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REVIEW

Myeloid-Derived Suppressor Cells

Myeloid derived suppressor cells (MDSCs) are a 
heterogeneous population of myeloid progenitor cells, i.e., 
immature macrophages, granulocytes, and dendritic cells (DCs), 
that are endowed with a robust immunosuppressive activity.1 In 
normal healthy individuals, immature myeloid cells differentiate 
into mature granulocytes, macrophages, and DCs. Conversely, 
in cancer patients, MDSCs respond to tumor-secreted factors 
including interleukin (IL)-6, granulocyte macrophage colony-
stimulating factor (GM-CSF) and IL-1β by emigrating from 
the bone marrow and accumulating within primary neoplastic 
lesions and metastases.2 In the tumor microenvironment (TME), 
MDSCs are prevented from differentiation and are stimulated to 
express immunosuppressive enzymes like arginase I and inducible 
nitric oxide synthetase as well as to produce immunosuppressive 
mediators, including reactive oxygen species and various 
cytokines such as IL-6, IL-10, and transforming growth 
factor β1 (TGFβ1).1,2 Altogether, these enzymes and factors 
are responsible for the suppression of T-cell and natural killer 
(NK)-cell responses in the TME.1-3 While MDSCs are highly 
immunosuppressive,1-3 we have recently shown that these cells 
can be used as a vehicle to deliver anticancer agents to the TME 

with help of Listeria monocytogenes.4,5 MDSCs are abundant not 
only in the peripheral blood of tumor-bearing mice, but also in 
the circulation of patients affected by almost all types of cancer. 
Thus, MDSC/Listeria-based interventions might be suitable for 
the treatment of a wide panel of neoplasms.

Listeria Monocytogenes

Listeria monocytogenes is Gram-positive facultative intracellular 
bacterium that causes food-poisoning. In contrast to wild type 
Listeria, attenuated non-virulent strains of Listeria monocytogenes 
are attractive vaccine vectors because of their unique ability to 
selectively deliver antigenic determinants to antigen-presenting 
cells (APCs) such as monocytes, macrophages, and DCs through 
phagocytosis, while activating strong innate and adaptive 
immune responses.6 Listeria-based anticancer vaccines have been 
developed and tested by different groups, including ourselves, in 
animal models of various neoplasms including (but not limited 
to) breast, pancreatic, cervical, and colorectal carcinoma.4,6,7

We discovered that an attenuated strain of L. monocytogenes 
(Listeriaat) infects not only APCs but also cancer cells. Malignant 
cells are efficiently killed by Listeriaat upon the generation of 
high levels of reactive oxygen species.7 Importantly, Listeriaat 
appears to multiply within primary neoplastic lesions as well as 
within metastases, and infected cancer cells become sensitive to 
the cytotoxic activity of Listeriaat-activated T and NK cells. The 
selective survival and replication of Listeriaat in malignant, but 
not in normal, tissues is attributed to the fact that Listeriaat is 
efficiently cleared by the immune system in non-transformed 
tissues but not in the heavily immunosuppressed TME.4,5 This 
raised the question on how Listeriaat could safely reach the TME 
without being eliminated. It turned out that MDSCs play an 
important role in the delivery of L. monocytogenes to the TME.4,5

MDSCs Selectively Deliver Listeriaat  
to Primary Malignant Lesions and Metastases

MDSCs are well known as one of the major contributors to 
the establishment of an immunosuppressive TME, where they are 
recruited by chemoattractants produced by malignant cells.2 We 
discovered a unique relationship between Listeriaat and MDSCs. 
Listeriaat infects MDSCs and can survive within MDSCs because 
of their immunosuppressive nature. Moreover, infected MDSCs 
appear to selectively deliver Listeriaat to primary malignant lesions 
as well as to metastases. Once in the TME, Listeriaat spreads first 
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While conventional anticancer therapies, including surgical 
resection, radiotherapy, and/or chemotherapy, are relatively 
efficient at eliminating primary tumors, these treatment 
modalities are largely ineffective against metastases. At 
least in part, this reflects the rather inefficient delivery 
of conventional anticancer agents to metastatic lesions. 
We have recently demonstrated that myeloid-derived 
suppressor cells (MDSCs) can be used as cellular missiles to 
selectively deliver a radioisotope-coupled attenuated variant 
of Listeria monocytogenes to both primary and metastatic 
neoplastic lesions in mice with pancreatic cancer. This novel 
immunotherapeutic intervention robustly inhibited tumor 
growth while promoting a dramatic decrease in the number 
of metastases.
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from MDSCs to neighboring neoplastic cells, and then from 
cancer cell to cancer cell through a characteristic mechanism of 
dissemination.8 These results suggest that MDSCs can be used as 
cellular missiles to deliver anticancer agents to primary tumors as 
well as to metastatic lesions.4 We have recently demonstrated that 
radioisotope-labeled Listeriaat bacteria are selectively delivered by 
MDSCs to primary tumors and metastases in a mouse model 
of pancreatic cancer, resulting in a robust inhibition of tumor 
growth as well as in a significant decrease in the number of 
metastases.5

Radioactive Listeria (RL) for the 
Treatment of Pancreatic Cancer

Radioactive Listeriaat (RL) was developed by coupling the 
radioisotope 188Rhenium (188Re) with Listeriaat by means of anti-
Listeria antibodies, a project that we ran in collaboration with 
the group of Ekaterina Dadachova.5 Mice bearing pancreatic 
tumors received multiple treatments with low-dose RL, resulting 
in the nearly complete elimination of metastases and a significant 

reduction in tumor growth.5 We provided 
experimental evidence that selectively Listeriaat-
infected MDSCs delivered the radioactivity to the 
primary tumor and metastatic lesions, and that RL 
infected neoplastic cells. In this setting, cancer cells 
died upon the delivery of 188Re to their cytoplasm as 
well as through a “crossfire effect,” i.e., the process 
whereby 188Re atoms taken up in one cell upon 
infection by RL also kill non-infected neighboring 
cells.5,9 The amount of radioactivity (per gram of 
tissue) accumulated within metastases was 4–5-
fold higher than that observed in all other organs, 
except the liver and kidneys. Extensive pathological 
studies revealed practically no side effects, not even 
in normal tissues exposed to comparatively higher 
amounts of radioactivity such as the liver and kidneys. 
Presumably, such a good safety profile reflects the 
fact that highly-proliferating cells, such as malignant 
cells, are preferentially sensitive to the DNA-
damaging effects of radiation. Neither Listeriaat 
nor radioactivity was detected in non-malignant 
tissues one week after the last administration of 
RL. Both 188Re and Listeria-based vaccines have 
already been tested in cancer patients separately, and 
only mild side effects were observed.6,10,11 Overall, 
these observations suggest that RL may constitute 
a valuable treatment not only for pancreatic cancer, 
but perhaps also for other tumor types.

Other Microorganisms for 
Targeting Tumors

Additional studies have shown that MDSCs 
can be used for the delivery of microorganisms 
other than Listeria to the TME. For instance, 
it has been demonstrated that the intravenous 
administration of oncolytic virus-loaded MDSCs 

to tumor-bearing mice improves the delivery of viral particles to 
the TME as well as their local persistence as compared with the 
systemic injection of naked viruses.12 This results in a significant 
decrease in tumor burden and increases the survival rate of mice 
treated with oncolytic virus-loaded MDSCs as compared with 
animals receiving oncolytic viruses as such. Other groups have 
demonstrated the potential of bacteria for the selective delivery of 
anticancer agents to malignant cells.13,14

Other Cellular Vehicles for the Delivery 
of Anticancer Agents to the TME

MDSCs are not the only type of myeloid cells that home to 
the TME and hence can be used for the delivery of anticancer 
agents to malignant cells. For instance, it has been shown that 
TIE2-expressing monocytes can deliver interferon α to the 
TME, promoting a near-to-complete inhibition of tumor growth 
coupled to a significant reduction in the amount of metastases 
in a xenograft model of human glioma as well as in a transgenic 

Figure 1. Myeloid-derived suppressor cells for the delivery of microorganisms or anticancer 
agents to the tumor microenvironment. Large numbers of myeloid-derived suppressor 
cells (MDSCs) are released from the bone marrow into the bloodstream of tumor-bearing 
hosts. MDSCs are attracted to the tumor microenvironment (TME), including primary 
neoplastic lesions and metastases, by cytokines and other chemoattractants. Upon 
infection, MDSCs can selectively deliver microorganisms such as an attenuated variant 
Listeria monocytogenes (Listeria), as such or coupled to a radionuclide (RL), to the TME, 
where these microorganisms can spread to tumor cells. In thus far, MDSCs attack cancer 
cells like bomb-loaded missiles. Malignant cells will also be killed through a “crossfire 
effect,” i.e., the process whereby 188Rhenium (188Re) atoms taken up by one cell upon 
infection by RL also kill non-infected neighboring cells. With help of MDSCs, RL promotes 
the accumulation of radionuclides in primary tumors and metastases, promoting a 
significant inhibition of tumor growth as well as the near-to-complete elimination of 
metastases in a mouse model of pancreatic cancer. Also oncolytic viruses have been 
selectively delivered to the TME with the help of MDSCs, resulting in a reduction of tumor 
burden. Additional bacterial vectors are currently under investigation for the delivery 
of anticancer agents to the TME. Such novel immunotherapeutic regimens have great 
potential for the treatment of metastatic tumors.
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model of mammary adenocarcinoma.15 Mesenchymal stem cells, 
which normally provide stromal support to malignant lesions, 
have also been successfully used to deliver anticancer agents 
to the TME.16 Taken together, these studies (including ours) 
highlight the great potential of immune cells that naturally home 
to the TME for selective delivery of anticancer agents.

Summary and Perspectives

While MDSCs are a major obstacle against the success of 
anticancer vaccines as they strongly suppress T-cell responses, we 
demonstrated that a highly attenuated strain of L. monocytogenes 

(Listeriaat) harnesses MDSCs for reaching the TME, where 
it infects and kills malignant cells. For the first time, we 
demonstrated that live Listeriaat bacteria can selectively deliver a 
radionuclide to the TME with help of MDSCs (Fig. 1). In thus 
far, MDSCs attack tumor cells like bomb-loaded missiles. Thus, 
immune cells that naturally home to the TME show great promise 
for the delivery of anticancer agents to primary neoplastic lesions 
as well as to metastases.
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