Prism seven software.

Screening for endogenous 2m plasmid in natural isolates of S. cerevisiae
Natural isolates (Supplementary file 1) were generously shared by Dr. Justin Fay. DNA from these

strains was isolated using a standard Hoffman and Winston preparation method, then probed by

PCR and Southern blot (Amberg et al., 2005). Two pairs of primers were designed to amplify either

REP1 or FLP1 (FLP1_F: CCACAATTTGGTATATTATG, FLP1_R: CTTTCACCCTCACTTAG, REP1_F:

AATGGCGAGAGACT, REP1_R: CGTGAGAATGAATTTAGTA), the two best conserved coding

regions of the plasmid, as previously described (Xiao et al., 1991a). Only strains that showed nega-

tive PCR results for both sets of primers were further validated by chemiluminescent Southern blot

using the Thermo North2South kit (17097). Briefly, whole genome DNA was digested, run on an aga-

rose gel in TAE, transferred to membrane and probed with chemiluminescent probes created from

digested endogenous 2m plasmid collected from BY4741 by Zymoresearch yeast plasmid miniprep

kit (D2004). Gels and blots were imaged on a Bio-Rad ChemiDoc.

Illumina sequencing, library preparation, and QTL mapping via bulk
segregant analysis
We prepared high quality genomic DNA for sequencing using Zymoresearch Yeastar kits according

to the manufacturer’s instructions (D2002 - using chloroform method). Sequencing libraries were

prepared using the TruSeq method for genomic DNA (Illumina), multiplexed and run on an Illumina

HiSeq by the Fred Hutchinson Sequencing core facility to generate 50 bp paired-end sequences

(SRA accession PRJNA637093). 100 bp paired-end reads for the lab strain, BY4742, were down-

loaded from the SRA database (accession SRR1569895). Reads that failed Illumina’s ‘chastity filter’

were removed using a custom R script, and adapters and low-quality regions were trimmed using

cutadapt with parameters -q 10 –minimum-length 20 (Martin, 2011). Trimmed read pairs were

aligned to the sacCer3 reference genome assembly using BWA-backtrack (Li and Durbin, 2009).

Mean coverage in non-overlapping 20 kb windows across the genome was calculated and plotted

using R and Bioconductor.

For bulk segregant analysis, we first identified a conservative set of 47,173 high quality SNPs that

distinguish the cross parents (Y9 and BY4742) as follows. Before SNP-calling, BWA output files were

processed using Picard’s MarkDuplicates tool and indels were realigned using GATK’s RealignerTar-

getCreator and IndelRealigner tools (Picard, 2020; DePristo et al., 2011). We then called SNPs

using samtools mpileup (parameters –skip-indels -t DP -uBg -d 6660) and bcftools call (parame-

ters -vmO z -o), and counted reads matching each allele using GATK’s VariantAnnotator DepthPer-

AlleleBySample module (with –downsampling_type NONE option) (Li, 2011). We used R and

Bioconductor to further filter SNPs to obtain the final set of 47,173 SNPs, removing any that
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overlapped repetitive elements, SNPs with QUAL score <200, SNPs with unusual coverage in any

sample, and SNPs with an apparent mix of alleles in either of the haploid parental strains. We then

ran MULTIPOOL in ‘contrast’ mode on allele frequencies at each SNP in the permissive and non-per-

missive pools to generate LOD scores across all chromosomes (Edwards and Gifford, 2012).

To identify candidate functional polymorphisms in each sequenced strain, we took two

approaches: (a) we performed more sensitive SNP-calling, including small insertions and deletions;

(b) to detect larger insertion/deletion events, we generated de novo assemblies from each strain,

aligned them to the reference genome assembly, and identified locations where assemblies differed.

In more detail, the first approach used processed alignments (see above) as input to GATK’s Haplo-

typeCaller (parameters -stand_call_conf 30.0 -stand_emit_conf 10.0) (DePristo et al., 2011). Func-

tional consequences of each variant were annotated using Ensembl’s Variant Effect Predictor

(McLaren et al., 2016). For the second approach (de novo assemblies), we performed error correc-

tion on the adapter-trimmed reads using musket (parameters -k 28 536870912) and then used

SOAPdenovo2 across a range of k-mer sizes and fragment sizes, choosing the combination for each

sample that yielded the assembly with highest N50 length as determined using QUAST (Liu et al.,

2013; Luo et al., 2012; Gurevich et al., 2013). These Whole Genome Shotgun projects have been

deposited at DDBJ/ENA/GenBank under the accessions JABVXK000000000, JABVXL000000000,

JABVXM000000000, JABVXN000000000, JABVXO000000000 and JABVXP000000000. The versions

described in this paper are versions JABVXK010000000, etc. We obtained tiling path alignments of

each assembly to the sacCer3 reference genome assembly using MUMMER (nucmer parameters -

maxmatch -l 100 c 500, delta-filter options -m) (Kurtz et al., 2004). Structural variants were deter-

mined from genome alignments using Assemblytics (variant size range 1 bp-100kb) (Nattestad and

Schatz, 2016).

We identified all missense polymorphisms in the chrV 90% credible interval where genotype was

shared between the non-permissive Y9 and Y12 strains, but distinct from the closely-related plas-

mid-permissive strain, UC5, and the permissive laboratory strain, BY4742 (Supplementary file 3). In

addition, we expanded our analysis to include all candidate regulatory and synonymous polymor-

phisms at the MMS21 locus (Figure 4—figure supplement 4).

Structure visualization
The Cn3D viewer was used to visualize Thr69Ile on a crystal structure of MMS21 with SMC5 made

available by Duan et al., 2009; Wang et al., 2000.

Analysis of MMS21 natural variation
To examine natural variation in MMS21 across S. cerevisiae strains and in other fungal species, we

first extracted the MMS21 (YEL019C) open reading frame from the reference assembly (sacCer3,

chrV:120,498–121,301, - strand) and translated that sequence. We then used this MMS21 protein

sequence as the query in tblastn searches against various databases (Altschul et al., 1997). Search-

ing the NR database, using taxonomic restrictions as needed, yielded MMS21 sequences from S.

paradoxus (XM_033909904.1), S. eubayanus (XM_018364578.1), S. jurei (LT986468.1, bases

125,344–126,147, - strand), S. kudriavzevii (LR215939.1, bases 100238–101041, - strand), N. castellii

(XM_003677586.1) and N. dairenensis (XM_003671024.2). For additional orthologs, we downloaded

individual genome assemblies from NCBI and performed local tblastn searches for S. arboricola

(GCA_000292725.1; MMS21 at CM001567.1:97,893–98,699, - strand), S. mikatae

(GCA_000166975.1; MMS21 at AABZ01000034.1:31,665–32,468, - strand) and S. uvarum

(GCA_002242645, MMS21 at NOWY01000012.1:107,550–108,353, + strand). Additional S. cerevi-

siae strain sequences come from our own de novo assemblies, where we used blastn to identify

MMS21.

MMS21 genotypes in the 1011 isolates previously sequenced (Peter et al., 2018) were accessed

via that publication’s supplementary data file 1011Matrix.gvcf.gz. Plasmid status was obtained from

another supplementary file (Supplementary file 1) and cross-referenced with genotype in R.
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Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402.
DOI: https://doi.org/10.1093/nar/25.17.3389, PMID: 9254694

Amberg DC, Burke DJ, Strathern JN. 2005. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course
Manual. Cold Spring Harbor Laboratory Press.

Bennett PM. 2008. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes
in Bacteria. British Journal of Pharmacology 153:S347–S357. DOI: https://doi.org/10.1038/sj.bjp.0707607,
PMID: 18193080
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