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Mesenchymal stem cells for restoration of ovarian 
function  
Sook Young Yoon
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With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has 
been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian 
function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore 
ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insuf-
ficiency, including cases where these conditions are induced by anticancer therapy. 
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Characteristics of mesenchymal stem cells 

Mesenchymal stem cells (MSCs), which were termed more than 25 
years ago [1], represent a class of cells from human [2] and mamma-
lian bone marrow and periosteum [3] that could be isolated and ex-
panded in culture while maintaining their in vitro capacity to be in-
duced to form a variety of mesodermal phenotypes and tissues. The 
acronym MSC can be understood as referring to mesenchymal stro-
mal cells, multipotent stromal cells, mesenchymal progenitor cells, 
bone marrow stromal cells, bone marrow-derived MSCs, mesenchy-
mal precursor cells, skeletal stem cells, and multipotent mesenchy-
mal stromal cells [4]. To promote terminological clarity, the Interna-
tional Society for Cellular Therapy (ISCT) has officially defined MSCs 
to be multipotent mesenchymal stromal cells, suggesting that this 
should refer to cells from stromal tissues with plastic-adherent char-
acteristics, while reserving the term “mesenchymal stem cells” to de-

note the subpopulation that actually has the two cardinal properties 
of stem cells (self-renewal and the capacity to differentiate down 
multiple lineages) [5]. The ISCT proposed three criteria to define 
MSCs. First, MSCs must be plastic-adherent in standard culture condi-
tions. Second, more than 95% of MSCs must express cluster of differ-
entiation (CD)105, CD73, and CD90, while lacking expression of 
CD45, CD34, CD14 or CD11b, CD79a or CD19, and human leukocyte 
antigen (HLA) class II. Third, these cells must be able to differentiate 
into osteoblasts, adipocytes, and chondroblasts under standard in vi-

tro differentiating conditions [5]. 
MSCs can be derived from several tissues in the adult or infant hu-

man body, including adipose tissue, peripheral blood, umbilical cord 
blood, banked umbilical cord blood, umbilical cord, umbilical cord 
membrane, umbilical cord vein, Wharton’s jelly of the umbilical cord, 
placenta, decidua basalis, ligamentum flavum, amniotic fluid, amni-
otic membrane, dental pulp, chorionic villi of the human placenta, 
fetal membranes, menstrual blood, breast milk, and urine [6]. MSCs 
display a powerful ability to regulate immune responses, including 
by suppressing T cell proliferation, influencing dendritic cell matura-
tion and function, suppressing B cell proliferation and terminal dif-
ferentiation, and modulating other immune cells such as natural kill-
er cells and macrophages [7]. Another utility of MSCs in cell therapies 
is homing and transendothelial migration. In the circulation, MSCs 
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are transported to the site of damage through the vascular system, 
by chemokine (C–C motif), adhesion molecules (P-selectin and the 
VCAM-1), and matrix metalloproteinases (MMPs; MMP-2 and mem-
brane type 1 MMP) [8]. After MSCs home to damaged tissue sites for 
repair, they interact closely with local stimuli, such as inflammatory 
cytokines, ligands of Toll-like receptors, and hypoxia, which can stim-
ulate MSCs to produce large amounts of growth factors that perform 
multiple functions for tissue regeneration [8]. Based on these actions 
of MSCs, Caplan proposed reconceptualizing the acronym MSC as re-
ferring to “medical signaling cells [9].”

General ovarian function and premature 
ovarian failure 

Follicles are the functional units of the ovary, and consist of an oo-
cyte and its supporting cells, such as granulosa cells, theca cells, and 
stromal cells. The cells in the follicle release an oocyte monthly, re-
sulting in fertility, and produce hormones such as estradiol and pro-
gesterone to maintain women’s overall health and to sustain preg-
nancy [10].   

Premature ovarian failure (POF; also known as primary ovarian in-
sufficiency), which in other words represents premature menopause, 
is a mysterious and complicated disease. The prevalence of POF is 
one in 250 women under the age of 35 years and one in 100 women 
under the age of 40 years. The most important mechanisms in POF 
are follicle dysfunction and follicle depletion [11]. Although the cause 
of POF has not yet been fully elucidated, genetic, endocrine, para-
crine, mitochondrial dysfunction–related, and metabolic factors can 
affect the quality of the follicular pool and oocytes [12]. Recently, POF 
after chemotherapy has emerged as a major long-term adverse ef-
fect of anticancer treatment, which increases the risk of infertility and 
degenerative health problems. Such responses to chemotherapy 
may be a particular problem in young women because loss of ovari-
an reserve is closely related to the risk of female infertility. The exact 
mechanism through which anticancer drugs exert ovarian toxicity 
has not been fully established [13], and it seems to depend on the 
type of drug and the type of cell tested [14]. Stroma and granulosa 
cells are especially strongly affected by most anticancer drugs via 
apoptosis. Oocytes are known to be affected by indirect toxicity 
through the stroma and granulosa cells that surround them. An al-
kylating agent, cyclophosphamide (CTX) induces double-strand 
breaks of DNA in actively proliferating cells, such as granulosa cells 
and stromal cells, and oocytes also experience damage caused by 
CTX and other anticancer drugs [13]. However, another interesting 
explanation has been proposed for the exhaustion of primordial folli-
cles that are not proliferating and are therefore less sensitive to DNA 
damage. Primordial follicles in the resting state or activation were 

found to be controlled by the intracellular phosphatidylinositol 3-ki-
nase (PI3K)-Akt-mTOR signaling pathway [15]. Phosphatase and ten-
sin homolog (PTEN) is a reversible inhibitor of PI3K, and is known to 
be a tumor suppressor in humans [16]. Anticancer drug treatment 
such as CTX or cisplatin was found to induce depletion of primordial 
follicles via overrecruitment [17], and oocyte-specific PTEN deletion 
induced premature activation of the primordial follicle pool in a 
mouse model [18]. Therefore, the preservation of fertility and ovarian 
function should be considered as a major issue for reproductive 
women receiving chemotherapy. Several options exist for fertility 
preservation, such as cryopreservation of embryos, mature oocytes, 
or ovarian tissue. However, most protocols are for fertility preserva-
tion before anticancer therapy. Therefore, it is necessary to investi-
gate possible ways to restore ovarian function. 

MSC therapy and recovery of ovarian function 

MSC therapy has been considered as a new option to treat female 
infertility or to restore ovarian function. Numerous studies have veri-
fied the protective effect of ovarian function resulting from adminis-
tration of MSCs obtained from various cell sources in animal models 
of POF (Table 1) [19-48]. These studies of MSC transplantation have 
shown therapeutic potential through restoration of ovarian function 
and structure [19,49]. MSCs have been found to secrete growth fac-
tors, including vascular endothelial growth factor (VEGF), insulin-like 
growth factor-1 (IGF-1), and hepatocyte growth factor (HGF) into cul-
ture medium [30], to reduce germ cell and stromal cell apoptosis, 
and to enhance folliculogenesis through improvements in the micro-
environment [48]. As in other forms of cell therapy, two different ad-
ministration methods have been considered for the use of MSCs to 
recover ovarian function. Intravenous administration through the tail 
vein has been introduced in mouse and rat models, and techniques 
for local administration into the ovaries have also been extensively 
developed [50]. In POF resulting from chemotherapy with an anti-
cancer drug, transplantation of MSCs was found to induce ovarian 
function recovery, including estradiol production and improvements 
in ovarian structure [30,33]. MSCs showed a protective effect on 
apoptosis in stromal cell or granulosa cells in response to anticancer 
drugs, such as CTX or cisplatin (Table 1). Certain cytokines, including 
VEGF, HGF, and IGF-1 produced by MSCs may inhibit apoptosis in 
granulosa cells and upregulate B-cell lymphoma-2 in vivo [51]. An-
other expected mechanism of MSCs is their antifibrotic effects. Ovar-
ian fibrogenesis is related to certain cytokines, including MMPs, tis-
sue inhibitors of MMPs, transforming growth factor β-1, VEGF, and 
endothelin-1. MSCs may inhibit the proliferation of fibroblasts and 
decrease the deposition of extracellular matrix [51]. Angiogenesis is 
important mechanism in ovarian recovery. VEGF, fibroblast growth 
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factor-2, and in particular angiogenin from MSCs induced neovascu-
larization and facilitated blood perfusion of damaged ovarian tissues 
[44,51]. Ovarian function in POF mice recovered after human placen-
ta-derived MSC transplantation through the regulation of regulatory 
T cells and associated cytokines [29]. After human amniotic MSCs 
were transplanted into naturally aged mice at 12–14 months, trans-

planted MSCs played a central role in inhibiting ovarian aging by se-
creting epidermal growth factor and HGF [22]. However, the mecha-
nism through which MSC transplantation promotes ovarian function 
needs to be further investigated.   

Table 1. Studies on ovarian function supported by MSC administration 	

Study  Cell source Subject Patient/animal Administration Journal 

Gabr (2016) [20] Autologous bone marrow MSC Premature ovarian failure Patient Ovarian tissue/artery J Tissue Sci Eng
Edessy (2016) [21] Autologous bone marrow MSC Idiopathic premature 

  ovarian failure
Patient Ovarian autologous MSC 

  injection
Acta Med Int

Ding (2018) [22] Human amniotic MSC Natural aging 12–14-
month-old 
mice

Into the ovary Stem Cell Res Ther

Grady (2018) [23] Mares’ bone marrow MSC 
  (age, 20–29 year)

Natural aging Mare Intra-ovarian J Assist Reprod Genet

Kalhori (2018) [24] Mouse bone marrow Polycystic ovarian 
  syndrome 

Mice Tail vein Cytotherapy

Feng (2018) [25] Human menstrual 
  blood-derived 

CTX Mice Tail vein Stem Cell Rev 

Bao (2018) [26] Mouse bone marrow CTX, busulfan Mice Tail intravenously Gynecol Endocrinol
Ling (2017) [27] Human amnion-derived MSC CTX Rat Tail vein Stem Cell Res Ther
Mohamed (2018) [28] Human bone marrow CTX, busulfan Mice Into the ovary Reprod Sci
Yin (2018) [29] Human placenta-derived pZP3 to produce 

  autoimmune injury
Mice Into the ovary Reprod Sci

Elfayomy (2016) [30] Human umbilical cord blood Paclitaxel Rat Direct injection into 
  the bilateral ovary

Tissue Cell

Gabr (2016) [31] Rat bone marrow CTX Rat Intravenously Microsc Res Tech
Pan (2017) [32] Human umbilical cord/

  human amniotic
CTX Rat Into the ovary Arch Gynecol Obstet

Song (2016) [33] Human umbilical cord CTX Rat Tail intravenous/
  bilateral ovary

Biomed Res Int

Su (2016) [34] Rat adipose-derived Tripterygium glycosides Rat Into the ovary Hum Reprod
Lai (2015) [35] Human endometrial CTX, busulfan Mice Tail vein J Transl Med
Fouad (2016) [36] Human amniotic membrane/

  adipose tissue 
CTX Rat Intravenously J Adv Res

Kilic (2014) [37] Rat bone marrow CTX Rat Intraperitoneal injection Gynecol Endocrinol
Liu (2014) [38] Human menstrual blood 

  stem cell
CTX Mice Engrafted in the ovary Stem Cells Dev

Liu (2014) [39] Rat bone marrow Cisplatin Rat Tail vein Mol Cells 
Xiao (2014) [40] Amniotic fluid stem cell CTX, busulfan Mice Into the ovary PLoS One  
Takehara (2013) [41] Human adipose-derived CTX Rat Into the ovary Lab Invest
Wang (2013) [42] Human umbilical cord CTX Mice Intravenously Biomed Res Int
Wang (2013) [43] Human amniotic epithelial cell CTX Mice Into the ovary Stem Cell Res Ther
Zhang (2017) [44] Human bone marrow Human ovarian tissue 

  transplantation 
Immune-
deficiency 
mice

Ovarian transplantation Reprod Biol Endocrinol

Abd-Allah (2013) [45] Male rabbit bone marrow CTX Rabbit Intravenously in the 
  earveins

Cytotherapy 

Guo (2013) [46] Rat bone marrow Perimenopause Rat Tail vein BMC Cell Biol
Liu (2012)[47] Human amniotic fluid CTX Mice Into the ovary Int J Med Sci
Fu (2008) [48] Rat bone marrow CTX Rat Into the bilateral ovary Cytotherapy

MSC, mesenchymal stem cell; CTX, cyclophosphamide.	
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New candidate MSCs for restoring ovarian 
function 

Multiple doses of MSCs in the range of 1–5 × 106 cells per kilogram 
of body weight are required for clinical application [52], and for ani-
mal experiments, quantities of 1 × 106 to 5 × 108 cells per mouse [24] 
or rat [30] have been used. However, obtaining MSCs from adult tis-
sue requires appropriate donors, and in most cases invasive proce-
dures must be performed. Furthermore, long-term culture potential-
ly increases the risk of inducing chromosomal aberrations and het-
erogeneous cell populations, making it difficult to standardize proto-
cols [52]. Human embryonic stem cells (hESCs) are derived from the 
inner cell mass of blastocysts, which is pluripotent and can differenti-
ate into all three germ layers. Several studies have reported that 
MSCs can be derived from hESCs, and that they express MSC surface 
markers and differentiate into three germ layers (such as chondro-
cytes, osteoblasts, and adipocytes) [53]. Furthermore, it was reported 
that these cells exerted immunomodulatory effects in an in vitro ex-
periment [54]. hESC-derived MSCs were found to be equivalent to 
bone marrow- or adipose-derived MSCs, making them an alternative 
source of MSCs for restoration of ovarian function [52]. However, eth-
ical issues involving the use of human embryos remain, and concerns 
are still being discussed regarding the unwanted, unexpected, or un-
controlled differentiation of hESCs in transplantation. Nevertheless, 
clinical trials investigating the potential of therapy based on hESCs 
and hESC-derived MSCs for various diseases have been launched 
[55]. Induced pluripotent stem cells (iPSCs), could be another source 
of MSCs. iPSCs can be obtained with minimally invasive procedures, 
and avoid the ethical concerns about embryo use and hESCs. Fur-
thermore, using autologous or HLA-matched iPSC lines may make it 
possible to minimize immunological problems [56,57].  

   Anothor candidate for MSCs is exosomes, which are membrane-
bound biological nanoparticles secreted from cells. They circulate 
systemically, and carry in mRNA, long noncoding RNA, microRNA, 
proteins, and lipids. Stimulatory or inhibitory functional outcomes in 
response to exosomes have been found for processes including cell 
proliferation, apoptosis, cytokine production, immune modulation, 
and metastasis in cancer physiology [58]. Exosomes from MSC-medi-
ated cell therapy were inroduced in numerous disease models, and 
have been found to promote functional recovery [59]. Exosomes de-
rived from human adipose or umbilical cord blood MSCs improved 
ovarian function in a mouse model of premature ovarian insufficien-
cy [60,61]. However, some problems with standardization in exo-
some isolation, characterization, and adiministration techniques still 
need to be resolved [59,62].

Safety issues of MSCs 

The safety issues of MSCs should be addressed, because after MSC 
administration, mild adverse effects have been observed. The most 
severe adverse effect is that unfortunately, long-term cultured MSCs 
promote tumor growth and metastasis. A large number of cells must 
be produced for clinical-grade production of MSCs, requiring in vitro 
expansion, but MSCs at higher passages could lead to cell transfor-
mation. Depending upon the severity of disease, the optimal dose 
and specific administration time must be determined. It is necessary 
to thoroughly understand the underlying mechanisms that regulate 
and modulate MSCs, and appropriate administration methods 
should be developed. 

Conclusion 

MSCs have become the most efficient cell type in clinical applica-
tions of cell therapy. Multiple degenerative diseases and several im-
mune-related diseases have been reported to respond to MSC trans-
plantation. MSCs from several sources, including bone marrow, adi-
pose tissue, umbilical cord, umbilical cord blood, placenta, amniotic 
fluid, endometrium, Wharton’s jelly, and menstrual blood, have been 
the subjects of successful experiments. According to many reports, 
MSCs could promote the recovery of ovarian function through inhi-
bition of granulosa cell apoptosis and follicular atresia by upregula-
tion of anti-Müllerian hormone and follicle-stimulating hormone re-
ceptor expression in granulosa cells. The ongoing research into the 
regenerative use of MSCs to recover ovarian function can be a source 
of hope to POF patients and infertile or subfertile women. 
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