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Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than
250 million cases of chronic liver infection, a condition that can lead to liver inflammation,
cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide
(NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator
of bile acid transport, has been identified as the receptor responsible for the cellular entry of
both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in
our understanding of the HBV life cycle, especially the early steps of infection. HepG2-
NTCP cells and human NTCP-expressing transgenic mice have been employed as the
primary cell culture and animal models, respectively, for the study of HBV, and represent
valuable approaches for investigating its basic biology and developing treatments for
infection. However, the mechanisms involved in the regulation of NTCP transcription,
translation, post-translational modification, and transport are still largely elusive.
Improvements in our understanding of NTCP biology would likely facilitate the design
of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes.
In this review, we provide critical findings regarding NTCP biology and discuss important
questions that remain unanswered.
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1 INTRODUCTION

Hepatitis B virus (HBV) infection represents a major public healthcare challenge globally. TheWorld
Health Organization (WHO) has estimated that 296million people were living with chronic hepatitis
B infection in 2019, resulting in an estimated 820,000 deaths, with 1.5 million new infections being
diagnosed each year (https://www.who.int/news-room/fact-sheets/detail/hepatitis-b). In a multi-
center international study involving 161 countries, the global prevalence of HBV surface antigen
(HBsAg) was estimated to be 3.61%, with the highest rates being detected in Africa (8.83%) and
Western Pacific regions (5.26%) (Schweitzer et al., 2015). Although vaccination has proven
successful, high viral turnover rates have resulted in vaccine-related escape mutants, rendering
HBV infection a serious problem (Shepard et al., 2005). HBV infection can become chronic and
eventually lead to end-stage liver disease and/or the development of hepatocellular carcinoma (HCC)
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(Ringehan et al., 2017). Owing to the high prevalence of HBsAg,
the WHO is working on improving prevention, diagnostic, and
treatment strategies to help countries achieve the global hepatitis
elimination targets set under the Sustainable Development
Agenda 2030 (https://www.who.int/news-room/fact-sheets/
detail/hepatitis-b). Over the last 5 years, attention has
increasingly focused on the important topics of HBV
screening, diagnosis of HBV infection, and appropriate linkage
to care. There have also been rapid clinical developments toward
a functional cure of HBV infection, and novel compounds are
currently in various phases of development (Nguyen et al., 2020).
Despite some advances, issues with screening, diagnosis, and
treatment of HBV infection remain (Almeida et al., 2021).

Sodium taurocholate co-transporting polypeptide (NTCP) is a
sodium-dependent uptake transporter residing in the basolateral
membrane of hepatocytes and is involved in the hepatic uptake of
conjugated bile salts (Watashi et al., 2014a). In addition to its
transport function, NTCP has been identified as an entry receptor
for HBV and its satellite, hepatitis delta virus (HDV). The latter is
dependent on HBV-encoded proteins for envelopment (Yan
et al., 2012). This finding led to the development of reliable
cell culture systems that allowed a better understanding of the
molecular mechanisms of entry during the early viral lifecycle
(Rybicka and Bielawski 2020). In general, the viral entry step is an
attractive target for the development of antiviral agents.
Pharmacological studies suggest that NTCP can serve as a
therapeutic target, which has led to a surge in research
focusing on NTCP as a drug target to inhibit HBV infections.
Mainly focusing on recent findings, this review summarizes the
current knowledge of the molecular mechanisms related to the
HBV entry receptor NTCP and discusses its implications.

2 THE ROLE OF SODIUM TAUROCHOLATE
CO-TRANSPORTINGPOLYPEPTIDE IN THE
ENTEROHEPATIC CIRCULATION OF BILE
ACIDS

The human NTCP-encoding gene—solute carrier family 10
member 1 (SLC10A1)—was initially cloned by Hagenbuch and
Meier in 1994 (Hagenbuch and Meier 1994), and was the first
NTCP-related gene to be identified. Subsequently, Hagenbuch
et al. (1996) showed that Xenopus oocytes injected with total
mRNA extracted from rat hepatocytes exhibited Na+-dependent
bile acid uptake activity, and this activity was inhibited by
targeting NTCP transcripts using antisense oligonucleotides.
These elegant experiments provided compelling evidence that
NTCP represents the major route for Na+-dependent uptake of
bile acids, at least in the rat liver (Alrefai and Gill 2007). NTCP
belongs to the SLC10 transporter family of proteins, which
consists of seven members, namely, NTCP; apical sodium-
dependent bile acid transporter (ASBT, encoded by SLC10A2);
sodium-dependent organic anion transporter (SOAT; SLC10A6);
P3/SLC10A3 (encoded by SLC10A3); P4/SLC10A4 (SLC10A4);
P5/SLC10A5 (SLC10A5); and SLC10A7 (SLC10A7). The SLC10
family is mainly responsible for transporting physiological

substrates, such as bile salts, steroid hormones, and various
drugs (Claro da Silva et al., 2013). NTCP is a transmembrane
protein specifically found in the basolateral membrane of
hepatocytes where it functions in the basolateral uptake of bile
acids from the portal blood into hepatocytes (Lee et al., 2017).

Bile acids are synthesized from cholesterol in the liver and
subsequently stored in the gallbladder. They are essential for the
absorption of lipids, cholesterol, and lipid-soluble vitamins owing
to their amphipathic nature and ability to form mixed micelles.
Most of the bile acids released into the small intestine after a meal
are reabsorbed by the intestinal wall and returned to the liver
through the portal vein for resecretion (Ticho et al., 2019). Bile
acids from sinusoidal blood enter the canaliculus through
hepatocytes and are taken up by hepatocytes via NTCP (Zhao
et al., 2021). NTCP co-transports bile acids at a Na+/taurocholate
stoichiometry of 2:1, and is responsible for the uptake of >80% of
conjugated taurocholate and <50% of unconjugated cholate from
the blood into hepatocytes. Meanwhile, the bile salt export pump
(BSEP), which belongs to the ATP-binding cassette transporter
family, is primarily found in the canalicular membrane of
hepatocytes, and effluxes bile salts from hepatocytes into the
bile. Hence, NTCP and BSEP are important proteins for the
transportation of bile acids and the maintenance of bile acid
homeostasis (Alrefai and Gill 2007; Lu et al., 2019). In addition to
basic physiological substrates, such as glycine- and taurine-
conjugated bile acids and sulfated and unconjugated bile salts,
NTCP also transports estrone-3-sulfate [E (1)S],
dehydroepiandrosterone sulfate (DHEAS),
bromosulfophthalein, thyroid hormones, and even exogenous
chemicals (Petzinger 1994; Mita et al., 2006; Visser et al.,
2010; Stieger 2011).

A decrease in NTCP functional activity is linked to impaired
bile salt homeostasis and can lead to cholestasis (Stieger 2011).
Cholestasis is caused by a reduction of bile flow and results in the
retention of bile salts within hepatocytes. Owing to their
detergent properties, the accumulated bile salts can become
cytotoxic to hepatocytes, including mitochondrial damage,
finally leading to liver injury (Sokol et al., 2006). Research has
shown that a marked reduction in NTCP mRNA levels
contributes to inflammation-induced cholestasis in humans
(Zollner et al., 2001), and that NTCP expression can be
downregulated in isolated and cultured human hepatocytes
following treatment with interleukin 6 (IL-6), IL-1β, or tumor
necrosis factor-alpha (TNF-α) (Le Vee et al., 2008; Le Vee et al.,
2009). NTCP was downregulated at the level of protein, but not
mRNA, in liver samples obtained from patients with progressive
familial intrahepatic cholestasis, indicating a post-translational
regulation of NTCP in this disease (Keitel et al., 2005).
Additionally, a novel disorder called NTCP deficiency, which
is an inborn error of bile acid metabolism caused by biallelic
mutations in the SLC10A1 gene, was first described by Vaz et al.,
in 2015 (Vaz et al., 2015). Subsequently, an increasing number of
patients have been diagnosed with this condition, many of whom
presented no manifestations other than hypercholanemia. NTCP
deficiency was shown to be ethnicity-dependent, with the
functionally impairing c.800C > T (pSer267Phe) variant being
found in Chinese Americans (7.5%) and the c.668T > C
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(pIle223Thr) variant in African Americans (5.5%) and Hispanic
Americans (0.55%) (Claro da Silva et al., 2013). Further molecular
and clinical evidence is needed to provide comprehensive insight
into the mechanisms underlying the pivotal role of NTCP in these
disorders, and allow the development of therapeutic strategies
aimed at their treatment.

3 THE ROLE OF SODIUM TAUROCHOLATE
CO-TRANSPORTING POLYPEPTIDE IN
HEPATITIS B VIRUS ENTRY

3.1 Identification of Sodium Taurocholate
Co-Transporting Polypeptide as a Receptor
for Hepatitis B Virus
HBV, a causative agent for acute/chronic hepatitis and HCC, is
transmitted through contact with infected blood or other body fluids
and triggers immune-mediated liver diseases of varying severity and
duration. HBV has a circular, partly double-stranded, enveloped
DNA genome that selectively enters hepatocytes where it delivers its
genome, thereby initiating a multifaceted process of viral replication
(Iannacone and Guidotti 2022). The HBV envelope contains three
forms of the HBV surface protein (HBsAg), namely the large (L),
middle (M), and small (S) proteins. Importantly, the preS1 domain
of the large envelope protein has been identified as an essential
structure for HBV attachment and entry (Sureau et al., 1993).
However, the functional receptor mediating HBV entry into
hepatocytes remained unknown for more than 20 years since the
discovery of the virus, until NTCPwas identified as being critical for
preS1 binding and HBV infection (Yan et al., 2012).

NTCP is located on the basolateral membrane domain (blood-
side) of hepatocytes and is broadly expressed in humans, rats, and
monkeys, among other species (Qiu et al., 2013). NTCP is
expressed exclusively in the liver. Human NTCP (hNTCP,
encoded by the SLC10A1 gene) is a protein of 349 amino acids
with an apparentmass of 56 kDa (Dawson et al., 2009;Watashi and

Wakita 2015). Although the crystal structure of hNTCP has not
been solved, a series of modeling, mutagenesis, and biochemical
analyses suggest that this protein has a putative nine
transmembrane domains with a topology predicted to consist of
an extracellular N-terminus and an intracellular C-terminus (Hu
et al., 2011; Fukano et al., 2019; Appelman et al., 2021) (Figure 1).
Which region(s) of NTCP is essential for viral attachment and the
subsequent triggering of internalization remains incompletely
understood. Current evidence suggests that hNTCP residues 157
to 165 (KGIVISLVL) are important for preS1 binding and, thus,
HBV infection (Yan et al., 2012; Ni et al., 2014). By analyzing the
susceptibility of NTCP variants to HBV attachment, Müller et al.
(2018) showed that a single amino acid at position 158 of NTCP is
critical for HBV binding and subsequent infection. Similarly, Junko
and others demonstrated that the sequence of amino acid 158 was a
determining factor for the attachment of theHBV envelope protein
to the host cell (Takeuchi et al., 2019). In addition, it was found that
the molecular determinants for the transporter function of NTCP
overlapped with those for its ability to support HBV entry (Yan
et al., 2014). Mutations in the amino acids of NTCP that are critical
for bile salt binding (N262A, Q293A/L294A) abrogated both the
binding of NTCP to the preS1 peptide and infection by HBV. The
S267F variant of NTCP could neither bind to the preS1 region nor
support HBV infection in cell culture, thereby supporting the role
of NTCP as the cellular receptor for HBV infection in humans
(Peng et al., 2015; Lee et al., 2017; An et al., 2018). A recent study
demonstrated that hepatocytes expressing the NTCP-S267F
variant, introduced into the SLC10A site via CRISPR editing,
are resistant to HBV infection (Uchida et al., 2021). However,
patients homozygous for S267F can still be infected by HBV,
suggesting the existence of alternative receptors that allow viral
entry in the absence of functional NTCP (Hu et al., 2016).

HBV primarily infects humans, chimpanzees, and several
other great apes, but not monkeys or lower primates. Viral
infections in non-susceptible species are known to be mainly
restricted at the entry level as viral replication can be achieved in
cells from the relevant species when the cells are transfected with

FIGURE 1 | NTCP transmembrane domains in the plasma membrane. The transmembrane protein NTCP has a putative nine transmembrane domains with a
topology predicted to consist of an extracellular N-terminus and an intracellular C-terminus.
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the viral genome (Yan et al., 2013). Lempp and others reported
that hepatocytes from cynomolgus macaques, rhesus macaques,
and pigs expressing hNTCP become fully susceptible to HBV
with efficiencies comparable to that for human hepatocytes.
However, when expressed in rodent or canine hepatocytes,
hNTCP can support HBV attachment but not the
establishment of HBV infection (Lempp et al., 2017).
Moreover, the substitution of residues 85–87 of murine NTCP
(mNTCP) with those of human NTCP is sufficient to facilitate
HBV entry into the cell but not to support infection (Yan et al.,
2013). These observations imply that other host factors besides
NTCP are required for HBV internalization in hepatocytes of
these animals and that the differences between species, such as
NTCP structure and (co)receptors, affect HBV susceptibility and
infection efficiency.

3.2 Sodium Taurocholate Co-Transporting
Polypeptide Mediates Hepatitis B Virus
Infection
HBV infection into host hepatocytes involves multiple steps. In
the initiation of infection, HBV reversibly attaches to heparan
sulfate proteoglycans on the cell surface via a highly

conformational determinant region 1) of the HBsAg
glycoprotein (Sureau and Salisse 2013). HBV subsequently
interacts with its specific receptor with high affinity, thereby
triggering viral internalization. After endocytosis-mediated
internalization, the virus fuses with the cellular membrane
compartment. However, the precise mechanisms are not yet
fully understood (Watashi et al., 2014a).

Data collected to date clearly indicate that NTCP can serve as
an HBV receptor, especially in vitro (Li and Tong 2015). NTCP
mediates the specific binding of HBV to the host cell surface with
high affinity by interacting with the preS1 region of the large
surface protein (LHB) of HBV. NTCP confers HBV susceptibility
to human hepatic cell lines such as HepG2, Huh7, or
undifferentiated HepaRG cells, which are originally non-
susceptible to infection (Iwamoto et al., 2014; Ni et al., 2014).
This easily manipulated model of cell infection has been used to
decipher the early steps of HBV entry. However, the expression of
NTCP alone is not sufficient for efficient HBV internalization
into hepatocytes, and additional host factors are likely to be
required for susceptibility to HBV infection, potentially through
the formation of a complex and a multistep entry process. For
example, host epidermal growth factor receptor (EGFR) was
reported to interact with NTCP and mediate HBV

FIGURE 2 | Regulation of NTCP expression. Transcriptional and post-translational regulation of NTCP were summarized. (A) Transcriptional regulation, ① Bile
acid-induced, FXR-mediated induction of the nuclear repressor SHP is a key mechanism reducing NTCP expression, through its interference with the RXR-RAR
heterodimer, HNF-1α and HNF-4α, which have binding sites within the NTCP promoter. FXR expression can bemodulated by SIRT1 through HNF-1α;② STAT5 directly
bound to NTCP promoter and mediates NTCP expression; ③ IL-6 down-regulates the expression of NTCP through suppression of HNF1α and HNF4α in JNK
pathway-dependent manner, IL-1β down-regulates the expression of NTCP via suppression of the RAR/RXR complex in JNK pathway-dependent manner; ④
Glucocorticoid increases NTCP expression in a GR-dependent manner, which was inhibited by FXR-induced expression of SHP. (B) Post-translational regulation, PP2B
and PI3K/PKB/PKC axis facilitate the intracellular movement of NTCP towards the plasma membrane following cAMP activation. Elevated bile acid levels inhibit cAMP
activation; (C). NTCP protein abundance was controlled by ubiquitin-proteasome system. Abbreviations: BA, bile acid; FXR, farnesoid X receptor; SHP, small
heterodimer partner; HNF-1α, hepatocyte nuclear factor 1 alpha; SIRT1, hepatic sirtuin 1; STAT5, signal transducer and activator of transcription 5; GLE, interferon-
gamma (IFN-γ)-activated sequence-like element; GR, glucocorticoid receptor; RXR, retinoid X receptor; RAR, RXR-retinoic acid receptor; PP2B, protein phosphatase
2B; UPS, ubiquitin-proteasome system.
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internalization (Iwamoto et al., 2019), a finding that potentially
accounts for the low rate of infection in the HepG2 cell line, in
which EGFR expression is undetectable (Zhao et al., 2013).
Kinesin family member 4 (KIF4) regulates the levels of surface
NTCP via the anterograde transport of NTCP to the cell surface,
potentially also mediating HBV entry (Gad et al., 2021).

4 REGULATION OF SODIUM
TAUROCHOLATE CO-TRANSPORTING
POLYPEPTIDE EXPRESSION
The human, rat, and mouse SLC10A1/Slc10a1 genes span 21.4,
13.6, and 12.5 kb and map to chromosomes 14q24, 6q24, and
12D1, respectively. The human SLC10A1 gene comprises five
exons and contains an open reading frame of 1,047 bp encoding a
349-amino acid protein with a calculated molecular mass of
approximately 38 kDa (Döring et al., 2012). NTCP is located
predominantly on the basolateral membrane of hepatocytes and
is responsible for the uptake of conjugated bile acids from the
blood into the liver (Anwer and Stieger 2014). Nevertheless,
elevated bile salt levels in hepatocytes can inhibit NTCP
expression at both the transcriptional and post-translational
levels through a negative feedback loop mediated by diverse
cellular signaling pathways.

4.1 Transcriptional Regulation of Sodium
Taurocholate Co-Transporting Polypeptide
Most studies on NTCP transcriptional regulation are based on
rodent models and engineered HepG2-NTCP or other cells
because NTCP shows minimal endogenous expression in
hepatocellular cell models and is rapidly lost from primary
human hepatocytes following their isolation (Xia et al., 2017).
Key transcriptional regulators of NTCP identified to date include
farnesoid X receptor (FXR)/small heterodimer partner (SHP), the
homeodomain protein hepatocyte nuclear factor 1 alpha (HNF-
1α), HNF-4α, retinoid X receptor-alpha (RXRα), HNF-3β, and
signal transducer and activator of transcription 5 (STAT5)
(Ganguly et al., 1997; Lu et al., 2019). Other factors, such as
proinflammatory cytokines, hormones, and several chemical
compounds, are also suggested to participate in the
transcriptional regulation of NTCP (Figure 2).

NTCP mRNA regulation is mainly linked to bile acid
concentration, which serves as an adaptive response to block
excessive bile acid accumulation in hepatocytes under
pathophysiological conditions (Xia et al., 2017). NTCP is
downregulated during cholestasis. Bile acid-induced, FXR-
mediated induction of the nuclear repressor SHP has been
proposed to be a key mechanism underlying the reduction in
NTCP expression through interfering with the RXR-retinoic acid
receptor (RAR) heterodimer, for which there is a binding site
within the NTCP promoter (Anwer 2004). FXR is a bile acid-
activated nuclear receptor (BAR) and is mainly expressed in the
liver and intestine. In the liver, NTCP was reported to be strongly
repressed in wild-type (WT) mice fed a colic acid-containing diet.
This repression was largely retained in SHP-null mice, in

agreement with the proposed role of SHP in the negative
regulation of NTCP expression. This phenomenon also
indicated that SHP-independent mechanisms may be involved
in mediating NTCP repression in cholestasis (Wang et al., 2003).
In the distal ileum, FXR activation also instigates the production
of fibroblast growth factor 19 (FGF19; FGF15 in mice), which
then reaches hepatocytes via the portal circulation and activates
the fibroblast growth factor receptor 4 (FGFR4)/β-Klotho
complex, thereby triggering intracellular signaling pathways in
the liver to maintain the bile acid balance. The administration of
recombinant hFGF19 downregulates NTCP mRNA by ~50% in
WT mice, indicating that FXR further modulates NTCP mRNA
expression via FGF15/19 signaling (Inagaki et al., 2005;
Slijepcevic et al., 2017). In addition, the glucocorticoid
receptor (GR), a ligand-activated transcription factor, can
directly bind and activate the NTCP promoter. Human NTCP
expression is upregulated by the GR ligand dexamethasone in
Huh-7 cells and augmented by peroxisome proliferator-activated
receptor-γ coactivator-1α (PGC-1α), while GR-mediated
activation is inhibited by SHP downstream of FXR (Eloranta
et al., 2006). Furthermore, it was reported that FXR expression is
regulated by hepatic sirtuin 1 (SIRT1), a NAD-dependent
deacetylase that has been found to couple the deacetylation of
many transcription factors and cofactors, such as NF-κB, PGC-1α
and FXR, to NAD+ hydrolysis (Yu et al., 2016).

HNF-1α and HNF-3β are also essential regulators of bile acid
metabolism. HNF-1α can bind and transactivate the rat Ntcp
promoter, but not that of humans or mice, whereas HNF-3β
mediates the transcriptional repression of the NTCP/Ntcp
promoter in all three species via directly binding to its
response elements (Jung et al., 2004; Zhao et al., 2021). HNF-
1α−/− livers exhibit decreased NTCP expression in the basolateral
membrane, leading to impaired portal bile acid uptake and
elevated plasma bile acid concentrations (Yu et al., 2016).
HNF-1α also regulates the expression of the nuclear receptor
FXR, a key regulator of NTCP expression (Shih et al., 2001). As
mentioned above, SIRT1 modulates FXR transcriptional
regulation through HNF-1α, and SIRT1 deficiency in the liver
was found to decrease the binding of HNF-1α to the FXR
promoter and thus reduce its expression, resulting in impaired
bile acid metabolism (Purushotham et al., 2012). HNF-4α directly
binds to the mouse Ntcp promoter through functional HNF-4α
response elements while PGC-1α potentiates HNF-4α-induced
NTCP transactivation (Geier et al., 2008). Importantly, as HNF-
1α was shown to control HNF-4α transcription, repressed NTCP
expression in HNF-1α deficiency may potentially reflect an HNF-
4α-mediated mechanism (Odom et al., 2004).

STAT5 was reported to directly bind to interferon-gamma
(IFN-γ)-activated sequence-like elements (GLEs) in the Ntcp
promoter as well as mediate the upregulation of Ntcp
expression by prolactin in the rat (Ganguly et al., 1997).
Notably, however, Ntcp expression was found to be reduced in
pregnant rats in late gestation despite the increase in the level of
STAT5. This suggests that a STAT5-independent pathway that is
activated during pregnancy exerts a greater effect than STAT5 on
Ntcp expression (Zhao et al., 2021). Bu and others investigated
the impact of STAT5 signaling on the expression of the mouse
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and human Ntcp/NTCP gene using berberine, an inhibitor of
STAT signaling. Through assessing the binding of phospho-
STAT5 protein to STAT5 response elements in the NTCP
promoter, the authors determined that STAT5 regulates the
expression of both mouse and human Ntcp/NTCP (Bu et al.,
2017), as previously also reported for the rat.

Cholestasis can trigger the release of cytokines such as IL-6,
IL-1β, and TNF-α, which, in turn, repress NTCP transcription.
IL-6 is an important cytokine with roles in inflammation and
liver regeneration, and NTCP expression is known to be
strongly regulated by IL-6. A decrease of up to 98% in NTCP
mRNA steady-state levels was detected in primary human
hepatocyte (PHH) and HepaRG cells after IL-6 treatment
(Bouezzedine et al., 2015). The effect of IL-6 on NTCP has
also been investigated in mice through the injection of
turpentine, which induces an acute phase response with IL-6
production. Turpentine treatment resulted in the
downregulation of NTCP mRNA expression in WT mice, but
not in IL-6 KO animals (Siewert et al., 2004). In addition, Yan
et al. (2019) found that there was a sharp rise in IL-6 mRNA

levels in mice injected with LPS, an effect that was accompanied
by a reduction in NTCP transcript levels. However, NTCP
mRNA levels showed a partial recovery when serum IL-6 was
neutralized with IL-6 antibodies, indicating that IL-6 can
downregulate the expression of NTCP in inflammation at the
transcriptional level. Mechanistic studies indicated that the
downregulation of NTCP could be mediated by the
activation of c-Jun N-terminal kinase (JNK), which
suppresses the expression and binding activity of multiple
nuclear factors such as HNF-1α and HNF-4α (Geier et al.,
2007). Similarly, a marked downregulation of NTCP mRNA
expression was detected in HepaRG cells in response to 24 h of
exposure to IL-1β at the concentration of 1 ng/ml (Le Vee et al.,
2008). Moreover, this effect was shown to be mediated via the
suppression of the RAR/RXR complex in a JNK pathway-
dependent manner, resulting in the downregulation of NTCP
promoter activity and transport activity (Li et al., 2002). The
effects of IL-1β and TNFα have been investigated in rats, and the
inactivation of either cytokine was found to prevent the
downregulation of NTCP mRNA expression. In contrast to

TABLE 1 | Examples of HBV entry inhibitors targeting NTCP-mediated viral infection.

Drugs Mechanism References

Bile Acids and Their Derivatives

Bile acids: taurocholate,
tauroursodeoxycholate,
bromosulfophthalein

Competitively inhibit NTCP-mediated HBV entry Yan et al. (2014), Zhao et al. (2021)

Bile acid derivatives: OCA, INT-767 FXR agonist, blocks HBV entry by inhibiting NTCP Ito et al. (2021)
Dual agonist of FXR and TGR5, blocks HBV entry by inhibiting
NTCP

DBADs (DBA-41) Binds to NTCP Liu et al. (2021)

Peptides

Myrcludex B Blocks the NTCP receptor Volz et al. (2013), Bogomolov et al. (2016), Cheng et al.
(2021)

Cyclosporin A and its derivatives Block the NTCP receptor Watashi et al. (2014b), Nkongolo et al. (2014), Shimura et al.
(2017)

Macrocyclic peptides: WD1, WL2,
and WL4

Interact with NTCP, without inhibiting the transporter activity of
NTCP

Passioura et al. (2018)

Chemical compounds

EGCG Down-regulates NTCP protein Huang et al. (2014)
Irbesartan Inhibits NTCP via targeting SLC10A1 Ko et al. (2015)
Ezetimibe Inhibits myr-preS1 peptide binding Bays et al. (2008), Blanchet et al. (2014); König et al. (2014)
Fasiglifam Inhibits NTCP Nio et al. (2018)
Proanthocyanidin and its analogs Directly targets the preS1 region of LHB Tsukuda et al. (2017)
Vanitaracin A Directly interacts with NTCP Kaneko et al. (2015)
NTI-007 Tightly binds to NTCP and induces autophagy Zhang et al. (2015)
Ritonavir Interrupts NTCP function Blanchet et al. (2014)
Ro41-5,253 Represses the NTCP promoter by antagonizing RAR Tsukuda et al. (2015)
Evans blue Inhibits the binding of preS1 to NTCP Xiao et al. (2019)
NPD8716 Interacts with NTCP Kaneko et al. (2018)

Neutralizing antibodys

N6HB426-20 Anti-NTCP Takemori et al. (2022)
MA18/7 Anti-preS1 Glebe et al. (2003)
2H5-A14 Anti-preS1 Li et al. (2017)
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the predominant role of IL-1β in a complex signaling network
involved in NTCP regulation in cholestatic liver injury, TNF-α
represents the master cytokine responsible for the HNF1-
dependent reduction of NTCP levels in CCl4-induced toxic
liver injury (Geier et al., 2003). Another cytokine within the IL-6
family, oncostatin M (OSM), also dose-dependently induced the
downregulation of NTCP expression, an effect that was highly
correlated with that of IL-6 (Le Vee et al., 2011).

Hormones such as estrogen, adrenal glucocorticoid,
prolactin, growth hormone, and thyroid hormone are also
suggested to participate in the regulation of NTCP expression
(Simon et al., 2004; Cheng et al., 2007; Rose et al., 2011). For
example, Rose et al. (2011) demonstrated that ex vivo
glucocorticoid treatment increases NTCP expression in a GR-
dependent manner in both the human and mouse liver.
Meanwhile, chemical compounds such as dioxin, rifampicin,
cholestyramine, phenobarbital, and oltipraz have also been
shown to participate in the regulation of NTCP expression
(Cheng et al., 2007; Zhao et al., 2021). However, the
mechanisms underlying the effects of these hormones and
compounds on NTCP expression need further investigation.

4.2 Post-Translational Regulation of Sodium
Taurocholate Co-Transporting Polypeptide
NTCP, an integral membrane glycoprotein, is localized to the plasma
membrane and endocytic vesicles. The localization and membrane
expression of NTCP is controlled by post-translational mechanisms
involving phosphorylation or dephosphorylation, translocation to
and retrieval from the plasma membrane, and degradation by the
ubiquitin-proteasome system (UPS) (Anwer 2014). These post-
translational regulatory mechanisms are mediated via signaling
pathways involving cyclic adenosine monophosphate (cAMP),
calcium, phosphoinositide-3-kinase (PI3K), protein kinase C
(PKC), nitric oxide, and protein phosphatases (Anwer and Stieger
2014). For example, cAMP stimulates the dephosphorylation and
consequent translocation of NTCP to the plasma membrane by
dephosphorylating the Ser-226 site in the third cytoplasmic loop of
NTCP (Anwer et al., 2005). Moreover, cAMP can enhance
taurocholate uptake by promoting the insertion of NTCP into the
plasma membrane via increases in intracellular Ca2+ concentrations
and the subsequent activation of protein phosphatase 2B (PP2B) via
Ca2+-calmodulin kinase (Mukhopadhayay et al., 1997; Anwer and
Stieger 2014).

The PI3K-signaling pathway, which comprises three
downstream effectors (protein kinase B [PKB/AKT]), P70 S6
kinase [p70S6K], and PKC) plays a role in the cAMP-mediated
translocation of NTCP. The effect of cAMP is not mediated via
p70S6K because treatment with rapamycin, an inhibitor of p70S6K,
does not inhibit cAMP-mediated stimulation of Na+-
taurocholate uptake (Webster and Anwer 1999; Webster et al.,
2000). Transfection with constitutively active PKB was shown to
increase PKB activity, taurocholate uptake, and NTCP
translocation, whereas inhibiting PKB blocked cell swelling-
and cAMP-induced increases in taurocholate uptake and
NTCP translocation (Webster et al., 2002). PKC is expressed
as multiple isoforms, among which PKCδ and PKCζ have been

suggested to play a role in the cAMP-induced translocation of
NTCP to the cell surface. The PKCδ isoform mediates cAMP-
induced translocation of NTCP via the activation of Rab4, which
is associated with early endosomes and is involved in vesicular
trafficking. These effects of PKCδ are mediated by its plasma
membrane localization rather than its kinase activity (Park et al.,
2012). Moreover, PKCζ activation enhances the cAMP-promoted
motility of NTCP-containing vesicles, while specific inhibition of
PKCζ exerts the opposite effect, indicating that PKCζ is
specifically required for the cAMP-induced intracellular
movement of vesicles that contain the NTCP transporter
(Sarkar et al., 2006).

In addition, maturing NTCP is degraded by the ubiquitin-
proteasome system at the level of ER-associated degradation
(ERAD), and an imbalance in NTCP synthesis and
degradation can result in intracellular NTCP deposits and
subsequently lead to cholestasis (Kühlkamp et al., 2005). In
summary, PP2B and PI3K/PKB/PKC axis facilitate the
intracellular movement of NTCP toward the plasma
membrane following cAMP activation, while the ubiquitin-
proteasome system controls NTCP protein abundance
(Figure 2).

5 SODIUM TAUROCHOLATE
CO-TRANSPORTING POLYPEPTIDE AS A
TARGET FOR ANTI-HEPATITIS B VIRUS
AGENTS

As the first step in viral infection, viral entry represents an attractive
target for the development of antiviral agents. Using entry inhibitors,
HBV infection can be blocked before the virus produces its genomic
material or alters infected cells. The inhibition of HBV entry is
effective at preventing de novo infection during post-exposure
prophylaxis, organ transplantation, reactivation following
therapeutic immunosuppression, or perinatal transfer from an
infected mother to her children (Urban et al., 2014). The
identification of NTCP as a cellular receptor for HBV, involving a
specific interaction betweenNTCP and the preS1 domain of theHBV
large envelope protein, has permitted the rational design of drugs
targeting viral entry (Trépo et al., 2014). Many types of HBV entry
inhibitors targeting NTCP-mediated viral infection have been
identified to date, including bile acids and their derivatives,
peptides, chemical compounds, and neutralizing antibodies
(Table 1).

NTCP substrates such as taurocholate, tauroursodeoxycholate,
and bromosulfophthalein competitively inhibit NTCP-mediated
HBV entry because the molecular determinants for HBV entry
overlap with those for bile salt uptake by NTCP (Yan et al., 2014;
Zhao et al., 2021). The bile acid derivatives obeticholic acid (OCA)
and 6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium
salt (INT-767; a dual agonist of FXR and Takeda G protein-
coupled receptor [TGR5]) can block HBV entry by inhibiting
NTCP (Ito et al., 2021). Accordingly, bile acids and their
derivatives hold potential for development into novel therapeutic
drugs targeting HBV infection.
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Myrcludex B is a linear, synthetic N-acetylated lipopeptide
consisting of 47 amino acids of the preS1 region of the large
surface antigen generated through solid-phase synthesis. It is the
first entry inhibitor capable of inactivating NTCP in vitro and in vivo,
and does so by interacting with HBV particles and competing for
NTCP receptors. The concentration that blocksHBVandHDVentry
is 100-fold lower than that required to inhibit bile acid transport by
NTCP (Volz et al., 2013; Bogomolov et al., 2016; Cheng et al., 2021).
At present, Myrcludex B has been approved in Europe for the
treatment of patients with chronic HDV infection under the trade
name Hepcludex® (Takemori et al., 2022). It has been reported that
cyclosporin A (CsA), another peptide inhibitor that is usually used as
an immunosuppressant in organ transplantation, as well as its
analogs, can inhibit HBV infection by targeting NTCP and
interfering with the interaction between preS1 and NTCP, thereby
blocking HBV entry into hepatocytes (Watashi et al., 2014b;
Nkongolo et al., 2014). Some macrocyclic peptides (WD1, WL2,
andWL4) were also found to interact with NTCP, thereby inhibiting
HBV infection, but with NTCP-mediated bile acid uptake (Passioura
et al., 2018).

Regarding chemical compounds, numerous drugs have been
developed to block the interaction between HBV and NTCP.
Drugs such as irbesartan, ezetimibe, and ritonavir were identified
as HBV inhibitors based on their potent inhibitory effect on NTCP
metabolic function (Bays et al., 2008; Blanchet et al., 2014; König et al.,
2014; Ko et al., 2015). Moreover, compounds obtained from herbal
medicines, such as epigallocatechin-3-gallate (EGCG) (Huang et al.,
2014), a flavonoid belonging to the catechin subclass present in green
tea, can mitigate HBV entry by accelerating NTCP degradation.
Proanthocyanidin, an oligomeric flavonoid, inhibits HBV entry into
host cells by targeting theHBV large surface protein, and does sowith
only limited cytotoxic effect (Tsukuda et al., 2017). Vanitaracin A, a
tricyclic polyketide, directly interacts with NTCP and impairs its bile
acid transport activity (Kaneko et al., 2015). Meanwhile, Evans blue
can inhibit the binding of viral preS1 to host cells through NTCP as
well as virus capsid assembly by targeting the host’s big potassium
(BK) channels. Accordingly, this compound represents a promising
therapeutic option for the treatment of HBV infection (Xiao et al.,
2019).

Several monoclonal antibodies that recognize the preS1 region and
can inhibit viral entry have been reported to date. For example,MA18/
7 and 2H5-A14 target the preS1 region and neutralize HBV infection
(Glebe et al., 2003; Li et al., 2017). In addition, a monoclonal antibody
against NTCP—N6HB426-20—has been shown to recognize the
extracellular domain of human NTCP (residues 276/277 at the tip
of extracellular loop-4 of NTCP) and block HBV entry into human
liver cells in vitro, while exerting substantially less of an inhibitory
effect on bile acid uptake (Takemori et al., 2022). With further
improvements, this antibody may be a promising treatment option
for patients with chronic hepatitis B.

6 CONCLUDING REMARKS

Chronic hepatitis remains a major global public health problem due
to the risk of progression to chronic hepatitis, cirrhosis, and HCC.
The discovery that NTCP, the key bile acid transporter expressed by

liver cells, plays a crucial role in HBV entry into hepatocytes has
significantly advanced our understanding of the HBV life cycle. This
review has provided an overview of the complex regulation of NTCP
activity and plasma membrane abundance, both of which are
regulated at multiple levels. However, the individual contribution
of each of these mechanisms under various conditions remains
largely unclear, and further clarification will likely lead to the
identification of additional anti-HBV drug candidates with novel
modes of action.

The pharmacological inhibition of NTCP activity provides new
avenues in the field of drug discovery as well as in the development of
models for screening anti-HBV drugs. The advantage of NTCP-
targeted HBV entry inhibitors is that they remain effective regardless
of viral genotype, viral mutations, and the presence of subviral
particles. Importantly, however, these agents also block NTCP-
mediated bile acid transport into hepatocytes, and thus have the
potential to cause adverse effects. Moreover, further in vivo data are
required to allow the assessment of the efficiency and safety ofNTCP-
targeting drugs. Consequently, it is of great interest to identify specific
viral entry inhibitors that do not affect the physiological function of
NTCP. We speculate that LYTAC (lysosome-targeting chimeras)
technology, which can trigger the targeted degradation of
extracellular proteins and membrane-bound proteins by the
proteasome, may be a good strategy for the downregulation of
NTCP, although other mechanisms may be needed to ensure
effective hepatic bile salt clearance in the case of excessive NTCP
degradation by the proteasome. However, this hypothesis requires
experimental validation.

In conclusion, NTCP is the most critical determinant of HBV
entry into cells. However, the mechanisms involved in the
regulation of NTCP remain largely elusive, the crystal
structure of NTCP has yet to be elucidated, and many host
factors involved in HBV infection have yet to be identified.
Insight into these unknowns would be highly valuable for
developing NTCP-targeting inhibitors and understanding the
mechanism underlying HBV infection. Finally, bepirovirsen,
an antisense oligonucleotide, was recently reported to inhibit
HBV infection by targeting all HBVmessenger RNAs. The results
of a recent phase 2 randomized controlled trial of this drug
showed that it performed with gratifying efficacy and a favorable
safety profile (Yuen et al., 2021). Combining viral entry and
replication inhibition will likely benefit the development of
curative strategies for patients with chronic HBV.
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