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Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada, 2Faculté de Pharmacie,
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The skin is an organ involved in several biological processes essential to the

proper functioning of the organism. One of these essential biological functions of

the skin is its barrier function, mediated notably by the lipids of the stratum

corneum, and which prevents both penetration from external aggression, and

transepidermal water loss. Bioactive lipid mediators derived from polyunsaturated

fatty acids (PUFAs) constitute a complex bioactive lipid network greatly involved in

skin homeostasis. Bioactive lipid mediators derived from n-3 and n-6 PUFAs have

well-documented anti- and pro-inflammatory properties and are recognized as

playing numerous and complex roles in the behavior of diverse skin diseases,

including psoriasis. Psoriasis is an inflammatory autoimmune disease with many

comorbidities and is associated with enhanced levels of pro-inflammatory lipid

mediators. Studies have shown that a high intake of n-3 PUFAs can influence the

development and progression of psoriasis, mainly by reducing the severity and

frequency of psoriatic plaques. Herein, we provide an overview of the differential

effects of n-3 and n-6 PUFA lipid mediators, including prostanoids, hydroxy-fatty

acids, leukotrienes, specialized pro-resolving mediators, N-acylethanolamines,

monoacylglycerols and endocannabinoids. This review summarizes current

findings on lipid mediators playing a role in the skin and their potential as

therapeutic targets for psoriatic patients.
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Introduction

Lipid metabolism is currently a major research interest as lipids play crucial roles in

all biological mechanisms, including the formation and functioning of the skin barrier.

Interest in the metabolism of n-3 and n-6 polyunsaturated fatty acids (PUFAs) was first

shown by Burr and Burr in the 1920s, in studies investigating the effects of different
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PUFAs on rodent health through diet supplementation (1).

These studies led to the identification of two polyunsaturated

fatty acids, linoleic acid (LA, n-6 PUFA) and a-linolenic acid

(ALA, n-3 PUFA), which cannot be synthesized by mammalian

organism and whose presence in the body is therefore dependent

on food intakes. It was later shown that PUFAs and PUFA-

derived bioactive lipid mediators play important roles in the

regulation of biological processes by mediating inflammatory

responses. Bioactive lipid mediators can be found throughout

the body, and each tissue has a characteristic bioactive lipid

mediator profile. This specificity depends on the expression,

activity, and affinity of different PUFAs, and of the proteins

involved in the biosynthesis of bioactive lipid mediators, which

vary among tissues (2). Moreover, the bioactive lipid mediator

profile of an individual is largely affected by their nutritional

status (3, 4).

Studies on the Inuit paradox in the 1970s highlighted the

diverse benefits of high n-3 PUFA consumption on the risk of

developing cardiovascular diseases (5). Since then, many clinical

studies have investigated the effects of diet supplementation with

n-3 PUFAs on the risk of developing cancer, atherosclerosis and

inflammatory skin diseases, such as psoriasis (6–8). In parallel,

many bioactive lipid mediators derived from n-6 PUFAs were

being discovered and associated with leukocyte chemoattractant

and pro-inflammatory functions (9, 10). Following these studies,

n-3 and n-6 PUFA-derived bioactive lipid mediators were

recognized for their unique and complementary inflammatory

properties (11). Those derived from n-3 PUFAs were primarily

known for their anti-inflammatory, beneficial, and protective

properties, in contrast to those derived from n-6 PUFAs, which

are better known for their pro-inflammatory properties. The n-3

and n-6 PUFAs are metabolized by the same enzymes;

consequently, their transformation is regulated by substrate

competition (12). The duality of the effects of the two PUFA

families led to a concept widely discussed in the literature,

namely the balance between n-3 and n-6 PUFAs (13, 14).

However, the effects of PUFAs were shown to be much more

extensive and complex. For instance, both n-3 and n-6 PUFA-

derived bioactive lipid mediators can have pro- or anti-

inflammatory effects, leading to contradictory conclusions.

Indeed, n-3 and n-6 PUFAs follow multiple complex

metabolic pathways, making it difficult to establish their

precise mode of action (15). At the beginning of the 21st

century, a new concept emerged, reporting that the acute

inflammatory reaction progresses in two phases: the initiation

and the resolution of inflammation (16). Numerous studies

appear to convincingly show that lipid mediators are produced

in a sequential and organized manner to regulate the

inflammatory response (17–21). Lipid mediators derived from

n-6 PUFAs, such as prostaglandin E2 (PGE2) and leukotriene B4
(LTB4), would be produced during the initiation phase in order

to promote in particular the recruitment and the adhesion of
Frontiers in Immunology 02
immune cells, as well as the dilation of blood vessels (22). The

resolution phase would be mediated by the production of lipid

mediators derived from n-3 PUFAs and more specifically by

specialized pro-resolving mediators (SPMs) (23, 24).

Psoriasis is an inflammatory skin disease in which a

dysregulation in lipid mediators derived from n-6 PUFAs has

been reported (25, 26). Hence, n-3 PUFAs have been

investigated as potential treatment options in various studies.

While the results of these studies are varied, the evidence seems

to favor a beneficial effect of n-3 PUFAs on psoriasis. This

manuscript reviews current knowledge of the implication of n-3

and n-6 PUFAs, as well as their related lipid mediators, in

psoriasis and their potential therapeutic effects on this

skin condition.
Skin physiology

The skin is a crucial organ that is essential to human survival.

Among its multiple roles, the barrier function is undeniably

important: the skin barrier prevents the bodily penetration of

external substances while maintaining the hydration of the body

by preventing water loss (27). The structure of the skin is divided

into three layers: hypodermis, dermis, and epidermis. The

hypodermis is the deepest layer, mainly constituted of

adipocytes playing an important role in thermoregulation and

maintaining the energy reserve of the body. The dermis, the

middle layer, is a connective tissue composed of fibroblasts

surrounded by a rich extracellular matrix conferring suppleness

and elasticity to the skin (28). It contains blood vessels, nerves, and

skin appendages including sweat glands and hair follicles. This

layer supports and nourishes the epidermal cells by diffusion (28,

29). The epidermis is the skin’s most superficial layer, a squamous

epitheliummainly constituted of keratinocytes and in which other

cell types are incorporated including Langerhans cells, Merkel

cells, and melanocytes (28). Skin immunity is crucial for

protecting the body from harmful external aggressions. The

immune system of the skin involves both innate and adaptive

immunity. The innate immunity includes two lines of defense, one

provided by epithelial tissues and the other provided by specific

immune cells, including neutrophils, monocytes, macrophages,

and natural killer cells (30). In fact, keratinocytes, along with

neutrophils, modulate the immune status of the skin by producing

large quantities of antimicrobial peptides (AMPs), including

psoriasin (S100A7), calgranulin A (S100A8), B (S100A9), b-
defensins and cathelicidin (CAMP) (31, 32). Subsequently,

under the influence of inflammatory stimuli, cytotoxic T cells

(CD8+), which eliminate infected and cancerous cells, and helper

T (Th) cells (CD4+), which coordinate humoral immunity and

stimulate B cells, can infiltrate the skin (33). The dermis

permanently harbors immune cells, including dendritic cells and

memory T cells (34).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.961107
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Simard et al. 10.3389/fimmu.2022.961107
The constant renewal of the epidermis includes the

proliferation, differentiation, and elimination of keratinocytes

by desquamation, with a cycle lasting approximately 28 days.

The morphological, structural, and protein changes observed

during this process permit the division of the epidermis into four

layers, namely the stratum basal, stratum spinosum, stratum

granulosum, and stratum corneum (35). The keratinocytes of the

stratum basal proliferate to ensure the renewal of the epidermis

(28). As the cells proliferate, they migrate towards the stratum

spinosum, where the differentiation of the keratinocytes is

induced through the action of desmosomes linking the cells

together. The differentiation of epidermal keratinocytes is a

complex but perfectly orchestrated process, leading to cell

death and the formation of a semi-permeable barrier: the

stratum corneum (35, 36). This process causes drastic changes

such as the complete flattening of the cells and the degradation

of their organelles and nuclei, ending in the formation of

corneocytes (35). The stratum corneum is organized in a

brick-and-mortar pattern, with the bricks being the

corneocytes and the mortar the lipid matrix between the cells,

thus providing a tight structure. The lipid matrix alone

corresponds to 10% of the weight of the stratum corneum, and

is composed of 45% ceramides, 30% cholesterol, and 15% free

fatty acids (37). The cells of the stratum corneum eventually

desquamate (38).

The epidermis has an important lipid metabolism, which is

modulated during epidermal differentiation to ensure the

production of the stratum corneum lipid matrix (39). The

basal layer of the epidermis has a high rate of phospholipid

biosynthesis due to the cell division process, which requires the

formation of new cell membranes (40). Phospholipids account

for 45% of lipids in the basal and spinous layers, 25% in the

stratum granulosum, and less than 5% in the stratum corneum

(28). In the spinous layer, fatty acids from cell membrane

phospholipids are hydrolyzed and transported to the

endoplasmic reticulum (41). They are then used for the

synthesis of more complex lipids, including ceramides and

triglycerides (39). Cholesterol is also synthesized de novo in

this layer (42). Newly formed lipids are subsequently stored in

vesicles produced by the Golgi apparatus, called lamellar bodies.

Lamellar bodies are 0.3 mm ovoid secretory organelles,

containing mostly lipids (phospholipids, cholesterol,

glucosylceramides, and sphingomyelins) and several proteins

(43). These proteins consist mainly of glucosidase,

sphingomyelinase, secretory phospholipase A2 (sPLA2) as well

as several neutral and acidic lipases, kallikreins 7 and 8,

cathepsin D, inhibitory proteases , caveol in-1, and

corneodesmosins (43). During cell differentiation, there is an

accumulation of lamellar bodies in keratinocytes up to the

granular layer where they are finally extruded, releasing their

lipid contents between stratum corneum cells (39). Following

their secretion, lipids are subsequently metabolized by co-

secreted proteins (Figure 1) (43). Phospholipids are hydrolyzed
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by phospholipase A2 (PLA2) to generate free fatty acids for the

stratum corneum lipid matrix as well as glycerol. This glycerol is

responsible for the hydration of the stratum corneum (43). The

elongation of fatty acids by elongases (ELOVL) is a crucial step

in epidermal differentiation, since it allows the generation of free

fatty acids with very long chains, which are characteristic of the

stratum corneum (44, 45). Additionally, a group of w-hydroxy-
ceramides containing a LA moiety, the acylceramides,

are particularly important in the proper organization of the

lipid matrix. Since they are covalently bound to the proteins of

the cornified envelope, they serve as a scaffold for the other

lipids, which allows an optimal bilamellar organization of

the lipid matrix (46). Eventually, cholesterol sulfate is

converted to cholesterol which allows the desquamation of

corneocytes (43).
n-3 and n-6 PUFA metabolism

PUFAs can be classified into two major families according to

the position of the last double bond with respect to the methyl

terminus of the acyl chain, being either n-3 or n-6 PUFAs. Both

follow parallel metabolic pathways involving the same enzymes

(Figure 2). Alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid

(LA, 18:2n-6) are metabolized to stearidonic acid (SDA, 18:4n-3)

and gamma-linolenic acid (GLA, 18:3n-6), respectively, by the

delta-6-desaturase (D6D). This represents the slowest step in the

metabolic pathway, and therefore D6D activity partly regulates

the PUFA biosynthetic pathway (47). Interestingly, D6D has a

higher affinity for LA than for ALA (48). Moreover, the human

epidermis has a low delta-5-desaturase (D5D) and D6D activity,

which makes the production of long-chain n-3 PUFAs

dependent on food intake (49). Both products then undergo

an elongation cycle to produce eicosatetraenoic acid (ETA,

20:4n-3) and dihomo-gamma-linolenic acid (DGLA, 20:3n-6),

respectively, followed by desaturation by D5D to form

eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid

(AA, 20:4n-6). These metabolites are subsequently

transformed into n-3 docosapentaenoic acid (n-3 DPA, 22:5n-

3) and docosatetraenoic acid (DTA, 22:4n-6), and into

docosahexaenoic acid (DHA, 22:6n-3) and n-6 DPA (22:5n-6).

This last reaction is a b-oxidation requiring the transfer of

precursors from the endoplasmic reticulum to the peroxisomes

(47). Retro-conversion mechanisms can also occur, as DHA can

be converted to EPA. However, these reactions are not very

efficient (48). N-3 and n-6 PUFAs have structural and metabolic

roles in the body: they serve as energy sources, are major

constituents of cell membranes, are involved in gene

regulation and have roles in cellular response regulation (50).

N-3 and n-6 PUFAs are crucial structural constituents of the

skin, as they are found in phospholipids, triglycerides, ceramides

and as free fatty acids (51). When present in phospholipids,

PUFAs influence the physical properties of biological
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membranes and modulate membrane organization, ionic

permeability, elasticity, and microdomain formation (52).

Indeed, when the level of unsaturation of fatty acids increases,

the lipid membrane organization is affected, resulting in

increased phospholipid membrane fluidity. The membrane

fluidity induced by PUFAs is known to interfere with various

receptors, such as insulin and T-cell receptors (48). LA alone

accounts for 15% of fatty acids in the epidermis, while AA, EPA,

and DHA account for 5% (11). The importance of LA for

skin barrier formation has been extensively investigated

over the years (53). The main symptom of dietary linoleic acid
Frontiers in Immunology 04
deficiency in rodent is a drastic increase in skin permeability and

the appearance of scaly patches (1, 54). Histologically, a

deficiency in LA results in thickening of the skin (acanthosis)

and a decrease in the thickness of the granular and cornified

layers. Moreover, although lamellar bodies are synthesized

normally, they are practically empty of content. Hence, their

extrusion does not adequately fill the intercellular spaces (55).

Furthermore, LA is used to produce w-hydroxylated
ceramides, essential for the scaffolding of the skin lipid matrix

(36). The lack of w-hydroxylated ceramides does not allow

the organization of the lamellar bilayer, thus causing a
FIGURE 1

Skin structure and lipid metabolism. In the epidermis: 1) Fatty acids are hydrolyzed from phospholipids and transported in the endoplasmic
reticulum. 2) Synthesis of more complex lipids. 3) Storage of lipids in lamellar bodies. 4) Extrusion of lamellar bodies and organization of the
lipid matrix.
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disorganization of the stratum corneum and a decrease in

its impermeability.
Bioactive lipid mediators

A wide range of bioactive lipid mediators can be produced

from the oxygenation of the free form of ALA, EPA, DHA, LA,

DGLA, and AA by cyclooxygenases (COXs), lipoxygenases

(LOXs), cytochrome P450 (CYP), or non-enzymatic reactions

(Figure 2) (56). Specifically, COXs allow the generation of

prostanoids, including prostaglandins (PGs), prostacyclins and

thromboxanes (TXs). LOXs convert PUFAs into hydroxy-fatty

acids (HFAs), leukotrienes (LTs), eoxins, lipoxins (LXs),

trioxilin, hepoxilins, resolvins (Rvs), protectin (PD) and

maresins (MaRs). CYP converts PUFAs to other types of

HFAs and to epoxygenated FAs (EET). PUFAs can also be

oxidized to an array of lipid mediators following non-enzymatic

reactions, such as to isoprostanes (57, 58). Finally, other lipid

mediators can also be produced from phospholipids that contain

PUFAs, such as endocannabinoids, N-acylethanolamines

(NAEs) and monoacylglycerols (MAGs) (59). Bioactive lipid

mediators can also be classified according to the number of

carbons they contain. Lipid mediators with 18 carbons (ALA-

and LA-derived), 20 carbons (EPA-, DGLA-, and AA-derived)

and 22 carbons (DHA-derived) are named octadecanoids,

eicosanoids and docosanoids respectively (2). AA-derived
Frontiers in Immunology 05
eicosanoids are usually present in the greatest quantities and

are therefore more studied in the literature. Indeed, recent

lipidomic analyses have shown that AA-derived eicosanoids

alone account for nearly half of all bioactive lipid mediators (2).
Prostanoids
Prostanoids are generated by COX types 1 (COX1) and 2

(COX2). COX1 is a constitutive enzyme producing basal levels

of prostanoids, while COX2 is a non-constitutive enzyme, and its

expression is modulated by external stimuli to regulate

inflammatory responses (60). COXs convert EPA, DGLA and

AA into PGH, which is subsequently transformed by the various

prostaglandin synthases into PGE, PGD, PGF, PGI, TXA and

TXB. EPA, DGLA and AA are respectively metabolized into

series 3, series 1 and series 2 prostanoids (61). Prostanoids are

characterized by their 5-carbon ring structure (2). They regulate

a wide variety of mechanisms primarily through their binding to

specific prostanoid receptors. These GPCRs are divided into five

classes based on their affinity for PGD, PGE, PGF, PGI or

thromboxanes, namely DP, EP, FP, IP, and TP receptors

respectively. EP receptors are divided into four subtypes,

namely EP1, EP2, EP3 and EP4. DPs are divided into two

subtypes: DP1 and DP2 (62).

The broad understanding of prostanoid metabolism is

attributable to the 1970s discovery that COXs are therapeutic

targets of aspirin (63). Prostanoids have been widely studied ever

since and it has emerged that at low concentrations, they
FIGURE 2

Schematic representation of different types of lipid mediators. Lipid mediators derived from ALA, EPA, DHA, LA, DGLA and AA. AA, arachidonic
acid; ALA, alpha-linolenic acid; CYP, P450 cytochrome; DGLA, dihomo-gamma-linolenic acid; DHA, docosahexaenoic acid; DPA,
docosapentaenoic acid; DTA, docosatetraenoic acid; EPA, eicosapentaenoic acid; EpDPE, epoxy-docosapentaenoic acid; EpEDE, epoxy-
eicosadienoic acid; EpETE, epoxy-ecosatetraenoic acid; EpETrE, epoxy-eicosatrienoic acid; EpODE, epoxy-octadecadienoic acid; EpOME,
epoxy-octadecenoic acid; ETA, eicosatetraenoic acid; GLA, gamma-linolenic acid; HDoHE, hydroxy-docosahexaenoic acid; HDHA, hydroxy-
docosahexaenoic acid; HEPE, hydroxy-eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic acid; HETrE, hydroxy-eicosatrienoic acid; HODE,
hydroxy-octadecadienoic acid; HOTrE, hydroxy-octadecatrienoic acid; LA, linoleic acid; SDA, stearidonic acid; TriHOME, trihydroxy-
octadecenoic acid, PG, prostaglandin; LT, leukotriene; TX, thromboxane.
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regulate skin biological processes, whereas at high

concentrations, they regulate inflammatory responses (64).

AA-derived PGE2 is one of the major eicosanoids produced in

the skin by both fibroblasts and keratinocytes, and it is one of the

most studied prostanoids (65–67). PGE2 is involved in the

regulation of the proliferation and differentiation of epidermal

keratinocytes (68, 69). Moreover, PGE2 has vasodilatory

properties, can regulate the migration and maturation of

Langerhans cells and was found to be involved in skin aging

(70–72). PGF2a and PGD2 are also major PGs found in the skin

(73). The series-3 prostanoids also bind to the various

prostanoid receptors, but with less affinity than the series-2

prostanoids. Consequently, their individual role has been little

studied since it is assumed that they exert similar functions to

their n-6-derived congeners.
Hydroxy-fatty acids and leukotrienes
LOXs can generate a complex and elaborate network of

bioactive lipid mediators beginning with the generation of mono-,

di- or tri-HFAs (Figure 3) (2). They are classified according to the

position of oxygen insertion in the PUFA, namely 5-LOX, 8-LOX,

9-LOX, 11-LOX, 12-LOX, and 15-LOX (74). There are two
Frontiers in Immunology 06
isoforms of 15-LOX, 15-LOX-1 and 15-LOX-2, and two isoforms

of 12-LOX. LOXs transform ALA into hydroxy-octadecatrienoic

acids (HOTrEs), EPA into hydroxy-eicosapentaenoic acids

(HEPEs), DHA into hydroxy-docosahexaenoic acids (HDHAs)

(Figure 4), LA into hydroxy-octadecadienoic acids (HODEs),

DGLA into hydroxy-eicosatrienoic acids (HETrEs) and AA into

hydroxy-eicosatetraenoic acids (HETEs) via their respective

unstable peroxidized forms (HpOTrE, HpEPE, HpDHA,

HpODE, HpETrE, and HpETE) (75). Keto derivatives (oxo) can

then be produced via peroxidases from the HFAs (oxo-OTrEs, oxo-

EPEs, oxo-DHAs, oxo-ODEs, oxo-ETrEs, oxo-ETEs) (2). Of note,

some HFAs such as AA-derived 11-HETE, DHA-derived 13-

HDHA and LA-derived 9-HODE can also be synthesized by

COXs. However, these biosynthetic pathways are secondary (76,

77). PUFAs can also be transformed by LOXs into LTs, hepoxilins

and eoxins (2). Indeed, EPA-derived 5-HpEPE, DGLA-derived 5-

HpETrE, and AA-derived 5-HpETE, can be converted by 5-LOX

activating protein (FLAP) into LTs of the 5-, 6-, and 4-series

respectively (78). First, hydroperoxy-FAs are transformed into

LTAs, which are converted to LTBs by LTA4 hydrolase (LTA4H)

or to LTC, LTD, and LTE by successive conversions of LTC4

synthase (LTC4S), gamma-glutamyltransferase, and dipeptidase (2).

The LTs can be divided into two main groups, one composed of
FIGURE 3

Hydroxy-fatty acids, leukotrienes and other lipid mediators’ biosynthetic pathways derived from EPA and AA. AA, arachidonic acid; CYP, P450
cytochrome; DiHETE, dihydroxyeicosatetraenoic acid; DiHEPE, dihydroxyeicosapentaenoic acid; EPA, eicosapentaenoic acid; Ex, eoxin; HEPE,
hydroxy-eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic acid; HpETE, hydroxy-peroxy-eicoisatetraenoic acid; HpEPE, hydroxy-peroxy-
eicoisapentaenoic acid; LT, leukotriene; LOX, lipoxygenase; Lx, lipoxin; oxo-ETE, oxo-eicosatetraenoic; oxo-HEPE, oxo-eicosapentaenoic.
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LTB4 only and the second one containing cystenyl LTs (Cys-LTs),

i.e., LTC4, LTD4 and LTE4 (Figure 3) (79). A leukotriene-like

pathway is also taken by AA-derived 15-HpETE to form eoxins

A4, C4, D4, and E4. The receptors activated by HFAs remain poorly

understood. They are known to act as signaling mediators by

activating GPCRs and to be ligands activating peroxisome

proliferator-activated receptors (PPARs) (75). LTB4 binds to high-

affinity LTB4 (BLT1) and low-affinity LTB4 (BLT2) receptors (79).

All Cys-LTs bind to CysLT1R, CysLT2R, and CysLT3R

receptors (79).

HFAs and their derivatives are involved in the regulation of

several biological processes, including skin homeostasis. In

general, HFAs produced by 12-LOX are mostly associated with

pro-inflammatory properties, whereas those derived from 15-

LOXs are better known for their anti-inflammatory properties

(73). In the skin, both 12- and 15-LOX are very active, and 12-

LOX plays a key role in the regulation of cell survival (75, 80).

12-HETE is present in large quantities in the skin (81, 82). It is

involved in the proliferation of epithelial cells and in the

synthesis of dermal extracellular proteins (83, 84). Similarly,

epidermal 15-LOXs produce significant levels of 15-HEPE, 13-

HODE, 15-HETE and 17-HDHA (73). The production of 15-

HETE by dermal cells decreases the growth of epidermal cells by

reducing the expression of 12-LOX (75, 85). 13-HODE has

antiproliferative properties in the epidermis (86). Of note, 12-

and 15-LOX metabolism differs between humans and rodents.

Indeed, leukocyte-type 12/15-LOX synthesizes both 12- and 15-

HETE in rodents, unlike in humans, which might lead to

different HFA profiles in mice (87). The level of activity of 5-

LOX in the healthy skin is low and is mainly associated with

differentiated keratinocytes, Langerhans cells, and leukocytes

upon infiltration (88). Different enantiomers of HFAs may

have different effects (89). 8-, 9- and 11-HETE are also found
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in the skin (90). Finally, some HFAs can be incorporated into the

phospholipids of cell membranes, including those of

keratinocytes. Indeed, relatively high amounts of 15-HETE, 5-

HETE, 9-HODE, and 13-HODE are found in the sn-2 position

of phospholipids (91, 92). LTs are known for their inflammatory

properties. Indeed, the BLT1 receptor is predominantly

expressed on leukocytes, and its activation by LTB4 is involved

in the regulation of chemotaxis and the activation of these cells.

Little is known about the effect of BLT2 receptor activation (79).

Both receptors are also expressed in keratinocytes, but not in

fibroblasts (93). Activation of the BLT2 receptor with an agonist

induces the migration of keratinocytes and the stimulation of

transforming growth factor-b1 (TGF-b1) production, thereby

stimulating fibroblast proliferation (94). Series 5 LTs derived

from n-3 PUFAs also exert inflammatory effects by activating the

same receptors as those of series 4. However, their affinity for

these receptors is 100-fold lower than for series 4 LTs, resulting

in a lesser inflammatory effect (50).

Specialized pro-resolving mediators
PUFAs can be transformed by the LOXs into SPMs,

including LX, Rvs, PD and MaRs (2). AA is converted to

LXA4 and LXB4 (95). EPA is converted to 18-HEPE by

acetylated COX-2 or CYP, as well as in RvE1-5, LXA5 and

LXB5 (96, 97). DHA can be converted into PD1, MaR1, MaR2

and RvD1-6 (98, 99).The RvEs and RvDs are synthesized by the

combined action of the 5-, 12- and 15-LOX. However, their exact

biosynthetic pathways are still only partly defined. In the

inflammatory process, RvE1 is known to bind to ChemR23

receptors to generate resolving responses, while RvD1 interacts

with ALX/FPR2 and DRV1 in a context-specific manner (100,

101). RvE1 also binds to BLT1 and ERV1 receptors (96, 101,

102). RvD2 was shown to be a potent ligand for GPR18 also
FIGURE 4

Hydroxy fatty acids, and other lipid mediators’ biosynthetic pathways derived from DHA. DHA, docosahexaenoic acid; HDHA, hydroxy-docosahexaenoic
acid; HpDHA, hydroxy-peroxy-docosahexaenoic acid; MaR, maresin; oxo-DHA, oxo-octadecatrienoic; PD, protectin; Rv, resolvin.
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known as DRV2 (103). Additionally, lipoxins exert their anti-

inflammatory action by binding to the ALX receptor (104).

LXA4 can also serves as an endogenous ligand of the

endocannabinoid receptor CB1 (102, 105).

The main SPMs that were detected in healthy human skin

are the RvD5 and MaR2 (90). Levels of other SPMs, such as

RvE1, RvD1 or PD1 were not detected in human skin and

plasma samples even after n-3 PUFA supplementation (106).

The ALX/FPR2 and DRV2 receptors were found in the

epidermal layer of human skin (107).

Endocannabinoids, monoacylglycerols and
N-acylethanolamines

The discovery of CB1 and CB2 receptors led to the

identification of endogenous molecules able to bind to these

proteins, namely arachidonoyl-ethanolamide (AEA) and 2-

arachidonylglycerol (2-AG), both derived from AA (108, 109).

2-AG and AEA are the two classic endocannabinoids. AEA is part

of the larger NAE family while 1- and 2-AGs are part of the MAG

family (110). Over the past 15 years, many molecules from both

families have been further characterized (111–113). Since these

new mediators share similar functions with endocannabinoids,

they have been grouped under the term endocannabinoidome

(114, 115). NAEs can be biosynthesized through 4 pathways. The

most studied pathway begins with the transfer of an acyl chain

from a phosphol ip id to the pr imary amide of a

phosphatidylethanolamine by calcium-dependent transacylase

(CDTA) to form an N-acylphosphatidylethanolamine (NAPE).

Then, a PLD hydrolyzes the NAPE to generate the NAE (116).

MAGs are generated from a phospholipid that is hydrolyzed by

phospholipase C to form a DAG, and then transformed to a MAG

by DAGL. NAEs and MAGs are produced and then rapidly

inactivated by fatty acid amide hydrolase (FAAH) and

monoacylglycerol lipase (MAGL), respectively (116). The effect

of endocannabinoids is mediated by the activation of the

cannabinoid receptors, CB1 and CB2, both expressed in the skin

(117). Additionally, other less specific receptors can be stimulated

by endocannabinoids such as Transient Receptor Potential

Vanilloid-1 (TRPV1), 5-hydroxytriptamine (5-HT), PPARg, and
PPARa (118).

Although endocannabinoids are usually related to the

stimulation of the nervous system, recent evidence has shown

that they may also have an important role to play in skin

homeostasis (119, 120). The endocannabinoid signaling system

is fully present in both keratinocytes and fibroblasts (121, 122).

Both AEA and 2-AG are found in the dermis and the epidermis

(56, 90, 106). The main NAEs found in the skin are the

palmitoyl-ethanolamide, followed by steroyl-ethanolamide,

oleoyl-ethanolamide, l inoleoyl-ethanolamide, AEA,

docosahexaenoyl-ethanolamide and eicosapentaenoyl-

ethanolamide (123). Similarly, the predominant MAGs in the

epidermis are the 2-palmitoyl-glycerol, followed by 2-oleoyl-

glycerol, 2-linoleoyl-glycerol, 2-AG, 2-docosahexaenoyl-glycerol
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and 2-eicosapentaenoyl-glycerol (90). Recently, two new

molecules, namely 13-HODE-EA and 13-HODE-G, were

characterized and identify in healthy skin (124, 125). The CB1
receptor is located in the spinous and granular layers of the

epidermis, as well as in differentiated cells of the sebaceous

glands and hair follicles (117). The CB2 receptor, on the other

hand, is expressed in the basal layer of the epidermis as well as in

undifferentiated cells of the sebaceous glands and hair follicles

(126). The CB2 receptor is also abundantly expressed in immune

cells (127). TRPV1 receptors are expressed primarily in basal

layer keratinocytes, but low levels of expression have also been

observed in supra-basal layer kerat inocytes (128).

Endocannabinoids are thought to be involved in the regulation

of the epidermal differentiation process (118, 129).
Psoriasis

Psoriasis is an autoimmune skin disease affecting about 3%

of the worldwide population (130). This condition is

characterized by the appearance of erythematous plaques

covered with whitish scales (131). The severity of the disease

varies significantly between individuals, leading to several

classifications. According to the National Psoriasis Foundation,

psoriasis is considered mild when less than 3% of the body

surface is affected, moderate when 3 to 10% is affected, and

severe when it affects more than 10%. The Psoriasis Area

Severity Index (PASI) is a clinical tool commonly used to

assess and classify severity (132). Psoriasis is a multifactorial

condition associated with various comorbidities, the most

common being psoriatic arthritis, which affects 5 to 20% of

psoriatic patients (131). Other associated comorbidities include

cardiovascular disease, metabolic syndromes, Crohn’s disease,

type 2 diabetes, obesity, cancer, and depression (133, 134). The

exact mechanisms triggering psoriasis remain unknown (131),

however, it is well established that a combination of

environmental and genetic factors is involved. The most

common environmental factors involved are skin infections,

injuries or trauma, psychological stress, medications, alcohol

consumption, and smoking (131, 133). No definitive effective

cure for psoriasis has yet been identified. Treatment is therefore

based on a wide range of therapeutic approaches, including

topical treatments, phototherapy, and systemic and biological

agents (135). The selection of therapy varies for each patient

according to the course of the disease, the extent of the activity,

the severity of symptoms, and the response to treatments.

Approximately 75% of patients with psoriasis are adequately

treated with topical treatments, the main ones reported being

vitamin D3 analogues (calcitriol, calcipotriol, tacalcitol et

maxacalcitol) and retinoic acids (tazarotene) (131, 136). These

therapies are usually prescribed as monotherapies or with the

addition of topical corticosteroids such as betamethasone,

fluocinonide, and hydrocortisone, especially when using
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retinoids in order to reduce inflammation and irradiation (131,

132). Topical treatments, however, have limited effects when

treating patients with moderate to severe psoriasis. Phototherapy

or systemic drugs should be then considered (131).

The main histological features of psoriasis are

hyperproliferation and the incomplete differentiation of

epidermal keratinocytes, the infiltration of immune cells, and

increased angiogenesis (130). Psoriatic keratinocytes in the basal

and spinous layers of psoriatic skin hyperproliferate and cause

epidermal hyperplasia, also described as acanthosis (137). While

the epidermis of healthy skin is about 50 to 100 mm thick, the

epidermis of psoriatic patients can reach about 250 mm in

thickness (36, 138). The differentiation process of

keratinocytes is also deregulated, resulting in the suppression

of the stratum granulosum as well as the presence of

undifferentiated keratinocytes in the stratum corneum (139).

This abnormal differentiation of the psoriatic epidermis results

in significant deregulation of the proteins of the stratum

corneum. In general, proteins expressed in the early supra-

basal layers of the epidermis, known as early markers of cell

differentiation (involucrin and transglutaminase 1), are

overexpressed, whereas proteins expressed in the later layers of

the epidermis, the late markers (loricrin and filaggrin), have

decreased expression (140). Dermal blood vessels are elongated

in the papillary dermis region resulting in elongation of the

dermal papillae (papillomatosis). In addition, the marked

dilation of these blood vessels causes redness, which is

noticeable in psoriatic skin lesions (130). A significant

infiltration of immune cells is observed in both the dermis and

the epidermis of psoriatic skin, and is mainly composed of

macrophages, dendritic cells, and memory CD4+ T cells in the

dermis, and of an increased quantity of CD8+ T cells in the

epidermis. Neutrophils are also present in the stratum

corneum (130).
Psoriasis immunopathogenesis

Although the pathogenesis of psoriasis remains unclear,

compelling experimental evidence suggests a T-cell-based

immunopathogenesis (131). Nevertheless, the involvement of

both epithelial and immune cells is essential for the establishment

of a psoriatic lesion (141–143). The first step is the activation of

cutaneous innate immunity (Figure 5): environmental factors

induce stress, which initiates the process of lesion formation in a

patient with a predisposition to psoriasis. In response, keratinocytes

secrete their own deoxyribonucleic acid (DNA), which forms

complexes with antimicrobial peptides (141, 144). Keratinocytes

also produce cytokines, including interleukin-1b (IL-1b), IL-6, and
tumor necrosis factor-a (TNF-a), and chemokines such as CCL20,

CXCL9, CXCL10, and CXCL11 (31). Then, keratinocytes stimulate

cutaneous dendritic cells through the secretion of various

inflammatory agents. Three types of dendritic cells are found in
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the skin: the plasmacytoid dendritic cells, the myeloid dendritic cells

of the dermis and the Langerhans cells of the epidermis. The DNA

and antimicrobial peptide complexes secreted by keratinocytes

activate plasmacytoid dendritic cells, which then produce

interferon a (IFN-a) (145). In addition, cytokines secreted by

keratinocytes and plasmacytoid dendritic cells induce

the activation of myeloid dendritic cells in the dermis. These

myeloid dendritic cells are antigen-presenting cells that provide

the interface between innate and adaptive immunity, interacting

with both CD8+ and CD4+ T cells. Then, the activation of adaptive

immunity and of different types of T cells results in the formation of

a complex signaling network composed of numerous cytokines and

inflammatory mediators (31). The presentation of myeloid

dendritic cell antigens to CD8+ T cells leads to their activation

(141). The activation and expansion of CD8+ T cells causes their

migration to the epidermis where they encounter major

histocompatibility complex receptors present on the surface of

keratinocytes, stimulating the local release of cytokines, such as

IFNg (141). These cytokines increase local inflammation and

stimulate keratinocyte proliferation (31). In parallel, myeloid

dendritic cells participate in the recruitment of CD4+ T cells by

secreting additional pro-inflammatory mediators (IL-12, IL-23 and

TNF-a), leading to the differentiation of naive CD4+ T cells into

Th1 and/or Th17 T helper cells following antigen presentation

(145). The differentiation of CD4+ T cells is specifically directed by

cytokines secreted by the myeloid dendritic cells. In psoriasis, IL-12

and IL-23 production stimulates T cell differentiation into Th1 and

Th17 cells, respectively, while few Th2 cells are observed (31).

Hence, psoriasis adopts an immune profile characterized by Th1+,

Th17+ and Th2- cells. Th1, Th17, and Th22 cells produce signature

cytokines of their own causing inflammation amplification loops

(31, 141, 146). Th1 cells produce mainly IFNg and TNFa, while
Th17 cells produce IL-17A, IL-17F and IL-22. Over the past

decades, research has put forward a key role for the IL-23/IL-17

axis within psoriasis. IL-17 stimulates keratinocytes to produce

TNFa and chemokines (CXCL1, CXCL3, CXCL5, and CXCL8),

which stimulate the recruitment of neutrophils to the lesion and

induce the increased proliferation of keratinocytes (31). Th22 cells

have recently been identified in psoriatic skin. IL-22 produced by

Th17 and Th22 cells contributes to the psoriatic histological

phenotype, including epidermal hyperplasia, acanthosis, and

parakeratosis (132, 147, 148).
Lipid mediators dysregulated in psoriasis

The profound dysregulation of lipid metabolism in psoriatic

skin has an impact on the levels of various structural lipids, such

as phospholipids, triglycerides, and ceramides, and on the levels

of lipids involved in inflammation, such as bioactive mediators

(25, 149). Interestingly, a significant alteration of the metabolism

of polyunsaturated fatty acids is found in psoriasis (Table 1).

Indeed, a great abundance of n-6 PUFAs is measured in the
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blood and skin of these patients, which leads to altered levels of

different types of bioactive mediators derived from n-6 PUFAs

(25). AA is the n-6 PUFA that is the most dysregulated in

psoriasis and many lipid mediators derived from it are found in

highly increased amounts in psoriatic skin (Table 1) (26). These

bioactive mediators play a key role as inflammatory mediators,

contributing to the development of psoriatic lesions. The main

AA-derived lipid mediators enhanced in psoriatic skin were

reported to be the HFAs and their derivatives (167). Indeed,

levels of 12-HETE were found to be increased in psoriatic skin

(26, 167). 12-HETE is an important leukocyte chemoattractant

and was found to promote T cell recruitment in psoriasis (168).

However, finding increased amounts of 12-HETE in cutaneous

wound healing prompted researchers to question whether 12-

HETE production could also act as a defensive mechanism in

psoriatic skin (169). Additionally, a strong increase in the

quantities of LTB4 were reported in the skin of patients with

psoriasis. This lipid mediator would mainly be produced by

infiltrating neutrophils, but T cells also have significant 5-LOX

activity and keratinocytes considerable LTA4H activity (170,

171). LTB4 is present in both early and chronic plaques,

supporting a role in the initiation of the disease (162). The

signaling pathway of LTB4-BLT1 in neutrophils significantly

accelerates the infiltration of neutrophils in the skin in
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collaboration with CXCR2, a chemokine receptor for CXCL1

and CXCL2, thus leading to psoriasis (172). LTB4 also acts on

dendritic cells and T cells through the BLT1 receptor and

facilitates the migration and production of cytokines, thus

contributing to the progression of psoriasis (173). Moreover,

the topical application of LTB4 to normal skin was found to

induce microabscesses, and the hyperproliferation of epidermal

cells (174, 175). Lower levels of 15-HETE were found in psoriatic

dermis as compared with healthy dermis (176). Given the

important role of 15-HETE in the regulation of 5- and 12-

LOX epidermal activity, reduced levels of 15-HETE were

postulated as being involved in the enhanced 5-LOX and 12-

LOX product levels found in psoriasis (85). The levels of 9-

HODE and 13-HODE were also found to be increased in

psoriatic skin as compared with healthy skin (25, 177). It is

important to mention that great differences were reported

regarding the levels of certain lipid mediators depending on

the source of the biological sample, i.e., whether it came from

blood, serum, plasma or skin. Therefore, the study of these

differences could lead to a better understanding of lipid

dysregulation in psoriasis.

On the other hand, reports of prostanoid levels in psoriasis

have been conflicting (25, 152, 167). Indeed, many research

teams reported no alteration in PGE2 levels in psoriatic skin as
FIGURE 5

Establishment of the psoriatic plaque. Following a physical trauma or triggered by genetic predispositions, keratinocytes secrete their own DNA.
The pDC become activated and stimulate the dermal DC. Dermal DC present their antigen to T cells, which induces T cell recruitment, CD4+ T
cell polarization toward a Th1 and Th17 phenotype and CD8+ T cell migration to the epidermis. Keratinocytes enter into hyperproliferation.
Neutrophils are recruited and migrate to the stratum corneum. LTB4 contributes to neutrophil chemotaxis while PGE2 contributes to
keratinocyte proliferation.
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TABLE 1 Summary of lipid mediators involved in psoriasis.

Markers Biosynthesis Receptors Levels in psoriatic patients Known mechanisms References

Blood Skin

Linoleic acid-derived lipid mediators

9-HODE 12-LOX TRPV1 Increased
to double.

Increased compared with
healthy skin.

- Facilitates the release of inflammatory cytokines (25, 150)

13-HODE 15-LOX PPARs Increased
to double.

Increased compared with
healthy skin.

ND (25, 150, 151)

a-linolenic acid-derived lipid mediators

9-HOTrE 12-LOX ND ND Tends to increase in psoriasis
compared with healthy skin.

ND (25)

13-HOTrE 15-LOX ND ND Tends to increase in psoriasis
compared with healthy skin.

ND (25)

Dihomo-g-linolenic acid-derived lipid mediators

PGE1 COX/PGES EP1 Increased Increased compared with
healthy skin.

- Increases cAMP levels (151, 152)

Arachidonic acid-derived lipid mediators

PGE2 COX/PGES EP2-EP4 No effect Increased in the epidermis - Increases the production of IL-23 by dendritic cells
- Increases the expression of the IL-23 receptor gene on
Th17 cells
- Supports the expansion of Th17 cells
- Stimulate keratinocyte proliferation

(25, 26, 153)

PGF2a COX/PGFS FP ND Increased in psoriatic epidermis ND (26, 154)

8-iso-
PGF2a

Oxidative stress ND ND Increased -Activation of TNFa (151)

15-d-PGJ2 CRTH2 and
PPARg

ND ND Increased compared with
healthy skin.

- Chemotaxis of Th2 cells, eosinophils, and basophils
- Regulation of PPARg (particularly in macrophages)
-Up-regulation of NF-kB and ERK signaling pathways

(151, 155)

TXB2 TXs TP ND Decreased compared with non-
lesional skin

ND (25, 151)

5-HETE 5-LOX OXER1, BLT2 No effect Slightly increased compared
with healthy skin

- Activation of OXER1 receptor, resulting in cell-
activation pathways such as MAPK, ERK, p38 and
protein kinase B
- Accumulation of monocyte-derived macrophage

(25)

8-HETE 8-LOX PPARa ND Increased compared with
healthy skin.

ND (25)

9-HETE 9-LOX RXRg Slightly
increased

No effect - Chemoattractant of neutrophils (25)

11-HETE COX2 ND Slightly
increased

Slightly decreased compared
with healthy skin

11R-HETE, generated by COX-2 in epithelial cells, is
also a substrate for 15-PGDH, being converted to 11-
oxo-ETE.

(25, 156)

12-HETE 12-LOX BLT2 ND Increased compared with
healthy skin.

- PMN chemoattractant (25, 26, 150,
157, 158)

15-HETE 15-LOX BLT2 ND Increased compared with
healthy skin.

- Anti-apoptotic activities (159)

4-HNE ND ND Increased Increased - Activation of the MAPK pathway (151)

LTB4 5-LOX BLT1 > BLT2 No effect Increased compared with
healthy skin.

- Most potent neutrophil chemoattractant
-Facilitates the migration of dendritic cells and T cells,
as well as their production of cytokines

(25, 151, 153,
157, 160)

LTC4 5-LOX CysLT2>CysLT1 ND Increased compared with
healthy skin.

- Most potent eosinophil chemoattractant (157, 160,
161)

LTD4 5-LOX CysLT1 ND Increased compared with
healthy skin.

ND (160–162)

Eicosapentaenoic acid-derived lipid mediators

5-HEPE 5-LOX GPR119-
GPR120

Slightly
increased

No effect ND (154)

(Continued)
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compared with healthy skin (25, 152, 167, 178), while some

teams found an increase in PGE2 in the psoriatic skin (26). A

decreased capacity to biosynthesized prostaglandins was

measured in involved and uninvolved psoriatic epidermis

(152). In vitro, the production of PGE2 by fibroblasts leads to

the production of IL-1, stimulating the proliferation of

keratinocytes (179, 180). Moreover, the production of PGE2 by

fibroblasts promotes the production of IL-23 by dendritic cells,

which supports the expansion of Th17 cells (181, 182).

Thereafter, the production of PGE2 by Th17 cells increases the

expression of a sub-unit of the IL-23 receptor gene on Th17 cells

via EP2 and EP4 receptors, facilitating the generation of Th17

cells in vitro (181, 182). More recently, the levels of lipid

mediators derived from n-3 PUFAs were also documented as

being altered in psoriatic skin (25). Among these, the levels of 7-,

14- and 17-HDHA were found to be increased in psoriatic skin

as compared with healthy skin, with 14-HDHA having the most

striking changes (25).

Finally, large amounts of reactive oxygen species (ROS)

found in psoriasis can affect membrane phospholipids, leading

to lipid peroxidation and the generation of reactive aldehydes,

such as 4-hydroxynonenal (4-HNE). In fact, it was reported that

4-HNE and 8-isoPGF2a are up-regulated in psoriatic skin (151).

Although the ratio of n-3 to n-6 PUFAs is already known to be

greatly diminished in psoriatic skin, the amounts of n-3 PUFAs

as well as their role in the establishment of psoriatic lesions has

been poorly studied.

The lipid dysregulation observed in psoriasis could be the

result of the altered expression of proteins involved in the

biosynthesis of lipid mediators, as well as the inflammatory

milieu engendered by psoriatic epithelial cells. Interestingly, in
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various studies genes coding for different phospholipases have

been listed as twenty of the most highly dysregulated genes in

psoriasis (183). Protein analyses showed an increased number of

different types of PLA2 in psoriatic skin, according with the

increase of the different lipid mediators measured in psoriatic

skin (151). Other genes that are dysregulated in psoriatic skin

include ALOX12B, which may be responsible for the increased

amount of 12-HETE (78). In vitro, transcriptomic analyses

comparing the genetic expression profile of healthy skin with

that of the psoriatic substitutes produced by tissue engineering

demonstrated the dysregulation of genes involved in lipid

metabolism, particularly in the PUFAs of psoriatic patients

(184). Most of the dysregulated genes in psoriasis have been

reviewed elsewhere (185).
Effects of PUFA and bioactive lipid
mediator interventions in psoriasis

n-3 PUFAs are known for their anti-inflammatory potential.

However, their effectiveness is quite controversial despite the

growing body of scientific data showing their beneficial effects.

Clinical studies have investigated the effects of n-3 PUFAs,

mainly EPA and DHA, on symptoms in psoriatic patients

(Table 2). Several studies have shown that oral treatment with

n-3 PUFAs improves the PASI score, erythema, scaling, itching,

the extent of affected surfaces, and the amount of immune cell

infiltration (187, 202, 203), whereas other studies have found no

significant effects (191, 204).

In vitro and in vivo studies have investigated the mechanisms

of action underlying the beneficial effects of n-3 PUFAs in
TABLE 1 Continued

Markers Biosynthesis Receptors Levels in psoriatic patients Known mechanisms References

Blood Skin

12-HEPE 12-LOX GsPCR (not
identified yet)

Increased No effect - Downregulation of CXCL1 and CXCL2 gene in
keratinocytes

(154, 163,
164)

15-HEPE 15-LOX PPARg Increased Slightly increased - Diminution of the migration of peripheral
mononuclear cells

(51, 154, 165)

18-HEPE CYP450 ND Slightly
increased

No effect - Repression of CXCR4 expression on lung melanoma
cells
- Diminution of macrophage activation

(154, 166)

Docosahexaenoic acid-derived lipid mediators

4-HDHA 5-LOX PPARg No
difference

No difference ND (25, 159)

14-HDHA 12-LOX ND Slightly
increased.

Decreased compared with
healthy skin.

ND (25)

17-HDHA 15-LOX DRV1/DRV2 ND Increased compared with
healthy skin.

ND (25)
fr
COX, cyclooxygenase; GPR, G protein-coupled receptor; HEPE, hydroxyeicosapentaenoic; HETE, hydroxyeicosatetraenoic; HDHA, hydroxy-docosahexaenoic acid; HNE, hydroxyonenal;
HODE, hydroxy-octadecadienoic acid; HOTrE, hydroxy-octadecatrienoic acid; IL, interleukin; LOX, lipoxygenase; LT, leukotriene; ND, not documented; PPAR, Peroxisome proliferator-
activated receptor; PGJ, prostaglandin J; PGE, prostaglandin E; RXR, retinoid X receptor; TRPV1, transient receptor potential vanilloid 1; TX, thromboxane.
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psoriasis (Table 2). The effectiveness of n-3 PUFAs on psoriasis

was shown using a tissue-engineered psoriatic reconstructed skin

model (205). The anti-psoriatic potential of ALA was investigated,

showing that ALA reduces psoriatic keratinocyte proliferation by

decreasing the production of pro-inflammatory lipid mediators

(199). Similarly, DHA also alleviated the psoriatic features of the

reconstructed psoriatic skin model, mainly by decreasing

proliferation and improving the differentiation of psoriatic

keratinocytes (201). Psoriasis is characterized by a strong

increase in n-6-derived pro-inflammatory lipid mediators in the

blood and lesional skin of patients (25). Therefore, in many

studies the primary mechanism of action of an n-3 PUFA

treatment is considered to be a decrease in these pro-

inflammatory mediators through competition for enzymes in

their metabolic pathway (199, 206). However, there is a lack of

consensus among the various studies found in the literature.

Additionally, n-3 PUFAs seem to affect the immune system

(34). Indeed, ALA was showed to affect T cell functions in the

reconstructed psoriatic skin model, mainly by decreasing the

production of inflammatory cytokines (200). The impact of n-3

PUFAs on the adaptive immunity have also been studied in other

models. Studies in humans have shown that dietary

supplementation with fish oils decreases the relative percentage

of CD4+ cells in peripheral blood, resulting in a decreased

immune response (207). Moreover, a diet rich in n-3 PUFAs

can reduce the expression of the class II histocompatibility major

complex (CMH-II) on dendritic cells and other antigen-

presenting cells, thus diminishing the likelihood of stimulating

CD4+ cells (208). These studies also showed that the pre-

treatment of endothelial cells with DHA decreases the

functional adherence of T cells to endothelial cells in vitro (208,

209). Additionally, a high level of consumption of n-3 PUFAs was

reported to reduce the production of TNF-a, IL-4, IL-6 and IL-1b
(207, 210). Otherwise, n-3 PUFAs can activate nuclear receptors,

such as the PPARs, which intervene in the regulation of the

transcription of many genes involved in the metabolism of lipids

(207). EPA and DHA are also recognized as interrupting the

autocrine IL-2 pathway (211). PPARg may inhibit the nuclear

factor of activated T cells and could thus decrease the production

of IL-2 (212). Finally, the polarization of CD4+ T cells into either

Th17 or regulatory T cells (Treg) is partly governed by PPARg
activity (213). Honda et al. suggested that PGE2 produced by

fibroblasts promotes the development of psoriatic dermatitis

through the regulation of the IL-23 and IL-17 pathways.

Therefore, a diet rich in n-3 PUFAs could directly alter those

pathways by diminishing the production of PGE2 (153). In IMQ-

induced psoriatic FAT-1 mice, increased n-3 PUFA production

was associated with a significantly reduced number of Th17 cells,

and an increased number of Tregs in the spleen (214). Of note,

FAT-1 mice are genetically modified mice capable of producing n-

3 PUFAs from n-6 PUFAs since they have been engineered to

express the C.elegans n-3 fatty acid desaturase gene (fat-1), thus
Frontiers in Immunology 13
increasing the levels of n-3 PUFAs without the need for oral

supplementation (214). However, PGE2 seems to be a limited

therapeutic target in the treatment of psoriasis. Indeed, non-

steroidal anti-inflammatory drugs such as aspirin already target

prostaglandin biosynthesis, via cyclooxygenase inhibition.

Unfortunately, these drugs does not resolve immune-mediated

disorders on their own, making them suboptimal for psoriasis

treatment (215). Recent studies have also investigated the specific

effects of bioactive lipid mediators (Table 2). Treatment by

subcutaneous injection of 1 mmol/L of 15-HETE was shown to

be effective, reducing the extent of plaques of two out of 13

patients with psoriasis (157). In 2018, Sawada et al. reported that

the administration of RvE1 in an imiquimod-induced mouse

psoriatic model inhibits the production of IL-23 by dendritic

cells and accordingly decreases psoriatic features (173). It has also

been shown that RvD3 reduces acute pain and itch in mice in the

context of psoriasis (198). Additionally, the administration of

RvE1 strongly inhibits the expression of IL-23 and IL-17 in

psoriatic skin (216). Finally, phototherapy, including ultraviolet

B (UVB) and psoralen ultraviolet A (PUVA), has been widely

used to treat psoriatic lesions (217). Interestingly, the mechanism

underlying phototherapy may involve lipid mediator signaling.

Indeed, UVB, UVA and PUVA all decreased 12-LOX expression

and increased 15-LOX expression in keratinocytes (158).

Interestingly, n-3 PUFAs also seem to possess therapeutic

potential in other pathologies and comorbidities related to

psoriasis, including atherosclerosis (218). In fact, the positive

effects of EPA on inflammatory diseases have been put forward

in the Reduction of Cardiovascular Events with Isopent Ethyl-

Intervention Trial (REDUCE-IT). This study showed that the

daily consumption of 2 g of EPA ethyl ester by patients with

established atherosclerosis heart disease was associated with an

absolute 4.8% reduction in cardiovascular events (8). Similar to

statins, n-3 PUFAs were shown to have pleiotropic effects and to

attenuate the atherogenic response (219). Moreover,

hypertriglyceridemia, which is characterized by a severe

elevation of triglyceride levels and is associated with obesity,

can be partially reduced with the consumption of 4 g/day of EPA

and DHA (220). It is also important to mention that the n-3

PUFA index, which measures the percentage of long-chain n-3

PUFAs EPA and DHA in red blood cell membranes, greatly

influences an individual’s response to dietary n-3 PUFA

supplementation. Indeed, individuals with lower n-3 PUFA

baseline before the oral supplementation tend to respond

better to the n-3 PUFA supplementation than those with a

naturally high baseline (221, 222).
Conclusion

In conclusion, the roles of n-3 and n-6 PUFAs in the skin are

numerous and complex. This study summarizes current findings
frontiersin.org

https://doi.org/10.3389/fimmu.2022.961107
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Simard et al. 10.3389/fimmu.2022.961107
TABLE 2 Summary of studies examining the effect of PUFA interventions in psoriasis.

PUFAs or
lipid
mediators

Clinical trials or pre-
clinical study models

Treatments Effects References

Human clinical trials

ALA Human clinical trials 2600 mg ALA (12 weeks) Significant clinical improvement of the PASI (186)

EPA Human clinical trials 180 mg (12 weeks) ↓ itching after 12 weeks. (187)

15-HETE Human clinical trials Subcutaneous injection of 1 mmol/L of 15-HETE ↓ extent of plaques of two out of 13 patients (157)

EPA-DHA Human clinical trials 1200-1800 mg (8 weeks) ↓ erythema and skin scaling (188)

2400-3600 mg (15 weeks) ↓ body surface area of psoriasis (15)

15% EPA and 10% DHA (4 weeks) ↓ erythema and desquamation in patients (189)

2100-21000 mg (2 weeks) Moderate improvement in clinical
manifestations
↓ disease severity

(190)

320-510 mg (16 weeks) ↓ scaling and redness
↓ cellular infiltration.

(191)

132-240 mg (36 weeks) No significant effects (192)

80-650 mg (4 weeks) ↓ scalp lesion, target plaque erythema lesion,
infiltration, and scaling

(193)

1800 mg (12 weeks) ↓ PASI, erythema, duration, scaling, and extent
of area involved

(194)

Animal models

RvE1 Imiquimod-induced psoriasis
mice model

Intravenous administration of 200 ng per mouse
30 min before IMQ application

↓ epidermal hyperplasia
↓ IL-23 mRNA expression
↓ IL-23 production by dendritic cells in vitro
↓ migration of cutaneous DCs and gd T cells

(173)

MaR1 Imiquimod-induced psoriasis
mice model

Topical application of 100 ng per ear 30 min prior
IMQ application each day for 5 consecutive days

↓ ear swelling response
↓ IL-17A production by gdTCRmid+ and CD4+
cells
↓ IL-23 receptor by suppressing RORgt

(195)

PD1 Imiquimod-induced psoriasis
mice model

0.01-1 mg/kg injected subcutaneously for 7 consecutive
days

↓ skin thickness, redness and scaling
↓ IL-1b, IL-6, IL-17 and CXCL1 mRNA
expression
↓ STAT1 and NF-kB signaling pathway
↓ CD4+IFN-g+IL-17+ T lymphocytes

(196)

RvD1 Imiquimod-induced psoriasis
mice model

Intraperitoneal administration of 1-5 mg/kg 1h prior to
IMQ application

↓ IMG-induced psoriasiform dermatitis
↓ IMG-induced activation of ERK1/2, p38,
JNK and NF-kB

(197)

RvD3 Imiquimod-induced psoriasis
mice model

Single and repeated systemic administration. 2.8 mg/kg ↓ TRPV1-dependent acute pain and itch in
mice

(198)

In vitro models

ALA Human reconstructed
psoriatic skin model

10 mM ↓ keratinocyte proliferation
↑ keratinocyte differentiation (increased late
differentiation markers such as filaggrin)
↑ ERK1/2 phosphorylation

(199)

Human reconstructed
psoriatic skin model with T
cells

10 mM ↓ keratinocyte proliferation
↑ keratinocyte differentiation
↓ T cell migration in the epidermis
↓ inflammatory cytokines and chemokines
(CXCL1, IL-6, IL-8)

(200)

DHA Human reconstructed
psoriatic skin model

10 mM ↓ keratinocyte proliferation
↑ keratinocyte differentiation
↓ TNF-a, COX2 and PPARd
↑ PPARg

(201)
Frontiers in I
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↑ Increased; ↓ Decreased.
ALA, alpha-linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HETE, hydroxyeicosatetraenoic; MaR, maresin; NSAIDs, non-steroidal anti-inflammatory drugs; PASI,
psoriasis area and severity index; PD1, protectin D1; Rv, resolvin.
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on the implication of n-6 and n-3 PUFA lipid mediators in the

skin and more precisely, their involvement in psoriasis. Findings

on new bioactive lipid mediators are gradually being reported,

however the underlying mechanisms have yet to be revealed. The

dietary intake of n-3 and n-6 PUFAs greatly influences skin

homeostasis, both in healthy and psoriatic skin. Recent advances

have shown the potential of n-3 PUFAs as a treatment for

psoriatic patients, notably in the reduction of the production of

pro- inflammatory cytokines and the al terat ion of

T cell functions, as well as in the reduction of the formation

of inflammatory bioact ive l ip id media tors . Thus ,

deepening knowledge on the role of n-3 PUFAs in psoriasis

may lead to the discovery of novel therapeutic targets for

the disease.
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