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The mycobacterium genus contains a broad range of species, including the human
pathogens M. tuberculosis and M. leprae. These bacteria are best known for their
residence inside host cells. Neutrophils are frequently observed at sites of
mycobacterial infection, but their role in clearance is not well understood. In this review,
we discuss how neutrophils attempt to control mycobacterial infections, either through the
ingestion of bacteria into intracellular phagosomes, or the release of neutrophil
extracellular traps (NETs). Despite their powerful antimicrobial activity, including the
production of reactive oxidants such as hypochlorous acid, neutrophils appear
ineffective in killing pathogenic mycobacteria. We explore mycobacterial resistance
mechanisms, and how thwarting neutrophil action exacerbates disease pathology. A
better understanding of how mycobacteria protect themselves from neutrophils will aid
the development of novel strategies that facilitate bacterial clearance and limit host
tissue damage.
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INTRODUCTION

Mycobacterium is a diverse genus comprising almost 200 species (1). The most well-known
members are the human pathogens Mycobacterium tuberculosis and Mycobacterium leprae, which
are the causative agents of tuberculosis and leprosy, respectively. Tuberculosis is a pulmonary
disease that has plagued humans for thousands of years, and while global prevalence was reduced in
the early 20th century due to the development of vaccines and antibiotics, the incidence has
increased again such that it is estimated that a quarter of the world’s population is currently infected
with M. tuberculosis with more than 4,000 deaths per day (2). The prevalence of leprosy is still of
significant concern in endemic areas (3), and while curable the age-old stigma associated with
leprosy still persists, creating fear and a reluctance to seek medical help. The mycobacterium genus
also contains obligate and opportunistic pathogenic mycobacteria, which are grouped together as
non-tuberculous mycobacteria (NTM). The incidence of NTM infection is increasing, such that in
the USA the prevalence of pulmonary disease due to NTM is now greater than that of tuberculosis
(4). The appearance of multi-drug resistant mycobacteria is of major concern, and new treatments
are urgently required.

Mycobacteria can be remarkably successful intracellular pathogens that not only survive the
initial assault of the innate immune system, but eventually take up residence within macrophages
org December 2021 | Volume 12 | Article 7824951
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(5, 6). Neutrophils are also prominent in the lungs of patients
with active pulmonary tuberculosis (7). They migrate to sites of
infection in response to chemotactic signals, where they ingest
pathogens into intracellular phagosomes (Figure 1). Neutrophil
cytoplasmic granules fuse with the phagosomal membrane and
empty antimicrobial peptides and proteins onto the pathogen, in
a process termed degranulation. At the same time, an NADPH
oxidase (NOX) complex assembles on the phagosomal
membrane, transferring electrons from cytosolic NADPH to
molecular oxygen in the phagosome. The initial product is
superoxide, which dismutates to hydrogen peroxide and is
converted to the potent bactericidal oxidant hypochlorous acid
(HOCl) by another granule constituent, myeloperoxidase (MPO)
(8). Pathogens that survive the initial oxidative burst may take up
residence inside neutrophils. However, the neutrophil is a short-
lived cell, providing a transport route into resident macrophages
that are charged with clearing apoptotic neutrophils.

While the internalization of pathogens limits exposure of host
tissue to the toxic compounds produced by neutrophils,
extracellular release can occur (Figure 1). This includes the
Frontiers in Immunology | www.frontiersin.org 2
ejection of strands of chromatin coated with neutrophil
proteins, which form a meshwork termed neutrophil
extracellular traps (NETs) (9–11). NETs have been shown to
trap bacteria and fungi and are thought to contribute towards
containment of infection (9, 12) and antimicrobial activity (9, 13,
14). However, NETs can cause damage to host cells and tissue,
and NETs are linked with various pathological conditions and
diseases (15, 16). Unresolved inflammation will damage lung
tissue and provide further opportunity for bacterial expansion.

In recent years it has become clear that neutrophils have more
complex roles in immune regulation, with their ability to
produce and modify cytokines, and release extracellular
vesicles (17), enabling significant crosstalk with adaptive
immune cells (18). This review focuses, however, on the early
interactions between mycobacteria and neutrophils, and we ask
the question of how pathogenic mycobacteria avoid destruction
by neutrophils. Insight into their underlying survival
mechanisms may provide therapeutic strategies that tilt this
balance in favour of the neutrophil, and enable the early
resolution of infection.
NEUTROPHILS IN MYCOBACTERIAL
INFECTION AND DISEASE

Neutrophils in Tuberculosis
Lung resident macrophages are the first immune cells to
encounter inhaled M. tuberculosis, and they contribute towards
bacterial clearance (19, 20). Neutrophils are subsequently
recruited to the site of infection. The number of circulating
neutrophils increases in patients with active tuberculosis (21–
23), and a rise in neutrophil-derived transcriptional signatures
has been observed in blood from patients with active tuberculosis
(24). A study of close contacts of patients with active pulmonary
tuberculosis showed an inverse correlation between peripheral
blood neutrophil counts and risk of M. tuberculosis infection
(21), and depletion of neutrophils from whole blood in vitro
increased M. tuberculosis growth (25), suggesting that
neutrophils can play an active role in limiting infection.
Indeed, more neutrophils than macrophages were observed to
have intracellular M. tuberculosis in sputum, bronchoalveolar
lavage (BAL) fluid and granulomas from patients with active
pulmonary tuberculosis (7). However, the fate of M. tuberculosis
phagocytosed by neutrophils is not clear.

M. tuberculosis can survive and replicate within macrophages
(26–28), where they are hidden from the immune system (29).
Neutrophils have been proposed to play a similar “Trojan horse”
role for M. tuberculosis (30, 31). Some bacteria and parasites,
including Yersinia pestis (32), Chlamydia pneumoniae (33) and
Leishmania major (34) can survive within neutrophils, and the
length of M. tuberculosis bacilli observed in BAL fluid and
sputum from patients with active tuberculosis was noted to be
similar to lengths observed in logarithmic phase cultures (7),
consistent with bacterial survival.

Neutrophils undergo apoptosis at sites of infection and can be
cleared by macrophages. In these cases, any viable intracellular
FIGURE 1 | Neutrophil activities at sites of mycobacterial infections. (A)
Neutrophils release neutrophil extracellular traps (NETs), chromatin
structures decorated with neutrophil bactericidal peptides and proteins,
in response to mycobacteria. Whether NETs contribute to bacterial
clearance or predominantly promote host tissue damage is unclear. (B)
Neutrophils phagocytose mycobacteria, albeit slower than other bacteria.
The phagosomal membrane fuses with cytoplasmic granules to release
antimicrobial peptides and proteins including myeloperoxidase (MPO) into
the phagosome. The NOX2 assembles on the phagosomal membrane
resulting in the production of superoxide and hydrogen peroxide, which
MPO uses to produce the strong antimicrobial oxidant HOCl. Unlike other
bacteria, and for reasons as yet unknown, mycobacteria do not succumb
to HOCl produced in the phagosome. Neutrophils and their resident
mycobacteria are ingested by macrophages. This may augment
macrophage killing of mycobacteria via delivery of neutrophil antimicrobial
agents, or provide transfer of live bacteria to a longer-lived host cell.
December 2021 | Volume 12 | Article 782495
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bacteria in neutrophils will be transferred to macrophages, where
they can replicate and modulate macrophage responses and
function. While it has been shown that neutrophils provide a
source of antimicrobial agents that potentiate macrophage killing
of M. tuberculosis by delivery of their granule contents (35), the
survival of M. tuberculosis within macrophages has been shown
to be enhanced after ingestion of neutrophils containing the
bacterium (36). Further evidence that neutrophils play a
permissive role in M. tuberculosis transmission was recently
demonstrated in a report showing that dead neutrophils have
the capacity to mediate short range, aerosol transmission of
viable M. tuberculosis aggregates (37).

Disease severity in tuberculosis-sensitive mice has been linked
to the survival of M. tuberculosis within neutrophils (31, 38).
Neutrophil phagocytosis of M. tuberculosis was greater in
genetically-susceptible mice than in those more resistant to
tuberculosis, but the majority of the bacteria remained viable
within the neutrophils (31). Furthermore, in a study of M. bovis
BCG infection following inoculation of bacteria into the ears of
C57BL/6 mice, neutrophils were observed to transport BCG to
the auricular draining lymph nodes early in infection (30). BCG-
laden neutrophils penetrated the paracortex, an area that is rich
in T-cells (39). Notably, the bacilli load at the infection site did
not decrease, indicating that in this model neutrophils do not
clear the infection. Neutrophils are reported to be capable of
functioning as antigen presenting cells (40), and others have
suggested that while neutrophils may not directly control
M. tuberculosis growth, they promote migration of dendritic
cells to the lung draining mediastinal lymph node, facilitating
priming of the adaptive immune response (41). However,
neutrophils may protect the phagocytosed bacteria from
recognition by the immune system thus delaying the adaptive
immune response. In a study by Abadie et al. live BCG were
recovered from the lymph nodes in numbers that remained
stable over two weeks, lending support to this scenario (30).

The host response to pulmonary M. tuberculosis infection
involves formation of nodule-like structures in the lung called
granulomas, which comprise an assemblage of various immune
cells, including neutrophils (42). Granulomas contain infection by
preventing dissemination of bacteria; however, they may also
provide a niche for M. tuberculosis survival (43–45). Neutrophils
in zebrafish infected withM. marinum have been shown to work in
conjunction with macrophages in developing granulomas to
contain infection (46). However, in active disease the granulomas
develop into large inflammatory lesions, and neutrophil
accumulation may play an important part of this process. In a
non-human primate model of tuberculosis, greater neutrophil
accumulation was observed in the larger granulomas associated
with active tuberculosis compared with the smaller granulomas of a
latent infection (47). In a mouse model, interleukin (IL)-17
neutralization decreased neutrophil accumulation in lung
granulomas but there was no difference in bacterial burden (47),
while neutrophil depletion in C57BL/6J mice during the chronic
phase of infection improved control of M. tuberculosis (48).

Several studies suggest that neutrophil accumulation is
associated with a dysregulated immune response and a poor
prognosis in tuberculosis. Even after bacterial clearance,
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neutrophil accumulation is linked with post-TB lung disease
(49). Levels of calprotectin, the most abundant neutrophil
cytoplasmic protein, and neutrophil chemokines are increased
in patients with active tuberculosis compared to healthy controls
and those with latent infection, and this is correlated with lung
damage (47). Increased neutrophil accumulation was shown to
be mediated, at least in part, via calprotectin-dependent
upregulation of the neutrophil integrin CD11b (48).
Calprotectin has antimicrobial activity, however improved
control of infection was observed when a subunit of
calprotectin was knocked out (48). Mice infected by aerosol
with a low dose of M. tuberculosis were grouped into three
different classes: resistant, susceptible and super-susceptible
mice; reflecting the variation observed in humans (50). Lungs
of super-susceptible mice showed the highest numbers of
infiltrating neutrophils, had the largest granulomas with areas
of necrosis, and the highest bacterial burden. Another mouse
study found that neutrophil depletion significantly increased
survival following M. tuberculosis infection (51). Using several
different models, Mishra et al. concluded that neutrophil
accumulation in the lungs correlated with increased bacterial
burden and animal weight loss, and that inhibition of neutrophil
recruitment decreased bacterial numbers (52).

In summary, current evidence indicates that neutrophils play
an important role during in bacterial clearance the acute stages of
human TB. This is supported by several animal studies (53, 54).
However, if the infection continues, accumulating evidence
indicates that neutrophils contribute towards disease pathology
and a negative prognosis. Investigation of the suitability of
neutrophils as a marker for poor outcome in TB is ongoing (55).

Neutrophils in Leprosy
M. leprae infects macrophages (56) and Schwann cells (57), and
it is these cells that are traditionally thought to be important
players in infection (58, 59). Peripheral blood neutrophils from
lepromatous leprosy patients have, however, also been shown to
harbor M. leprae (60). The course of lepromatous leprosy can
involve periods of acute inflammation called reactions, the most
common of which is erythema nodosum leprosum (ENL).
Neutrophil infiltration is a feature of the skin lesions associated
with this reaction, although neutrophils are not always present
(61–63). ENL can occur as a single acute episode, several discrete
acute episodes or as a chronic condition, and can occur before,
during or after multi-drug therapy (64, 65). Importantly, ENL is
a major contributor towards nerve damage in leprosy patients
and contributes significantly towards mortality (66). Despite the
fact that neutrophils are the hallmark of ENL in histological
samples (67), few studies have examined their role, but the
evidence indicates neutrophils may make a significant
contribution to the pathogenesis of ENL [reviewed in (63,
68, 69)].

Two early studies examined neutrophil activation in ENL by
measuring reduction of nitroblue tetrazolium (NBT) (70, 71),
which is reduced by superoxide to dark formazan precipitates
(72). In the first study, spontaneous reduction of NBT was
significantly increased in blood from patients with reactional
lepromatous leprosy (RLL), of which ENL is a major subset,
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compared with blood from healthy controls and patients with
other forms of leprosy (70). RLL patient sera did not increase
neutrophil activation in blood from healthy controls, suggesting
that the activating stimulus was not present in the circulation
(70). In contrast, the second study that used isolated neutrophils
reported no increase in spontaneous NBT reduction in
neutrophils from ENL patients, and ENL patient sera induced
a large increase in NBT reduction in neutrophils from healthy
controls and ENL patients (71). The difference between studies
may have been due to the use of heparin at higher
concentrations, which can form particles with NBT that
activate neutrophils (73), and/or the presence of an inhibitory
factor that is absent from ENL sera.

Activated neutrophils express the Fcg-receptor I (Fcg-R1)
(also known as CD64), a high affinity receptor for IgG (74).
Fcg-R1 expression was observed on neutrophils within ENL skin
lesions and expression was significantly higher in the peripheral
blood of ENL patients compared to lepromatous leprosy patients
without ENL (62). The presence of Fcg-R1 expressing
neutrophils in peripheral blood increased with disease severity,
and treatment of ENL with thalidomide, which improved
symptoms, decreased Fcg-R1 expression and the level of
neutrophils in skin lesions (62). In addition, the neutrophil
granule protein pentraxin-3 (PTX-3) was found to be increased
in the blood of multibacillary leprosy patients, in particular,
levels were higher in those that went on to develop ENL (75).
PTX-3 levels correlated with Fcg-R1 expression in the circulation
and PTX-3 was also increased in ENL skin lesions and correlated
with neutrophils (myeloperoxidase) (75). More studies on the
relationship of neutrophils to more severe forms of leprosy
are needed.

Neutrophils in Other Mycobacterial
Infections
M. avium complex (MAC) are the most common cause of NTM-
induced pulmonary disease, predominately, but not exclusively,
in those with pre-existing lung conditions (76). They are also a
leading cause of disseminated NTM infection (76). Mouse
studies examining the role of neutrophils in MAC infection
show differences in their role dependent on the form of
infection, pulmonary or systemic. C57BL/6 mice with the beige
mutation, whose neutrophils are defective in chemotaxis and
killing (77), have increased susceptibility to MAC infection (78,
79). In a study of disseminated infection, neutrophil transfusion
from WT mice improved the resistance of beige mice to
intravenous M. avium infection while neutrophil depletion in
WT mice increased their susceptibility (78). This implies a
protective role for neutrophils in systemic MAC infection in
this mouse model. However, in lung infection of C57BL/6 mice,
Saunders et al. found that a 95% decrease in neutrophils in the
lungs had no effect on bacterial numbers, indicating neutrophils
are dispensable in controlling MAC lung infection in these mice
(79). Further support that neutrophils are ineffective in
controlling MAC infection was provided by a study of mice
over-expressing the transcription factor RAR-related orphan
receptor gamma t (RORgt), which regulates Th17 responses
Frontiers in Immunology | www.frontiersin.org 4
and increased pulmonary neutrophil infiltration, yet bacterial
burden was similar to that in WT mice (80).

In humans, a study of MAC-infected patients with no pre-
existing lung disease found that the level of neutrophils in patient
BAL fluid was significantly higher than that of control patients
(81), with higher neutrophil counts subsequently correlated with
worsening disease (82). Similarly, in a more recent retrospective
study of pulmonary MAC infection, BAL fluid from patients
whose disease progressed had higher numbers of neutrophils
than those who had stable infection (83). Together these studies
provide evidence that neutrophils are ineffective in preventing
MAC-induced pulmonary disease.

Slow growing M. kansasii are considered to be the most
pathogenic of the NTM, as when isolated they are almost always
associated with disease (84, 85). M. kansasii most frequently
cause pulmonary disease that is clinically similar to tuberculosis
(86), but infections at other sites are also reported (87). In
humans, abundant neutrophils have been observed at sites of
M. kansasii infection (87–89). In CD-1 mice, peritoneal
inoculation with M. kansasii or M. avium was found to lead to
chronic neutrophil infiltration, with bacterial numbers gradually
decreased during this time (90). Neutrophil ingestion of
M. kansasii and M. avium was not examined, however
neutrophil uptake of non-pathogenic M. aurum only occurred
during the first two days (90). Macrophages were present at the
infection site and ingested dying neutrophils (90). Lactoferrin,
present in neutrophils but not macrophages, was detected within
peritoneal macrophages suggesting transfer from neutrophils to
macrophages either by neutrophil degranulation and subsequent
uptake of granule components by resident macrophages, or
through uptake of the intact neutrophil. Macrophage
antibacterial activity in vitro was enhanced when the
macrophages were pre-incubated with neutrophils, leading the
authors to conclude that neutrophils do not directly control
NTM infection but participate indirectly via transfer of
macromolecules that enhance macrophage killing of these
bacteria (90).

M. abscessus are rapidly growing NTM that cause pulmonary
disease in both healthy individuals and those with underlying
lung disease, disseminated infections, and skin and soft tissue
infections (91–93). Of note, M. abscessus are particularly
recalcitrant to antibiotic therapy (94, 95). Extensive numbers
of neutrophils are reported within patient granulomas or at the
site of infection (96–98). In addition, human lung tissue infected
with M. abscessus ex vivo showed bacteria within neutrophils at
the site of infection (99). M. abscessus, like several other NTM
(91), exist in one of two colony morphological forms. A smooth,
non-cording form and a rough cording form, that differ in their
concentration of cell wall glycopeptidolipid (100). The rough
form is associated with more severe pulmonary disease (101).
Greater neutrophil numbers were measured in BAL fluid from
C57BL/6 mice infected with the rough form (102). In a zebrafish
model of M. abscessus infection, ingestion of the rough form by
macrophages was associated with increased macrophage
apoptosis, release of viable bacteria and intense cording
growth, which neither macrophages nor neutrophils could
December 2021 | Volume 12 | Article 782495
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engulf because of the size of the cords (103). However, in a
subsequent study both rough and smooth forms induced a large
influx of neutrophils early at the infection site that was
dependent on IL-8 and macrophage-secreted TNF (104). Both
forms were engulfed equally by neutrophils, and neutrophil
depletion resulted in uncontrolled bacterial growth and
zebrafish larvae death with either (104). Neutrophils were
found to be essential for the development and maintenance of
protective granuloma in the infected zebrafish (104).

M. smegmatis is a rapidly growing NTM that is ubiquitous in
the environment and is generally considered to be non-
pathogenic. Due to its fast replication rate (relative to other
mycobacteria), amenability to genetic manipulation, and the fact
that it can be grown under normal Biosafety Level 2 laboratory
conditions, M. smegmatis is often used as a model to study
M. tuberculosis infection and virulence factors. Occasionally
M. smegmatis causes skin and soft tissue infections, and very
rarely disseminated infection (105–108). Hospital-acquired
infections also occur, resulting from a variety of procedures
including catheterization, cardiac and plastic surgery (109).
Although infrequent, these infections can be difficult to treat
requiring surgical debridement and long term antibiotic therapy
(105). Neutrophils are recruited to the site of infection in
humans (106, 110), and in mice infected with M. smegmatis
intratracheally (111). M. smegmatis has been shown to induce
neutrophil exocytosis of gelatinase granules releasing active
matrix metalloproteinase-9 that degrades the extracellular
matrix (112). Release of these granules may contribute towards
the tissue degradation observed in soft tissue infections caused by
this bacteria. Neutrophil exocytosis of azurophilic granules has
also been reported in response toM. smegmatis and constituents
of these granules can also cause host tissue damage (113).

Much work remains to be done to gain a better understanding
of the role of neutrophils in mycobacterial infection and disease.
The plethora of studies implicating neutrophils in the
pathogenesis of mycobacterial infections strongly suggests that
the capacity of neutrophils to control infection by intra- and
extra-cellular killing mechanisms is either insufficient, defective
or thwarted by mycobacteria. In the next sections of this review
we discuss the current evidence for neutrophil phagocytosis and
killing of mycobacteria (both phagosomal and NET-mediated)
and evidence for resistance of mycobacteria to neutrophil oxidants.
NEUTROPHIL PHAGOCYTOSIS OF
MYCOBACTERIA

The major antimicrobial strategy employed by neutrophils
involves the ingestion of pathogens into phagosomes,
followed by the degranulation of antimicrobial peptides and
proteins and the production of toxic reactive oxygen species
inside the phagosome (8, 114). Neutrophils are known to
phagocytose both pathogenic and non-pathogenic
mycobacteria (7, 30, 36, 112, 115–121), with ingestion of
mycobacteria increasing in the presence of serum (112, 115–
117). The mechanism of phagocytosis differs depending on
Frontiers in Immunology | www.frontiersin.org 5
whether neutrophils bind opsonized or non-opsonized
mycobacteria. Neutrophil complement receptor 3 (CR3) binds
M. leprae phenolic glycolipid-I resulting in bacterial
phagocytosis and activation of the Syk tyrosine kinase, which
leads to activation of the transcription factor NFATc and Il-10
production (122). Phagocytosis of non-opsonized M. kansasii
has also been shown to occur via CR3 in a cholesterol-dependent
and glycosylphosphatidylinositol (GPI) anchored protein-
dependent manner, while cholesterol was not required with
opsonized bacteria (123). Phagocytosis of non-opsonized
M. smegmatis was also dependent on CR3 and cholesterol
(113). GPI-anchored proteins and cholesterol accumulate in
lipid rafts (124) suggesting that the localization of CR3 to lipid
rafts is required for neutrophil internalization of non-opsonized
mycobacteria. The glycosphingolipid lactosylceramide (LacCer),
enriched in lipid rafts (125), is also required for non-opsonic
internalization of mycobacteria (126). Binding to LacCer is
mediated by lipoarabinomannan (LAM) on the mycobacterial
surface. Interestingly, the mannose cap on LAM (ManLAM) of
pathogenic mycobacteria, but not the phosphoinositol cap
(PILAM) of non-pathogenic mycobacteria, appears to prevent
fusion of azurophil granules with the phagosome (126), which
will have a significant impact on the antimicrobial activity
of neutrophils.

While most studies report that neutrophils phagocytose
mycobacteria, a few have reported impaired phagocytosis. In
zebrafish infected withM. marium, neutrophils were absent from
the initial infection site but were recruited to the developing
granuloma by dying macrophages (46). Neutrophils then
phagocytosed M. marium indirectly by taking them up from
macrophages. The investigators observed a small increase in
direct neutrophil phagocytosis of M. marium when inoculum
numbers were increased (46). Neutrophil uptake in BALB/c mice
was shown to be negligible after intravenous injection of a
relatively low dose of M. tuberculosis (53). However, Abadie et
al. observed abundant neutrophil phagocytosis of BCG in
C57BL/6 mice after inoculation with a similar low dose of
bacteria as present in the BCG vaccine (30).

Recently we measured the rate of phagocytosis of
M. smegmatis and found that it was five times slower than the
phagocytosis of Staphylococcus aureus and 3.5 times slower than
that for Escherichia coli (127, 128). Phagocytosis of M. abscessus
was also found to be slower than that of S. aureus when examined
by counting the number of neutrophils containing fluorescently
labelled bacteria (129). In another study, approximately half of a
population of M. fortuitum was phagocytosed within 30 min
(130), only slightly faster than the 43 min we measured for
M. smegmatis, and still considerably slower than the 9 min for
S. aureus and 12 min for E. coli (127, 131). As far as we are aware
no in vitro studies have directly compared phagocytosis of
different mycobacteria by the same neutrophils; however,
neutrophils were found to ingest M. abscessus more frequently
than eitherM. tuberculosis orM. avium in an ex vivo infection of
human lung tissue (99).

Evidence from tuberculosis patients indicates that patient
neutrophils are primed for phagocytosis. Surface expression of
December 2021 | Volume 12 | Article 782495

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Parker et al. Neutrophil Killing of Mycobacteria
the Ig receptor FcgR1 (CD64) was found to be increased on
peripheral blood neutrophils from patients with tuberculosis
pleuritis compared to healthy controls, and neutrophils
obtained from pleural fluid showed further enhanced FcgR1
expression and increased expression of the pattern recognition
receptor TLR2 (132). An increase in expression of FcgR1, TLR2
and TLR4 was also observed in neutrophils from the peripheral
blood of patients with active pulmonary tuberculosis prior to
treatment (133). Despite the evidence for increased receptor
expression, studies examining the phagocytic activity of
neutrophils from patients with active pulmonary tuberculosis
generally show their capacity for phagocytosis is decreased. Hilda
et al. measured significantly reduced phagocytic activity in blood
neutrophils from patients prior to treatment (133), and Shalekoff
et al. also found peripheral blood neutrophil function impaired
in patients with active pulmonary tuberculosis (134). Patient
neutrophils showed a reduced capacity for phagocytosis
compared to healthy controls and this was observed both soon
after the start of treatment and when treatment had been
undertaken for almost 30 weeks (134). Similarly, another study
found peripheral blood neutrophils from tuberculosis patients
had reduced phagocytic activity compared to healthy controls
(135). In these studies, phagocytic capacity was measured in
patient neutrophils by assessing phagocytosis of E. coli or yeast to
rule out M. tuberculosis factors that may interfere with
neutrophil uptake.

Mycobacteria are able to directly inhibit neutrophil
phagocytosis. M. abscessus rough morphotypes prevent
phagocytosis by formation of serpentine cords that are too
large for neutrophils to ingest, with these large aggregates
linked to pathogenesis (103). M. leprae cell wall lipids inhibit
macrophage phagocytic activity (136), but to our knowledge
there are no reports on whether these lipids affect neutrophil
phagocytosis. Exposure of M. tuberculosis to human alveolar
lining fluid results in changes to the bacterial cell wall and release
of cell wall fragments (137). Macrophage phagocytosis of
M. tuberculosis decreased when the bacteria were pre-exposed
to alveolar lining fluid, however, neutrophil phagocytosis was
found to increase (138, 139). This increase in phagocytosis was
due to bacterial alveolar lining fluid exposure rather than
M. tuberculosis cell wall fragments released by treatment with
alveolar lining fluid (139).
PHAGOSOMAL KILLING OF
MYCOBACTERIA

The ability of neutrophils to kill M. tuberculosis is controversial
with some studies observing killing (116, 140–142) while others
do not (115, 143–145). Neutrophils have been reported to kill 50-
70% of M. tuberculosis within 90-120 minutes (116, 140);
however, Corleis et al. found neutrophils did not kill
M. tuberculosis even after six hours co-incubation (115) and
others found no killing after incubation with neutrophils for 24
hours (144, 145). While Hartman et al. reported near complete
killing of M. avium by neutrophils in two hours (120), only
Frontiers in Immunology | www.frontiersin.org 6
around 40% of populations of M. abscessus and M. fortuitum
were killed after two hours incubation with neutrophils (146).
We have previously reported half-lives for E. coli and S. aureus
inside the neutrophil phagosome of 2 min and 6 min,
respectively (128), and recently measured a half-life for
M. smegmatis of 30 min inside the neutrophil phagosome,
which indicates that even though killing occurs, it is slow (127).

In terms of bactericidal mechanisms, the neutrophil oxidative
burst is activated upon uptake of various mycobacteria, including
M. tuberculosis, M. canettii, M. abscessus, M. kansaii, M. phlei,
M. fortuitum and M. smegmatis (115, 117, 130, 144, 146–148).
Contrary to this, M. gordonae did not stimulate neutrophil
oxidant production (144) and M. bovis induced a weak
oxidative burst in comparison to Listeria monocytogenes (118).
Interestingly, M. tuberculosis were found to induce a stronger
oxidative burst than M. smegmatis, yet M. smegmatis was killed
while M. tuberculosis was not (115). Rough morphotypes of
M. abscessus induced a stronger oxidative burst in comparison to
smooth morphotypes, yet neutrophil killing of both was
unaffected by inhibition of oxidant production (146).

The purified MPO/H2O2/Cl
- system is capable of killing

M. tuberculosis and M. leprae (149, 150); however, it has been
reported that the complete system did not augment killing of
M. tuberculosis over that observed by H2O2 alone (141). Reagent
HOCl killed M. smegmatis, but approximately seven times more
HOCl was required to kill M. smegmatis than S. aureus
suggesting mycobacteria may be innately more resistant to
HOCl (127). Further studies are required to determine if other
mycobacteria are similarly resistant to HOCl. We recently sought
to examine whether HOCl plays a role in killing ofM. smegmatis
in the neutrophil phagosome. The amount of reagent HOCl
required to kill a bacterium cannot be directly translated to the
phagosome as neutrophil oxidants are produced in a flux in
the phagosome, and a flux of HOCl may be less harmful to the
bacteria than a single high dose. Additionally, the neutrophil
phagosome contains many proteins and amines that can react
with phagosomal HOCl before it reaches the bacterium (151,
152). Using a fluorescent probe we observed HOCl production in
the phagosome and that MPO inhibition abrogated HOCl
production (127). By modelling the data obtained in our study
we estimated that it would take 30-40 minutes at full MPO
capacity for sufficient HOCl to be produced to kill a single
ingestedM. smegmatis. Sustained MPO activity for that length of
time is unlikely and therefore we concluded that insufficient
HOCl is produced in the neutrophil phagosome to directly kill
this bacterium. In support of this conclusion, inhibition of MPO
had no effect on neutrophil killing of M. smegmatis (127).

Inhibition of the NADPH oxidase had no effect on the ability
of human neutrophils to kill M. tuberculosis and M. abscessus
(142, 146). Defective killing by neutrophils from patients with
chronic granulomatous disease (CGD), who have mutations that
lead to a non-functional NADPH oxidase (153), is often used as
evidence for the requirement for oxidants in bacterial killing.
Jones et al. showed that CGD neutrophils killed M. tuberculosis
as effectively as neutrophils from healthy donors (140). However,
in countries where tuberculosis is endemic, the incidence of
tuberculosis is greater in CGD patients than the rest of the
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population (154–156), though it is important to consider that
NOX2 has other roles during inflammation (157). X-linked CGD
mice showed increased bacterial growth and an increase in
granuloma size in their lungs compared to C57BL/6 mice
(158). A high incidence of complications due to BCG
vaccination has also been reported in CGD patients (155, 156,
159–161). Neutrophil killing of M. marinum was found to
depend on an active NADPH oxidase in a zebrafish model of
early tuberculosis disease using morphant larvae with
neutrophils deficient in two subunits of the NADPH oxidase
(gp91phox and pg22phox) (46). In a zebrafish model of cystic
fibrosis, transmembrane conductance regulator morphants
showed reduced neutrophil oxidant production and reduced
intracellular control of M. abscessus that was linked to a
reduction in NADPH oxidase activity (147).

Neutrophil killing of mycobacteria can occur via non-
oxidative processes. Defensins, components of azurophil
granules, have been shown to have anti-mycobacterial activity
(21, 162, 163). Defensin-depleted granules have also been shown
to killM. tuberculosis,M. bovis BCG andM. smegmatis although
M. tuberculosis were more resistant to killing (164). The
azurophil granule proteins elastase, azurocidin, and lysozyme,
and the specific granule protein lactoferrin were shown to kill
M. smegmatis (164). In addition, conditioned media from
neutrophils incubated with M. abscessus for 90 minutes
showed bactericidal activity towards this bacterium (146). This
was most likely due to degranulation of cytotoxic agents. In vitro,
M. tuberculosis induced neutrophils to release MPO and elastase
(165) and neutrophils were found to release elastase and
cathepsin G, another major azurophil granule protein, into the
bronchoalveolar space in mice infected withM. bovis BCG (166).
Released neutrophil granule proteins have been shown to be
taken up by infected macrophages and to increase macrophage
killing of M. tuberculosis and M. bovis BCG (35, 164).
Efferocytosis also potentiates macrophage killing of ingested
M. tuberculosis through delivery of granule proteins to early
endosomes and fusion of these with the phagosome (35).
Augmented macrophage killing due to uptake of neutrophil
granule proteins has been demonstrated in other bacteria (167,
168). When neutrophils struggle to control a mycobacterial
infection through intracellular killing, degranulation and
efferocytosis could be an important mechanism by which
neutrophils contribute towards host defense.

In the early stages of M. tuberculosis infection, and when
they escape from phagocytic cells, M. tuberculosis are exposed
to a variety of agents in alveolar lining fluid (ALF) that can
alter the bacterial cell wall (137). Exposure of neutrophils to
M. tuberculosis pre-treated with human ALF increased
phagocytosis and neutrophil killing of M. tuberculosis while
dampening the oxidative burst response (138). The increase in
intracellular killing corresponded with an increase in granule/
phagosome fusion and was mediated by a protein component in
ALF, as the observed increase in killing was lost when ALF was
heat-inactivated (138). Incubation with ALF also reduced
extracellular degranulation in response to M. tuberculosis
(138). Of note, neutrophils infected with ALF-treated
Frontiers in Immunology | www.frontiersin.org 7
M. tuberculosis did not activate macrophages and infection
with ALF-treated M. tuberculosis had no significant effect on
neutrophil apoptosis or necrosis. This study shows that exposure
of M. tuberculosis to ALF alters the interaction of the bacteria
with neutrophils in a way that facilitates neutrophils to kill
the bacteria intracellularly without release of damaging
neutrophil proteins.

Taken together, the evidence so far indicates that neutrophil
oxidants are dispensable for killing of some mycobacteria. By
dispensable we mean that oxidants are likely to contribute when
they are being produced, but in their absence the non-oxidative
mechanisms are able to compensate. More studies are required,
ideally using neutrophils from CGD patients, to examine
neutrophil killing of a wider range of mycobacteria. To our
knowledge the question of whether neutrophils kill M. leprae is
unanswered, and more studies are also needed to examine
neutrophil killing of the more significant NTM, particularly
MAC, M. kansaii and M. abscessus.
NEUTROPHIL EXTRACELLULAR TRAP-
MEDIATED KILLING OF MYCOBACTERIA

NETs contain proteins with antimicrobial activities, including
MPO, calprotectin and elastase (12, 13, 169). Histones on NETs
have also been shown to mediate microbial killing as has NET-
DNA (9, 14, 170). The prolonged presence of cytotoxic NET
constituents as a result of excessive NET release or impaired
clearance can also be detrimental to the host.

In vivo, NET markers have been measured in the plasma of
patients with active tuberculosis (171, 172) and observed to decrease
with antibiotic therapy (171). NETs have also been observed in
BALF samples from mice 3 – 4 weeks after aerosol challenge with
M. tuberculosis (119) and in skin samples from guinea pigs within
several hours following intradermal M. tuberculosis inoculation
(173), indicating that NETs may participate in both early and late
stages of infection.Whether their presence is important in control of
M. tuberculosis infection or if they contribute towards pathogenesis
remains to be determined. Recently, NETs have been observed in
lung lesions resected from patients with persistent pulmonary TB
and from TB-susceptible mice lending support to their role in TB
pathogenesis (174). Increased human DNA-histone complexes
associated with NETs have been measured in ENL sera compared
with lepromatous and borderline lepromatous leprosy patients
(175). NET components (DNA/histone/MPO) were observed in
ENL skin lesions, and DNA-histone complexes in patient sera were
significantly higher than those with lepromatous and borderline
lepromatous leprosy and healthy controls (176). This data is
suggestive of NETs contributing towards more severe leprosy
disease. A recent review discusses the potential for NETs as a
putative prognostic tool in ENL to direct medical treatment (177).

Several mycobacteria, including M. tuberculosis, M. bovis
BCG, M. abscessus, M. avium subsp. paratuberculosis and
M. leprae, have been shown to induce NETs in vitro (121, 129,
146, 148, 176, 178–181). How the interaction of mycobacteria
with neutrophils leads to the formation of NETs appears to differ
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depending on the bacterial species. The early secreted antigen-6
(ESAT-6) of M. tuberculosis has been shown to induce
neutrophils to release NETs (148, 181, 182), as has secreted
sphingomyelinase Rv088 (182, 183). Rv088 has both
sphingomyelinase (184) and nuclease (185) activity but it is the
sphingomyelinase activity that is required for neutrophils to
form NETs (183). Phagocytosis is also a prerequisite for the
induction of NETs in response to M. tuberculosis and
M. abscessus, as NET formation did not occur when
phagocytosis was inhibited with cytochalasin D (146, 181). In
contrast, Branzk et al. found with M. bovis BCG that NETs only
occurred in response to small non-phagocytosed aggregates
(179). Single bacteria were phagocytosed and neutrophils
containing these bacteria did not go on to form NETs, at least
not over the four hours of this study (179).

Neutrophil oxidants are required for NET formation in
response to various stimuli (186–188), and M. bovis BCG NET
induction was shown to be dependent on neutrophil oxidants
(189). In addition, NETs were not formed under hypoxia in
response to M. tuberculosis (190). Both rough and smooth
morphotypes of M. abscessus were found to induce NETs,
though the mechanism differed between morphotypes (146).
Early NET induction (up to one hour) was independent of
neutrophil oxidant production, while NETs formed after four
hours co-incubation with bacteria did depend on oxidants,
similar to that which has been reported for S. aureus (191).

Despite increasing evidence that mycobacteria induce
neutrophils to form NETs, there is relatively little information
on whether NETs contribute to killing of mycobacteria or control
of infection. Evidence suggests that M. abscessus are killed by
NETs whereas M. tuberculosis are not (146, 148, 173). In a study
by Ramos-Kichik et al., M. tuberculosis was not killed by NETs
formed by PMA (148). NET constituents as well as their post-
translation modifications can vary depending on the stimulus
(11, 181) potentially altering their bactericidal activity.
Therefore, it is important to examine NETs induced either by
the bacterium studied or host/bacterial factors that may be
present at the infection site. In a guinea pig model of extra-
pulmonary tuberculosis, NETs induced byM. tuberculosis in vivo
were not bactericidal (173). This provides good evidence that
NETs do not contribute towards killing of M. tuberculosis, but
further studies are required to corroborate this in human disease.

NET-mediated killing ofM. abscessus, as with NET induction,
appears to differ with the morphotype studied. Neutrophil killing
of the smooth morphotype was found to occur predominately via
NETs, as removal with DNase resulted in only slight killing
(146). In contrast, approximately half the rough morphotype
were still killed when NETs were degraded, indicating other
neutrophil killing mechanisms are more important for this
morphotype. Notably in this study, neutrophil killing was only
measured over the first hour of co-incubation when NET release
was relatively low making it difficult to gain a full appreciation of
the effect of NETs onM. abscessus viability. As the mechanism of
NET formation differed between early and later formed NETs, it
is conceivable that later-formed NETs may contain different
constituents and therefore different antimicrobial activity.
Frontiers in Immunology | www.frontiersin.org 8
There is evidence that NETs may increase the anti-
mycobacterial capacity of macrophages. In one study, NETs
produced in response to M. tuberculosis were shown to activate
macrophages, leading to production of pro-inflammatory
cytokines (181). In another study, M. bovis BCG was shown to
induce NETs that contain the antimicrobial cathelicidin LL37,
and macrophages were observed to ingest NET fragments
containing this cathelicidin (189). By creating DNA : LL37
complexes to mimic NET fragments, Stephan et al. monitored
the intracellular localization of these complexes in macrophages
that had already phagocytosed BCG. Following uptake, the DNA
was degraded in lysosomes releasing LL37 in close proximity to
the internalized bacteria and inhibiting bacterial growth (189).
Interestingly, significantly greater growth inhibition was
observed when infected macrophages were incubated with
DNA : LL37 complexes rather than LL37 alone. The authors
speculated that the binding and internalization of DNA may
increase killing by activating intrinsic antimicrobial pathways
within the macrophage.

NETs may play a beneficial role in mycobacterial infection
simply by capturing bacteria and preventing dissemination, and
by facilitating activation of macrophages and other immune cells.
Indeed, NETs have been shown to prime T cells (192). NETs are
observed in the leprosy reaction ENL. However, evidence of free
bacteria in ENL patient sera suggests that NETs are not capable
of containing M. leprae. Moreover, NETs may also be
detrimental. They may bind other immune cells inhibiting
their function, and may also directly damage host tissue. NETs
are linked to lung injury in respiratory conditions such as cystic
fibrosis, chronic obstructive pulmonary disease, and pneumonia-
associated acute respiratory distress syndrome (193–195). They
have also been linked to lung injury in mice infected with
M. smegmatis expressing the sphingomyelinase/nuclease Rv088
from M. tuberculosis (183). Lung injury was largely mediated by
MPO (183), which is present and active on NETs (13). If NETs
are proven ineffective at limiting infection, then there may be an
advantage in blocking production or removing them to help
protect damage to lung tissue.
MYCOBACTERIAL RESISTANCE TO
NEUTROPHIL OXIDANTS

Killing of mycobacteria by neutrophils appears to be much
slower than other pathogens, suggesting that these bacteria
possess an innate resistance to the fast-acting oxidative killing
mechanisms in the phagosome. In support of this, we have
shown that M. smegmatis can cope with relatively high doses
of the most bactericidal oxidant produced in the neutrophil
phagosome, HOCl (LD50 of 90 nmol/108 CFU) (127). HOCl
reacts rapidly with a wide range of biomolecules, and the relative
resistance may be related to the larger size of these microbes i.e.
more HOCl is required to damage enough critical targets in the
bacterium. A rod-shape M. smegmatis 10 µm in length and 0.8
µm in diameter has a volume of 5x10-12 mL. In contrast, S.
aureus, P. aeruginosa and E. coli (rod- or sphere-shaped with 1-2
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µm in length and 0.5–1 µm diameter) have approximately 10%
that volume. The susceptibility of these bacteria to HOCl ranges
from 2.5-3 nmol/108 CFU for P. aeruginosa and E. coli (196,
197), to approximately 10 nmol/108 CFU for S. aureus (151,
197, 198).

The presence of protective compounds will also contribute to
HOCl resistance. Mycothiol (MSH), the main low molecular
weight thiol (LMWT) in mycobacteria, has been proposed to
play a role in defending against neutrophil oxidants. Mycothiol
carries out many of the cellular functions performed by
glutathione in eukaryotic cells and gram-negative bacteria,
including the detoxification of electrophilic compounds and
maintaining redox homeostasis (199). Interestingly, MSH levels
inM. tuberculosis andM. smegmatis are much higher than those
of the main LMWT in other bacteria such as bacillithiol (BSH) in
S. aureus or glutathione in Pseudomonas aeruginosa (9–19, 0.7
and 1.1 µmol/g residual dry weight, respectively) (200). Since
HOCl reacts very rapidly with thiol moieties (201), the higher
LMWT content in mycobacteria might protect them from killing
by HOCl. Consistent with a role for mycothiol in HOCl
resistance, mycobacteria lacking the ability to synthesize this
LMWT are significantly more sensitive to reagent HOCl and its
secondary oxidants, chloramines (127, 202, 203). However, the
amount of HOCl required to kill M. smegmatis (200-300 nmol/
108 bacteria) greatly exceeds that of mycothiol (5 nmol/108

bacteria) (127), suggesting that mycothiol exerts its protective
role not by scavenging the oxidant directly, but by forming
mixed disulfides with critical cysteine residues in proteins in a
process termed S-mycothiolation. Because S-mycothiolated
proteins can be reduced by mycoredoxin-1 (203), this
modification protects cysteine residues from irreversible
oxidation. S-mycothiolation occurs in M. smegmatis exposed to
hypochlorous acid (202). We recently observed that neutrophils
killed mycothiol-deficient M. smegmatis at the same rate as wild
type bacteria, indicating that mycothiol itself is not responsible
for the ability of M. smegmatis to cope with HOCl or other
oxidants produced in the phagosome (127).

Mycobacteria also contain other LMWTs such as gamma-
glutamylcysteine, coenzyme A, cysteine and ergothioneine, albeit
at much lower levels than mycothiol (127, 204). Interestingly,
unlike mycothiol, ergothioneine is known to be actively exported
suggesting an extracellular function for this LMWT (205), which
may provide greater protection against HOCl. Also,
ergothioneine, which is upregulated in mycothiol-deficient
mutants, can compensate for the loss of mycothiol in
protecting against organic hydroperoxides and is essential for
survival of M. tuberculosis in macrophages and mice (205). The
contribution of ergothioneine and other LMWTs to surviving
neutrophil phagocytosis remains unexplored and future
investigations are needed to establish their role in
mycobacterial resistance to neutrophil oxidants. Apart from
thiol groups, HOCl also reacts rapidly with methionine
residues on proteins (201) resulting in the formation of
methionine sulfoxide. Methionine sulfoxides are reduced by
methionine sulfoxide reductases, the lack of which in M.
tuberculosis made the bacteria more susceptible to HOCl (206).
Frontiers in Immunology | www.frontiersin.org 9
Whether or not methionine sulfoxide reductase activity protects
mycobacteria from oxidative killing by neutrophils remains to
be investigated.

Bacterial superoxide dismutase (SOD), which catalyzes the
conversion of superoxide to hydrogen peroxide, is another
candidate for conferring resistance of mycobacteria to
neutrophil killing. SOD is exported in large amounts by
M. tuberculosis and production increases further under
hydrogen peroxide stress (207, 208). A role for SOD in the
virulence of M. tuberculosis was established in a mouse infection
model (207). Superoxide is the most-upstream of the oxidants
produced by the neutrophil, and while SOD will facilitate
conversion to hydrogen peroxide, the superoxide itself can
modulate MPO activity (209). The addition of SOD to the
surface of S. aureus slowed the rate at which they were killed
by neutrophils (210). Non-pathogenic M. smegmatis express
almost 100-fold less SOD than M. tuberculosis and export a
smaller fraction (208). However, we could not slow the killing of
M. smegmatis by genetically-modifying them to express large
amounts ofM. tuberculosis SOD, albeit as noted above, wild-type
M. smegmatis are already killed very slowly (127).
CONCLUSIONS AND FUTURE
PERSPECTIVES

While neutrophils attempt to control mycobacterial infection,
the bulk of the evidence indicates that the effectiveness of their
phagosomal and extracellular killing mechanisms is thwarted by
the microbes. Rather than destroy mycobacteria, the neutrophils
appear to provide a safe haven and transport them into
macrophages, while retaining the potential to damage host
tissue. With regards to the latter, it will be valuable to
determine if NETs play a significant role in the control of
infection by preventing the spread or directly killing
mycobacteria, or if they simply cause tissue damage and
contribute towards a pro-inflammatory environment.

It is important to note the limitations of current experimental
models (211). In vitro studies of neutrophil and mycobacteria
interactions occur using neutrophils isolated from circulating
blood; they have not been exposed to the plethora of signals and
cell interactions that occur during migration and upon arrival at
a site of infection. Human tuberculosis granulomas are highly
hypoxic (212), which will suppress the oxidative burst, yet little is
known about how hypoxia affects the response of neutrophils to
mycobacteria (213). There is considerable heterogeneity in
neutrophil populations, and certain subpopulations may be
more effective at ingesting and destroying mycobacteria. Also,
a significant amount of information has been derived from
animal models, but neutrophils function differently between
species, particularly mouse and human (214).

The current challenge is to apply our knowledge of neutrophil-
mycobacteria interactions to improving treatments. The appearance
of multi-drug resistance strains of M. tuberculosis is of major
concern. Treatment for drug-susceptible M. tuberculosis involves
six months of antibiotic therapy provided by four front line drugs:
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isoniazid, rifampicin, ethambutol and pyrazinamide. Treatment of
infections with multi-drug resistant (MDR) strains takes longer,
costs considerably more and uses second generation drugs with
greater side effects and more complex drug delivery (2). Extensively
drug-resistant strains have also arisen that are resistant to at least
one second-line drug used to treat MDR (fluoroquinolone) and one
second-line injectable drug (2). Infections with NTM can also be
difficult to treat (215, 216).

In terms of bacterial resistance, the mycobacteria tested so far
appear to be phagocytosed and killed more slowly than other
pathogenic bacteria, with resistance to neutrophil oxidants likely
to be an important factor. While a number of mechanisms have
been shown to underwrite the resistance of mycobacteria to
individual oxidants, none of these have yet been conclusively
demonstrated to play a role in resistance to neutrophils. Better
understanding of how these microbes survive oxidant exposure
in the phagosome may provide therapeutic targets for sensitizing
pathogenic mycobacteria to killing by the immune system.
Frontiers in Immunology | www.frontiersin.org 10
Pharmacological interventions might also be useful in limiting
any adverse effects of NETs during mycobacterial infection.
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