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Abstract: The rapid spread of the novel coronavirus disease, COVID-19, and its resulting situation
has garnered much effort to contain the virus through scientific research. The tragedy has not yet
fully run its course, but it is already clear that the crisis is thoroughly global, and science is at the
forefront in the fight against the virus. This includes medical professionals trying to cure the sick at
risk to their own health; public health management tracking the virus and guardedly calling on such
measures as social distancing to curb its spread; and researchers now engaged in the development of
diagnostics, monitoring methods, treatments and vaccines. Recent advances in non-contact sensing
to improve health care is the motivation of this study in order to contribute to the containment of
the COVID-19 outbreak. The objective of this study is to articulate an innovative solution for early
diagnosis of COVID-19 symptoms such as abnormal breathing rate, coughing and other vital health
problems. To obtain an effective and feasible solution from existing platforms, this study identifies
the existing methods used for human activity and health monitoring in a non-contact manner.
This systematic review presents the data collection technology, data preprocessing, data preparation,
features extraction, classification algorithms and performance achieved by the various non-contact
sensing platforms. This study proposes a non-contact sensing platform for the early diagnosis of
COVID-19 symptoms and monitoring of the human activities and health during the isolation or
quarantine period. Finally, we highlight challenges in developing non-contact sensing platforms to
effectively control the COVID-19 situation.

Keywords: COVID-19; CSI; non-contact; SDR; Wi-Fi

1. Introduction

The pandemic of COVID-19 is exponentially spreading all over the world. Due to this exponential
increase, many people have been affected or have died, and as a result the entire world is quarantined
from each other. As the outbreak continues to evolve, every country’s government is considering
options to prevent the spread of the virus to new places by stopping human movement in places
where the disease that causes COVID-19 is already circulating [1]. Self-quarantine is the only option
to make one’s own and others’ lives safe. The quarantine of a person is the limit of activities
or the separation of persons who are not actually ill but who may be exposed to disease or an

Micromachines 2020, 11, 912; doi:10.3390/mi11100912 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-7097-9969
http://dx.doi.org/10.3390/mi11100912
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/10/912?type=check_update&version=2


Micromachines 2020, 11, 912 2 of 23

infectious agent, whereas isolation is the separation of infected or ill persons from others to prevent the
spread of infection or contamination. Country authorities should properly communicate to people
before implementation of quarantine and take such measures to improve compliance and reduce
panic. They must provide people with clear, consistent and up-to-date guidelines and with reliable
information about quarantine measures [2]. It is essential to have constructive engagement with
communities in case quarantine measures are to be taken. Persons who are quarantined need to be
provided with financial and social–psychosocial support, health care and basic needs, including water,
food and other life necessities. The requirements of the vulnerable public should be prioritized.
Geographic, cultural and economic elements affect the efficiency of quarantine. Prompt judgment of
the local context should assess both the potential barriers and drivers of success to quarantine, and they
should be used to notify plans for the best applicable and culturally-known measures. In the situation
of the present COVID-19 outbreak, the worldwide containment plan consists of rapid laboratory tests
to identify confirmed cases and control them, either in a hospital or at home during the isolation
period. Any individual in quarantine who feels a febrile illness or respiratory symptoms at any point
should be treated and registered as a suspected case of COVID-19 [1]. However, quarantine is the
only existing solution to contain the spread of the virus and to maintain the necessities of life. In this
regard, scientists, doctors, engineers and many different communities are doing their best to find
promising solutions.

In this study, the focus is on the development of a platform that can diagnose early symptoms
of COVID-19 and monitor human activities and health during quarantine and isolation periods.
Although wearable sensors and camera-based technology are mature solutions for monitoring of
human activities and health [3], wearable sensors have direct contact with the human body, so they may
become a source of spreading virus; on the other hand, camera-based technology has no direct contact
with the human body but still has issues with individual privacy and the monitoring of blind spots [4,5].
Due to these technical and social issues, non-contact sensing platform development is proposed to
avoid any kind of contact in monitoring during the COVID-19 pandemic. Recently, extensive research
on activity recognition and classification (ARC) of human activities in the field of health care has
resulted in promising new solutions [6]. Specifically, device-free ARC-based platforms are becoming
popular. A software-defined radio (SDR) technology-based platform was designed for the detection
of human activity. This platform can be used for multiple health applications due to flexibility and
scalability of the software-defined hardware [7]. The device-free sensing approach is becoming very
popular because patients are not required to carry any device, but instead the wireless channel is tagged
with devices to capture the required information [8]. Wi-Fi-based devices have grown very rapidly
because they are easy to deploy and are cost effective. Recently, wireless channel state information
(WCSI) captured by Wi-Fi devices has been widely used for different sensing purposes [9–12].

Advances in wireless sensing technologies have the potential to reduce the health care services
load from hospital to home, thereby securing hospital facilities. The deployment of wireless sensing
health monitoring technology is a promising and feasible solution to handle the COVID-19 pandemic.
In this review, a comprehensive study of various platforms used for early diagnosis of vital signs,
human activity monitoring and health is presented. This study proposes a non-contact platform for
the early diagnosis of COVID-19 symptoms and the monitoring of human activities and health during
the quarantine or isolation period. The main goal is to identify non-contact sensing technologies
used for monitoring human daily activities like sitting, standing, walking, sleeping and eating,
and health monitoring, such as respiration rate, heartbeat, fall, sleep disorder and a balanced diet.
This study proposes a solution using the existing literature to develop a platform to diagnose early
symptoms of COVID-19 and monitor human activities and health during the quarantine and isolation
period in a non-contact manner. Although COVID-19 affects different people in different ways,
most infected people will develop mild to moderate symptoms including cough, fever and shortness
of breath [2]. The review presents the methods of data collection using non-contact sensing technology,
the human activity and health condition classification approach and performance achieved by the
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existing platforms. We categorize the studies into monitoring of human activities and health conditions.
Furthermore, the review presents advantages and limitations. Finally, we summarize and explain
some challenges to open research problems that require further investigation and improvements.

The following are the contributions of the comprehensive study:
This study provides a road map in developing a COVID-19 pandemic platform for containing

the virus.

(1) Systematically review the non-contact sensing platforms used for human activity and
health monitoring.

(2) Propose a non-contact sensing platform for the early diagnosis of COVID-19 symptoms and the
monitoring of human activities and health during the isolation or quarantine period.

(3) Highlight the challenges, testing environment, performance and optimal solutions to work
on deployment.

The rest of paper is organized as follows: Section 2 includes a literature review of the COVID-19
pandemic, the existing non-contact wireless sensing platforms and technology exploited, the monitoring
of human activities and health, and the classification approach and accuracy achieved. In Section 3,
the proposed platform is described for the early diagnosis of COVID-19 symptoms and monitoring of
human activities and health during the isolation or quarantine period. In Section 4, the experimental
setup based on both commercial and specialized hardware is presented. In Section 5, the advantages of
developing a non-contact WCSI sensing platform for containing COVID-19 are explained. In Section 6,
the challenges faced in developing a non-contact sensing platform are discussed. In Section 7,
future recommendations and possible solutions are discussed. In Section 8, conclusions on the
non-contact sensing platform development for containing the COVID-19 are made. This study used a
list of abbreviations, as defined in Table 1.

Table 1. List of abbreviations used.

Abbreviation Description Abbreviation Description

AP Access point MIMO Multiple input multiple output
BMS Building management systems ML Machine learning
CA Cerebellar ataxia MMP Mouth motion profile

CAF Cross-ambiguity function MSP Microwave sensing platform

CARM
Channel state information-based
human activity recognition and

monitoring
NIC Network interface card

CD Cerebellar dysfunction OAR Occupant activity recognition

CDC Centers for Disease Control and
Prevention OFDM Orthogonal frequency Division

multiplexing

CFES CSI feature enhancement scheme PADS Passive detection of moving
humans with dynamic speed

CFR Channel frequency response REM Rapid eye movement
CNN Convolutional neural network RF Radio frequency

COPD Chronic obstructive pulmonary
disease RFA Random forest algorithm

COVID Corona virus disease
RFIC Radio frequency integrated

circuits
RNN Recurrent neural network

CSI Channel state information RT Real time

DG Domain gap SARS-CoV-2 Severe acute respiratory syndrome
coronavirus-2

DI Domain independent SDAR Spatial diversity aware
non-contact activity recognition

DL Deep learning SDR Software defined radios
DTW Dynamic time warping SIDS Sudden infant death syndrome
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Table 1. Cont.

Abbreviation Description Abbreviation Description

EWMA Exponentially weighted moving
average SP Shaking palsy

FDD Frequency division duplex SSF Stable signal fusion
FDTW Fast dynamic time warping SVM Support vector machine
FOG Freezing of gait TDD Time division duplex

FPGA Field programmable gate array TTW Through the walls

FRTCS Fast and robust target Component
separation USRP Universal software radio

peripheral
HAR Human activity recognition UWB Ultra-wide band
HD Huntington’s disease WCSI Wireless channel state information

HMM Hidden Markov model Wi-AR Wireless activity recognition
IoT Internet of things Wi-Fi Wireless fidelity
IWL Intel Wi-Fi wireless link Wi-GeR Wi-Fi-based gesture recognition
KNN K-nearest neighbors Wi-Hear Wireless Hear
LCC Leaky coaxial cable Wi-Motion Wireless Motion
LOS Line of sight Wi-See Wireless See

LSTM Long short term memory Wi-Vit Wireless Vitality
MCP Medical cyber–physical WSN Wireless sensor networks

2. Literature Review

In this section, we present a summary on the origination, spreading mechanisms, symptoms and
prevention methods of COVID-19. Then follows a systematic review of non-contact sensing platforms
for human activities and health monitoring. This review identifies reliable and intelligent existing
related work to propose a new platform for the early diagnosis of COVID-19 symptoms and monitoring
of human activities and health to protect human life.

2.1. Covid-19 Summary

COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2). The first case was reported in December 2019, in the city of Wuhan, in Hubei Province,
China. Since then, COVID-19 has spread like a tsunami around the world and is now present in
213 countries and independent territories. According to the WHO, viral infections initiated by various
coronaviruses continue to develop and pose a serious public health problem [13–15]. Distinctive features
of the virus include its highly contagious nature and relatively long (1–14 days) development period.
During this time, a person can become infected by the virus and show no symptoms. Therefore, people
who have the disease can act as silent carriers of the virus without realizing it and contribute to a high
number of basic reproductions of the COVID-19 virus. To date, there is no specific vaccine or treatment
for infection, and management protocols focus on containing disease development. Most COVID-19
cases have exhibited clinical features such as fever, cough and fatigue. Some patients had symptoms
such as headache, sore throat and shortness of breath, while symptoms such as runny nose, diarrhea,
aches and pains were very rare, as shown in Table 2. While most COVID-19 patients develop mild to
moderate disease, a few patients have been diagnosed with a severe (13.8%) and critical (6.1%) health
condition [16]. According to the United States Centers for Disease Control and Prevention (CDC),
people at the greatest risk of disease from COVID-19 are older adults (those over 60 years of age)
and those with pre-existing conditions such as high blood pressure, asthma, diabetes, cardiovascular
disease and those taking immunosuppressing therapy [17].

COVID-19 is categorized by a specific dysfunction in respiratory physiological processes involving
the other parts of the lower respiratory tract and diaphragm, thereby affecting respiratory patterns
during inhalation and exhalation from the lungs [18]. In speech initiation, at the time of exhalation,
air from the lungs travels from other basic vocal subsystems, namely the larynx and trachea and
the vocal canal into the oral, pharyngeal and nasal cavities. The way we breathe during speech,
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containing the speed and length of exhalation (depending on the number of words in a sentence
or phrase), and its intensity and variability, greatly affect the quality of our voice. In addition,
the respiratory system is primarily highly coordinated with these laryngeal-based subsystems [19,20].
Similarly, laryngeal activity is well linked to articulation in the oral and nasal cavities [21]. Although their
effects and coordination of speech subsystems are perceptibly apparent with an inflammatory
condition, these changes may be mild in the asymptomatic stages of a disease at baseline or recovery.
Speech subsystems and coordination are assumed to be affected by COVID-19. In addition to the
respiratory involvement by COVID-19, the current pandemic shows evidence that neurological
involvement may occur with COVID-19. Headache and dizziness remain the most common symptoms;
however, symptoms due to loss of muscle control and loss of proprioception have recently been reported
due to transient neuromuscular disorder [22,23], as well as loss of smell and taste [24,25]. Given the
physiological disorder to respiratory functions and evidence of this increased neurological issue due to
COVID-19, biomarkers of COVID-19 derived from vocal subsystem coordination measurements are
the most significant in the asymptomatic stage [26].

Table 2. Summary of COVID-19 symptoms.

Symptoms COVID-19

Fever

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Most common

Cough

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Most common

Sore throat

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Less common

Shortness of breath

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Less common

Fatigue

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Most common

Aches and pains

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Rare

Headaches

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Most common

Runny or stuffy nose

Table 2: Summary of covid-19 symptoms. 

 Symptoms  COVID-19 
Fever              

 

Most Common 

Cough    Most Common 

Sore Throat Less Common 

Shortness of Breath Less Common 

Fatigue Most Common 

Aches and Pains Rare 

Headaches Most Common 

Runny or Stuffy Nose Rare 

Diarrhea   Rare 

Rare

Diarrhea

Table 2: Summary of covid-19 symptoms. 
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Although there are several studies in the direction of COVID-19′s pathophysiological properties,
its propagation mechanism remains somewhat indefinable. While the initial COVID-19 cases were
associated with the direct exposure of individuals to infected animals, the rapid outbreak of the disease
has shifted the focus of the research to human-to-human via direct or other surface transmission.
An analysis of around 75,465 cases of COVID-19 in China has revealed that the COVID-19 virus
is primarily transmitted between people from the spread of respiratory droplets through coughing
and sneezing [27]. These respiratory droplets have the potential to travel a distance of up to 1.8 m
(6 feet). Therefore, any person in close contact with an infected person is at risk of being exposed to the
respiratory droplets, and by extension, the virus. Although symptomatic people have been identified
to be the primary source of SARS-CoV-2 transmission, there is also a possibility of transmission via
asymptomatic people. Direct and indirect contact with infected surfaces have been identified as other
potential causes of COVID-19 transmission. Evidence suggests that the virus can survive on plastic
and steel surfaces. Researchers have revealed that COVID-19 is spread by contact. Therefore, it is
recommended to minimize human-to-human contact for the safety of human society.
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2.2. Human Activity Monitoring

Human activity monitoring plays an important role in human health. In the COVID-19 pandemic
situation, it is essential to monitor human activities in terms of non-contact to stop the spread of the
virus. Various non-contact human activity-sensing technologies, methods and performances achieved
by existing platforms were investigated for the development of the COVID-19 platform. Device-free
detection is a valuable technology for the detection of moving bodies in the operational region without
the wearing of any device. The device-free passive detection of moving humans with dynamic speed
(PADS) scheme extracts CSI with both types of information (amplitude and phase) and exploits space
diversity across multi-antennas in multiple input multiple output (MIMO) systems. The prototype
PADS uses commercial Wi-Fi devices to extract shape sensitive metrics for accuracy and robust target
detection [28]. An active device-free system uses SDR to exploit activity recognition of a person
standing, walking, crawling or lying and/or an empty environment [29]. Since wireless signals are
good reflectors of human bodies, activities can be recognized by monitoring received Wi-Fi signals
characteristics; CARM proposes a human activity recognition and monitoring system by extracting CSI
and was implemented on commercial Wi-Fi devices [30]. A through the wall (TTW) presence detection
system for both stationary and moving persons uses Wi-Fi signals with a single Wi-Fi access point
(AP). This system considers an empty environment with one stationary human or a human moving
in the room; the channel frequency response (CFR) changes over time carry significant information
for monitoring activities [31]. Device free solutions based on radio signals (Wi-Fi) available in the
home, particular 802.11 standard, have been considered. Fine-grained analysis based on available
CSI have been proposed to detect human activities [32]. Human body motions were detected in a
quasi-real-time environment using non-contact devices. Patterns of CSI present unique changes caused
by body motions to identify particular human activities.

SDR technology has been exploited to extract a dataset that contains radio wave signals patterns [33].
Human activity recognition (HAR) using ultra-wide band (UWB) technology is very effective to
investigate the feasibility of device-free activity recognition [34]. Hand gesture recognition is one of
the issues in human–computer interactions. Non-contact Wi-Fi-based gesture recognition systems
(Wi-GeRs) detect hand motions by capturing the changes in the CSI using Wi-Fi signals. A public
Wi-Fi router is used for the detection of hand motions [35]. Non-contact sensing has attained a lot
of attraction due to the availability of Wi-Fi signals in homes, offices, shopping malls, airports, etc.
The commercial Wi-Fi infrastructure proposed a training-free human vitality sensing platform named
Wi-Vit. This platform can capture real-time human motion speed information without the offline
training or calibration that involves human effort. The feasibility study of the platform revealed that
it can monitor long-term activities of daily living in practice for various applications [36]. Eating is
an essential activity in human daily life. In this regard, a device-free system for the monitoring of
eating uses Wi-Fi built-in devices (e.g., laptop or smartphone). This system automatically monitors
human eating activities by extracting the fine-grained CSI from Wi-Fi signals of eating motions and
by detecting swallowing and chewing. It can differentiate non-eating from eating activities and
further classifies eating motions with different utensils. Eating monitoring is essential to understand
eating behaviors, and it is useful for estimating a balanced diet [37]. The Wi-See system uses Wi-Fi
signals for gesture recognition, since wireless signals can traverse TTW and do not require line-of-sight
(LOS) from source to destination. The system uses wireless resources to enable entire-home gesture
recognition. Wi-See was evaluated in a two-bedroom apartment and an office environment using SDR
technology [38]. Wi-Hear uses Wi-Fi signals to “hear” human speech without installing any devices.
This system introduces mouth motion profile (MMP) to solve micro movement detection problems
that leverage wavelet packet transformation and partial multipath effects. It can “hear” human speech
within the radio range, and it can simultaneously “hear” multiple human speech by exploiting MIMO
technology. It was implemented on both commercial Wi-Fi infrastructure and the SDR platform [39].

An ambient radar sensor was proposed to recognize human activities in indoor environments.
A radar uses 7.8 GHz frequency to capture the fine dynamics of human activities while emitting
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16 pulse signals every second. This approach also includes a method to separate a collection of
numerous activities into individuals [40]—the concept of domain gap (DG)—and further contains
a domain independent (DI) feature, which is a promising solution to eliminate DG and achieve
gesture recognition accuracy [41]. The Bumble-Bee radar captures micro-Doppler signatures for
indoor human activity recognition. It can discriminate between human activities even under variable
conditions [42]. Occupant activity recognition (OAR) is very important for building management
systems (BMS) to give comfortable environments for occupants. The Wi-OAR system uses Wi-Fi
signals to provide user-centric services and are energy-efficient in smart offices. This system presents a
fast and robust target component separation (FRTCS) algorithm for measuring both high accuracy and
time efficiency. A pair of commercial Wi-Fi devices was used for developing a prototyped Wi-OAR
system in diverse office environments [43]. A public dataset by ten volunteers with sixteen different
activities in indoor environments used Wi-Fi signals to develop the Wi-AR system. The aim of the
system is to reduce the cost of collected signal data for researchers in a convenient manner and improve
the performance in different domains [44]. Wi-Motion uses the amplitude and phase information
extracted from the CSI sequence to build the classifiers. This system can recognize six different human
activities [45]. A device-free, non-wearable, privacy-preserving occupancy detection system uses Wi-Fi
imaging for future smart buildings. This system was developed using an off-the-shelf commercial
Wi-Fi router, omnidirectional antennas and a network interface card (NIC) for imminent body-centric
communication [46]. A low cost, non-intrusive and minimal low-power radar-based sensing system
that uses a novel approach for human activity recognition in the home was developed that investigates
fifteen different challenging activities performed inside the kitchen [47].

HAR uses deep learning (DL) networks with enhanced CSI to develop a CSI feature enhancement
scheme (CFES). It includes two modules of background correlation feature enhancement and reduction
for preprocessing the data input to the DLN [48]. At present, we are entering into the era of the
Internet of Things (IoT), where it will be convenient to find APs at any location. The presence of a
human body between two APs uses Wi-Fi signal waveforms to extract CSI. Machine learning (ML)
uses CSI data to recognize and predict human motion [49]. With the popularization and development
of Wi-Fi technology, it has become a benefit of human daily life to use mobile devices for monitoring
daily activities [50]. Sleep monitoring is a very important human activity because it plays a key role
in human health. Sleep-Guardian, a radio frequency (RF)-based healthcare system, combines signal
processing, edge computing and ML [51]. Extensive running is life-threatening if it is not monitored
properly. Wi-Run, a non-invasive step estimation, is a complete model-based system that intelligently
estimates steps using commercial Wi-Fi devices. Wi-Run consisted of two models. The first model is
the single runner CSI-based step estimation, which measures the relationship between single runner
running and CSI dynamics in the activity area. The second model is the multi-runner CSI-based step
estimation that quantifies the relationship between each runner’s running and CSI dynamics in the
activity area [52]. Investigating spatial diversity in Wi-Fi signal-based HAR identifies the dead zones
and their important dominant factors. A Wi-Fi signal-based spatial diversity aware non-contact activity
recognition system (Wi-SDAR) was introduced. It overshadows the dead zones with only one physical
Wi-Fi sender and receiver, which is fully compatible with commercial off-the-shelf Wi-Fi devices [53].
HAR uses radar as a sensor having unique characteristics such as contactless sensing and privacy
protection. DL methods for activity recognition use radar to exploit human motion information [54].

Table 3 summarizes the non-contact sensing technologies, detection and monitoring, classification
methods and accuracy achieved by existing research platform. Human activity classification and
monitoring review reveals that non-contact sensing exploits WCSI to study human activities such as
sitting, standing, walking, running, eating and sleeping. Wi-Fi sensing using commercial hardware
is widely used because it is an inexpensive and easily available solution. Human activities have
been monitored and classified in existing research by ML and DL algorithms having accuracies over
90% [28,30–39,41–53]. The average accuracy of promising non-contact technologies for monitoring
human activities is shown in Figure 1.
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Table 3. Summary of existing contributions in human activity classification and monitoring.

Sr Technology/Reference Detection and Monitoring Classification
Method Accuracy

1 Wi-Fi sensing [28] Moving human SVM 99%

2 SDR [29] Standing, walking, crawling, lying
and empty KNN 85%

3 Wi-Fi sensing [30]
Walking, running sitting and falling,
opening, empty, refrigerator, boxing,

pushing one hand, brushing teeth

CSI-speed and
CSI-activity model 96%

4 Wi-Fi sensing [31] Human presence static and dynamic Naïve Bayes 99%
5 Wi-Fi sensing [32] Walk, Sit, Stand, Run SVM and LSTM 95%
6 SDR [33] Standing up or sitting down RF 96.70%
7 UWB [34] Standing, sitting, lying RF 95.6%
8 Wi-Fi sensing [35] Gestures FDTW 97.28%
9 Wi-Fi sensing [36] Human motion HMM 94.2%

10 Wi-Fi sensing [37] Eating Soft decision-based
learning 95%

11 SDR [38] Gestures Pattern-matching 94%
12 SDR and Wi-Fi sensing [39] Hearing ML 91%

13 Radar sensing [40] Sit-to-stand, stand-to-sit, walking and
jogging K-mean 85%

14 Wi-Fi sensing [41] Gestures CNN 94.45%,
15 Radar sensing [42] Walking, running, and crawling KNN 93%

16 Wi-Fi sensing [43] Whole-body movements and
partial-body, seated activities ML 94.82%

17 Wi-Fi sensing [44] Upper, Lower and whole body CNN 90%

18 Wi-Fi sensing [45] Bend, hand clap, walk, phone call, sit
down and squat SVM 98.4%

19 Wi-Fi sensing [46] Pick up, walking, jogging and sitting
on chair Deep auto-encoder 91.1%

20 Radar sensing [47] Kitchen activities CNN 92.8%

21 Wi-Fi sensing [48] Standing and stand-up, sitting and sit
down

Soft-max
regression 97.5%

22 Wi-Fi sensing [49] Walk, stand, empty and sit down RNN 90%
23 Wi-Fi sensing [50] Moving area, path walking Path matching 90.83%
24 Wi-Fi sensing [51] Sleep K-NN 93.88%
25 Wi-Fi sensing [52] Quantifying running SSF 93.18%
26 Wi-Fi sensing [53] Walking STFT 96%
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9 Wi-Fi sensing [36] Human motion HMM 94.2% 

10 Wi-Fi sensing [37] Eating Soft decision-based 
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SDR and Wi-Fi sensing 

[39] Hearing ML 91% 
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Figure 1. Average accuracy of non-contact sensing technologies for monitoring human activities.
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2.3. Symptom Diagnosis and Health Monitoring

Regular health monitoring can detect potential health issues before they become a problem. In the
COVID-19 pandemic, it is essential to diagnose early symptoms and monitor health conditions in a
non-contact manner to stop the spread of the virus. Various non-contact sensing studies for monitoring
health were investigated for the development of a COVID-19 platform. Wireless sensing was used
to detect asthma attacks based on WCSI where Doppler effects were manifested [55]. The wireless
sensing-based healthcare facility utilized 5 G C-band technology, which improved the efficiency of
detecting the fall and body motions with a wide spectrum range and maximum capacity. The system
works at 4.8 GHz frequency for capturing the WCSI of post-surgical falls and other important activities
of humans. The low cost solution includes an RF signal generator, a NIC, and a desktop PC along
with omni-directional antennas. This system is feasible and reliable for detecting post-surgical falls
with high accuracy [56]. Huntington’s disease (HD) is a genetic disorder that cannot be cured easily.
The quality of life of patients becomes more serious as the disease quickly progresses. It is essential
to examine patients timely and effectively. A microwave sensing platform (MSP) was developed for
continuous monitoring of HD patients in a non-contact manner. This platform also resolved patient
inconvenience and privacy issues [57].

Parkinsonian gait is the most devastating symptom of Parkinson’s disease (PD), which has a
more negative impact on quality of life than other PD symptoms. Wireless sensing technology is
used for the detection of Parkinsonian gait using S-band for classification of normal walking and
abnormal gait. Additionally, the early diagnosis of shaking palsy (SP) symptoms in a non-contact
manner was also achieved [58]. Patients suffering from dementia show signs of wandering behavior
due to memory loss or boredom. Dementia patients are exposed to serious injuries from falls if
they are not continuously monitored. A wireless sensing platform was designed and evaluated the
wandering behavior of patients suffering from dementia in an indoor environment [59]. Passive Wi-Fi
sensing extracts the two-dimensional phase to monitor three health essentials, includes breathing rate,
tremor and falls. The signal processing of the cross-ambiguity function (CAF) and various features are
extracted from the signal [60]. Wireless sensing uses the C-band (4.8 GHz) in the indoor environment
to monitor body movements of women, especially pregnant women, for early detection of seizure in
pre-eclamptic women, so patients can be managed promptly and the mode of delivery can be decided
early. The body movement shows unique features extracted from WCSI and can easily be differentiated
by using ML classifiers [61]. A bathroom has a comparatively higher probability of severe accidents
than other places or rooms due to a slippery floor. A commercial Wi-Fi device-based danger-pose
detection system was used while preserving privacy [62]. A non-contact sensing method uses passive
Doppler radar to capture human body movements to recognize respiration and other physical activities
used for monitoring health. The system uses existing available wireless signals as a source to detect
human activity. A two-stage signal processing framework was outlined to support the multi-purpose
monitoring functionality. The first stage obtained the primary Doppler information by introducing
high speed passive radar signal processing. The second stage functionality was signal processing of
micro Doppler extraction data for breathing detection and classification [63].

Parasomnia is a sleep disorder that causes involuntary, random and unwanted movements of a
dreaming patient. Unfortunately, these dreams may cause violent activities, which can result in more
chances of injury, including that of a bed partner. Continuous monitoring of patients can prevent
difficult situations. The system for continuous monitoring of patients exploits fine-grained magnitude
and phase information of the WCSI. The variations in the WCSI, as a result of patient body movements,
were monitored to identify the behavior [64]. Cerebellar ataxia (CA) is a neurological disease having
symptoms of weak coordination movements and balance disorders. A non-contact sensing system
was developed for detecting CA based on rapid alternating movements and heel–knee–shin diagnosis
tests. This system has the potential to monitor CA in a flexible and patient-friendly environment [65].
A non-contact sensing method uses RF signals to detect paraparesis. It is a promising solution that
can reduce the load and improve doctor work efficiency. A system used the 1D-convolution neural
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network (CNN) model for automatic extraction of valid features and classifications. The system
performed efficient and accurate patient screening of suspected paraparesis [66]. Parkinson’s disease is
a progressive neurologic disorder that primarily affects the movements and limits the motor ability of
the patient. Freezing of gait (FOG) is a motor symptom of Parkinson’s disease in ageing people, and its
timely treatment can reduce the probability of any secondary disorders. The magnitude and phase
information of the radio signals is used to detect the motor and non-motor symptoms. The method is
very useful with minimum deployment of resources for real-time patient monitoring systems [67].

Cerebellar dysfunction (CD) is one of several neurological disorders that disturbs the movement
of the body. A user-friendly system was used to evaluate body movements in CD patients using
S-band sensing technique. This system quantified the tremors in hand and gait abnormality using
wireless devices such as a NIC, omnidirectional antennas and a router operating at 2.4 GHz to extract
the CSI data [68]. Wireless sensor networks (WSNs) use directional antennas extensively for various
applications. The four-beam patch antenna was used as a sensor node to evaluate the pill-rolling effect
in Parkinson’s disease. The four-beam patch is highly directive, small in size and can mitigate the
multipath fading present in an indoor environment for effective measurements. The pill-rolling affect
indicates the tremors in the hands, predominantly in the fore-finger and the thumb. The developed
system was a low-cost framework that evaluates the movement disorder using the S-band sensing
platform leveraging wireless devices working at 2.4 GHz. The system efficiently classifies tremor and
non-tremor feelings in the fingers [69]. A particular body movement of multiple sclerosis patients is
monitored by a C-band sensing system working at 4.8 GHz, and especially the tremors and breathing
patterns by a 5 G potential band. This system can identify the particular condition of a patient
efficiently [70]. The wireless signal technology successfully detects human motions and related diseases
in a non-contact manner [71]. Heart rate and breathing patterns of a person are major indicators of a
physical condition. A system was developed for measuring the changes in the heart rate and breathing
pattern of a person using commercial Wi-Fi devices. This is an inexpensive system and very useful for
monitoring daily life health [72].

Human vital signs of heart rate and breathing along with body posture during sleep is very
important to monitor and evaluate general physical health. A system was developed by using
off-the-shelf Wi-Fi devices to track the vital signs of both heart rate and breathing rate during sleep
without dedicated devices. An existing Wi-Fi network was re-used by the system to exploit the
fine-grained CSI to capture every movement caused by heart beats and breathing. This system has the
ability to monitor continuously and can be easily deployed everywhere with very cheap solutions [73].
FOG is a periodic absence of forward movement in PD patients, and it is one of the disabilities.
A Wi-Freeze is a non-invasive Wi-Fi-based sensing system used for detection and classification of
FOG [74]. The monitoring of various physical activities exploits wireless sensing devices, such as
sensors used in medical cyber-physical systems (CPS). Patients undergoing epileptic seizures show
signs of involuntary body movements. The system exploits S-band operating frequencies used for
data extraction and classification of a clinical condition of epileptic seizures [75]. Wi-Fall is a system
used for fall detection of independently-living people, especially the elderly. It can detect the fall of
the human without any extra hardware setup or any wearable device. The system was implemented
using commercial 802.11 n NIC. It can achieve high fall detection accuracy for a single person [76].
A real time (RT)-fall, contactless, inexpensive and accurate fall detection system used commercial Wi-Fi
devices. It allowed users to perform routine activities continuously and naturally without attaching
any devices on the body [77]. Res-Beat is a commercial Wi-Fi device-based system used for non-contact
real-time respiration rate monitoring. The system analyzes bimodal CSI data for breathing signal
anomalies to detect peak and estimate respiration rates [78].

The DL-based CNN model classifies ankle movements after surgery using the SDR platform.
WCSI image data accurately detected movement of the ankle of patients who suffered fracture ankle
surgery [79]. A non-contact sensing testbed was designed using universal software radio peripheral
(USRP) devices for the classification of post-surgery activities. The testbed efficiently classified



Micromachines 2020, 11, 912 11 of 23

the weight lifting activity of spinal cord patients by exploiting WCSI [80]. Sometimes involuntary
scratching may increase the spread of skin diseases such as atopic dermatitis. The frequency of
scratching indicates the degree of itching and is helpful in analyzing clinical diagnosis. A system has
the potential to monitor the scratching signal of a sleeping human body using a Wi-Fi router and a
leaky coaxial cable (LCC) [81]. Hypopnea syndrome is a chronic respiratory disease that is described
by repetitive occurrences of breathing disturbances during sleep. A contactless system provides
an alternative to conventional medical testing for detecting incognito hypopnea syndrome using
S-band wireless sensing. This system has the potential for monitoring accurate hypopnea syndrome
in a user-friendly and flexible environment [82]. Respiratory rhythm is the indication of respiratory
diseases. The ignored respiratory issues can be dangerous and may cause damage to other body tissues
and organs. A non-contact respiratory rhythm detection used an MSP to capture the minute variations
caused by breathing. This solution is affordable and its performance is high [83]. LCC has been used
extensively in wireless communication to cover blind and semi-blind regions. A system used LCC
to identify patient postures in bed in order to prevent or reduce bedsores. The indoor installation
and periodic CSI data collection using 802.11 n Intel WLAN NICs helped to monitor postures [84].
A system monitored abnormal breathing patterns caused by sudden infant death syndrome (SIDS) and
sleep apnea patients. This system used S-band wireless sensing to extract CSI data for the periodic and
non-periodic signals that identify the normal and abnormal respiratory conditions [85]. Traditional,
non-contact breathing detection systems required specialized hardware support that is not affordable
in normal environments. Non-contact breathing detection systems based on C-band wireless sensing
can easily be deployed in any environment. It is based on a multi-input, multi-output orthogonal
frequency division multiplexing (MIMO-OFDM) system using 802.11 n protocol [86]. The focus of
the 5 G autonomous network used wireless sensing for health care monitoring. The monitoring
of respiratory symptoms for COPD (chronic obstructive pulmonary disease) used C-band wireless
sensing to detect the respiratory conditions, including coughing and normal and abnormal breathing
of a COPD patient by utilizing NIC and the CSI tool for the extraction of CSI with an omni-directional
antenna operating at 4.8 GHz frequency. The 5 G sensing technology enhanced the health care system
for detection of various diseases effectively [87].

Table 4 summarizes the non-contact sensing technologies, diagnosis of symptoms and monitoring
health, classification method and accuracy achieved by the existing research platform. It was revealed
from the literature review that the non-contact sensing approach has the potential for the early
diagnosis of various symptoms to monitor health, such as breathing, heart rate, fall and sleep
disorder. Most systems in the existing literature exploit Wi-Fi technology using CSI to detect and
classify the health problems. The SVM algorithm is widely applied because it is applicable to both
linear and non-linear data. The classification accuracy achieved by ML and DL algorithms is over
90% [55–62,64–80]. The average accuracy achieved by various non-contact sensing technologies to
monitor health issues is shown in Figure 2.
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Table 4. Summary of existing contributions in diagnosis of symptoms and monitoring of health.

Sr Technology/Reference Detection and Monitoring Classification
Method Accuracy

1 RF sensing [55] Asthma attacks SVM 90%
2 Wi-Fi sensing [56] Post-surgical fall SVM 90%
3 Wi-Fi sensing [57] Huntington’s disease SVM and RF 98%

4 Microwave spectrum
sensing [58] Parkinsonian gait SVM 94%

5 Wi-Fi sensing [59] Dementia SVM 90%
6 SDR [60] Breathing rate, tremor and falls ML 98%
7 Wi-Fi sensing [61] Eclamptic seizures SVM 95%
8 Wi-Fi sensing [62] Danger-pose SVM 96.23%
9 SDR [63] Breathing SVM 85%

10 SDR [64] REM sleep disorder SVM 90%
11 Microwave sensing [65] Cerebellar ataxia SVM 99.8%
12 Wi-Fi sensing [66] Paraparesis 1D-CNN 99.4%
13 Microwave sensing [67] Neurological disorder SVM 99%
14 Wi-Fi sensing [68] Cerebellar dysfunction SVM 91%
15 Wi-Fi sensing [69] Parkinson’s disease SVM 90%
16 Wi-Fi sensing [70] Tumor SVM 90%
17 Radar sensing [71] Gait SVM 95%
18 Wi-Fi sensing [72] Breathing and heart rate patterns DTW 94%
19 Wi-Fi sensing [73] Vital sign during sleep SVM and RF 93%
20 Wi-Fi sensing [74] Parkinson’s disease CNN 99.7%
21 RF sensing [75] Epileptic seizures SVM 90%
22 Wi-Fi sensing [76] Fall SVM and RF 94%
23 Wi-Fi sensing [77] Fall SVM 100%
24 Wi-Fi sensing [78] Respiration rate EWMA 93.04%
25 SDR [79] Post-surgery ankle fractured CNN 98.98%
26 SDR [80] Post-surgery spinal cord FKNN 99.6%
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Figure 2. Average accuracy of non-contact sensing technologies for monitoring health.

3. Proposed Platform

A non-contact wireless platform is proposed on the basis of the existing literature. The five major
functional blocks for the development of platforms are data collection devices, WCSI-based data
extraction, data preprocessing, features extraction and classification, as shown in Figure 3.
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Figure 3. Non-contact sensing platform for diagnosis and monitoring.

3.1. Data Collection

The data can be collected by either specialize or commercial hardware devices. The coughing and
breathing data are collected for early diagnosis of COVID-19 symptoms. The data of sitting, standing,
walking, sleeping, eating and posture are collected for the monitoring and detection of fall, heart rate,
sleep disorder and diet to protect human lives in COVID-19 pandemic.

3.2. Data Extraction

The OFDM signal is used for fine grained WCSI extraction at the receiver. The WCSI frequency
response of each activity is monitored continuously, having the information of the number of
sub-carriers, the number of samples and the time taken to complete the activity. The time and samples
can be expressed as the number of samples received in a unit time. This sampling time can be chosen
on the basis of the device sample rate. The total frequency response of WCSI is express in Equation (1):
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H( jω)total =


H11 H12 . . . H1s
H21 H22 . . . H2s

...
... . . .

...
Hk1 Hk2 . . . Hks

 (1)

where k represents the maximum number of sub-carriers, and s represents the total number of samples.
The WCSI frequency response of single OFDM frame can be expressed as in Equation (2):

H( jω)sub−carrier = [H( jω1), H( jω2), . . .H( jωk)] (2)

The WCSI frequency response of each sub-carrier contain amplitude and phase information, it can
be expressed as in Equations (2) and (3), respectively:∣∣∣H( jωk)

∣∣∣ = √
H( jωk)real

2 + H( jωk)img
2 (3)

∠H( jωk) = −tan−1

H( jωk)img

H( jωk)real

 (4)∣∣∣H( jωk)
∣∣∣ is the amplitude of the kth subcarrier, and ∠H( jωk) is the phase of the kth sub-carrier.

The amplitude and phase information of WCSI is useful for identifying the human body motion to
recognize human activity and health condition.

3.3. Preprocessing

Data preprocessing requires data cleaning, smoothing and grouping to ensure meaningful, accurate
and efficient analysis. Data cleaning is a process to remove and replace missing or bad data. It detects
abrupt changes and local extrema, which is useful to find significant data trends. The smoothing
process remove noise using filtering and other signal processing techniques. The grouping process is
used to identify correlations among the data values.

3.4. Features

Feature extraction is a transformation of information, which changes measured data into
meaningful information. In addition, it is a dimension reduction process to reduce the computation
complexity and time. Presently, statistical characteristics approaches have been used for feature
extraction. In the literature, various features are extracted on the basis of data properties to improve
the classification performance. According to WCSI data properties, statistical features are divided
into two categories, such as the time-domain and frequency-domain [11,88–90]. The most important
features used for WCSI data are listed in Table 5.
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Table 5. Time and frequency domain statistical features.

Time Domain Features Frequency Domain Features

Statistics Expression Statistics Expression Statistics Expression

Minimum Min(Xi) Skewness 1
N

N∑
i=1

(
xi−ux
σ

)3
FFT FFT(d) =

N∑
n=−N

x(n)e− j 2π
N nd

Maximum Max(Xi) Kurtosis 1
N

N∑
i=1

(
xi−ux
σ

)4 Spectral
probability p(d) = FFT(d)2∑N

i=−N FFT(i)2

Mean 1
N

N∑
i=1

xi Histogram Histogram(xi)
Signal
energy E =

N∑
n=−N

∣∣∣p(d)∣∣∣2
Variance

n∑
i=1

(xi − ux)
2 Interquartile

range Q3 −Q1
Spectrum
entropy H =

N∑
i=−N

p(d) ln(p(d))

RMS

√
1
N

N∑
i=1

xi
2 Range xmax − xmin

Frequency
peak Max(FFT(d))

3.5. Classification

Most human activity recognition approaches exploit the ML and DL algorithms to classify the
motion type and its corresponding human activity to test the health status. The efficiency of the
classifier depends on the type of dataset. ML can be used to develop activity detection models that
make health predictions based on WCSI data in the presence of uncertainty. Adaptive algorithms
classify normal and abnormal health patterns in the WCSI data. When a learning computer is exposed
to more experimental data, the computer improves its identification performance. The entire set of
WCSI data is considered as a heterogeneous matrix. The WCSI response data set is a column vector
where each row is labeled with the corresponding activity in the WCSI row data. ML model accuracy
is used as a diagnostic measure to reflect the validated model results [80]. In DL, CNN learns useful
information from images. In the existing literature, it is used for monitoring purposes in many research
studies. Currently, DL is efficiently applied in the biomedical area. AlexNet and ZFNet are the most
popular CNN architectures and can be used in a parallel manner to classify WCSI numeric data that is
converted to images [79].

4. Experimental Setup

On the basis of the literature review, an experimental setup is proposed for the development of a
COVID-19 platform. In the following, two hardware setups are proposed to conduct experiments in a
bedroom along with a bathroom to capture RT environments.

4.1. Commercial Hardware Platform

This hardware platform consists of a Wi-Fi router, NIC, desktop PC or laptop and omni-directional
antennas, as shown in Figure 4a. It utilizes a CSI tool inbuilt on the Intel Wi-Fi wireless link (IWL)
802.11 n MIMO radio, which uses an open source Linux wireless driver and custom modified firmware.
It includes all the software to read and parse the channel measurements and scripts needed to run
experiments. The IWL provides 802.11 n standard WCSI in a data format that reports the channel
matrices of 30 sub-carrier groups, which is about one group for every 2 sub-carriers at 20 MHz or one
group for every 4 sub-carriers at 40 MHz frequency. Each channel matrix entry is a complex number,
with signed 8-bit resolution, each for the real and imaginary parts. It specifies the gain and phase of
the signal path between a single transmit–receive antenna pair. The hardware setup is inexpensive,
easily accessible and commercially available [91,92].



Micromachines 2020, 11, 912 16 of 23Micromachines 2020, 11, x FOR PEER REVIEW 16 of 23 

 

 
 

(a) (b) 

Figure 4. Proposed experimental setup: (a) commercial hardware platform; (b) specialize hardware 
platform. 

4.2. Specialized Hardware Platform 

This hardware platform consists of two USRP devices, one for transmission and the other for 
reception, along with omni-directional antennas and a desktop PC or laptop, as shown in Figure 4b. 
Currently, different SDR platforms are used for experimental research; among them, the USRP 
manufactured by Ettus research is mostly used, which has become the standard choice for wireless 
research [93,94]. The architecture incorporates the Xilinx Spartan-6 FPGA along with the agile analog 
radio frequency integrated circuits (RFIC)’s direct adaptation transceiver. The RFIC determines the 
number of independent transceivers. It integrates independent coherent transceivers that allow 
implementation of n×n MIMO systems. This device can cover a wide range of frequency coverage 
with an adjustable bandwidth and can run in frequency division duplex (FDD) or time division 
duplex (TDD) mode; it allows the FDD to operate in full-duplex mode, while the TDD operates in 
half-duplex mode [95]. This hardware setup is flexible and portable. 

Various experiments can be carried out on commercial and specialized hardware platforms to 
develop fully functional non-contact sensing COVID-19 platform. Experiments are to be divided into 
two main categories: 
1. Symptoms data collection 

Initially, coughing and shortness of breath data are collected from patients for developing a 
ML/DL model to classify suspected patients of COVID-19. From the literature review 
[40,45,48,57,63,70], both coughing and breathing can be monitored in a non-contact manner. 
2. Activities data collection 

It is very essential to recognize human activities for stability during the isolation and quarantine 
period. Standing, walking, sleeping, eating, bathing and postures data are collected for developing a 
ML/DL model to recognize the fall, sleep disorder and diet of the patient. From the literature review, 
heart problems, fall, sleep disorder and eating habits can be recognized by non-contact wireless 
sensing platforms [14,15,17,20,22,23,25–28,30,31,33,34,36,38,40,45,47–49,57,61–63]. 

5. Outcomes 

The following are the outcomes from the development of a non-contact sensing platform for 
containing of COVID-19. 

Figure 4. Proposed experimental setup: (a) commercial hardware platform; (b) specialize
hardware platform.

4.2. Specialized Hardware Platform

This hardware platform consists of two USRP devices, one for transmission and the other for
reception, along with omni-directional antennas and a desktop PC or laptop, as shown in Figure 4b.
Currently, different SDR platforms are used for experimental research; among them, the USRP
manufactured by Ettus research is mostly used, which has become the standard choice for wireless
research [93,94]. The architecture incorporates the Xilinx Spartan-6 FPGA along with the agile analog
radio frequency integrated circuits (RFIC)’s direct adaptation transceiver. The RFIC determines the
number of independent transceivers. It integrates independent coherent transceivers that allow
implementation of n × n MIMO systems. This device can cover a wide range of frequency coverage
with an adjustable bandwidth and can run in frequency division duplex (FDD) or time division duplex
(TDD) mode; it allows the FDD to operate in full-duplex mode, while the TDD operates in half-duplex
mode [95]. This hardware setup is flexible and portable.

Various experiments can be carried out on commercial and specialized hardware platforms to
develop fully functional non-contact sensing COVID-19 platform. Experiments are to be divided into
two main categories:

1. Symptoms data collection

Initially, coughing and shortness of breath data are collected from patients for developing a ML/DL
model to classify suspected patients of COVID-19. From the literature review [40,45,48,57,63,70],
both coughing and breathing can be monitored in a non-contact manner.

2. Activities data collection

It is very essential to recognize human activities for stability during the isolation and quarantine
period. Standing, walking, sleeping, eating, bathing and postures data are collected for developing a
ML/DL model to recognize the fall, sleep disorder and diet of the patient. From the literature review,
heart problems, fall, sleep disorder and eating habits can be recognized by non-contact wireless sensing
platforms [14,15,17,20,22,23,25–28,30,31,33,34,36,38,40,45,47–49,57,61–63].

5. Outcomes

The following are the outcomes from the development of a non-contact sensing platform for
containing of COVID-19.
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1. Wireless signals can pass through the wall and do not require LOS. This feature of non-contact
sensing eliminates the need for face-to-face contact and provides improved management to
contain COVID-19.

2. In case COVID-19 symptoms develop, the data sent by means of cloud computing platforms can
enable healthcare authorities to respond quickly.

3. It will reduce the physical contact time with a COVID-19 patient as much as possible.
4. It will not only monitor COVID-19 symptoms but also continuous health monitoring during

quarantine and isolation periods in a non-contact manner.
5. Transferring care to home, or treating high-risk elders and children in their own homes.
6. This will improve privacy of individuals during quarantine or isolation periods.
7. It will also help in early recognition of patients who need aggressive management or hospitalization

to prevent them from serious or irreversible sequelae of the disease.
8. Reduce life risk of doctors, paramedical staff and caretakers during quarantine and

isolation periods.
9. Innovative tools to construct useful contactless sensing platforms for health care applications.
10. These platforms can be deployed by re-using the existing infrastructure of wireless

communication networks.
11. Improved access to care, increased quality of care and reduced care costs.
12. It can be deployed in any emergency condition at any place to counter health challenges.

6. Challenges

Although the literature review has demonstrated the potential capabilities for developing a
non-contact sensing platform for the monitoring of COVID-19 to contain the virus and protect
humanity, there are still existing challenges and research problems that need further investigation
and exploration.

A. Environmental effect

The real time environment is challenging for developing a classification model using WCSI.
The environment varies from place to place due to furniture movement, closing and opening of
windows and doors, electronic devices, etc., which leads to changes of the behavior of the wireless
channel. It is necessary to develop a model which can adopt to new environment.

B. Experimental subject

One of the biggest challenges in data collection is the subject used in the medical related
experiments. It is very difficult to use real patients in all the experiments. Diseases and health status
vary greatly from patient to patient and during different time periods. With COVID-19, early symptoms
also vary from patient to patient. On the other hand, experimenting with real patients is not comfortable
for them and also requires time to perform extensive experiments. Researchers mainly used healthy
subjects for performing experiments, which may not address the actual problem.

C. Orientation and location

The user’s orientation and location also have critical effects on the performance of WCSI-based
sensing systems. The differences in users’ orientation and location may cause different variations
in WCSI measurements. Existing research mainly used the same orientation and location during
experiments. However, a few research studies considered different orientations and locations to
overcome such limitations.
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D. Multi-subject sensing

Most of the research on WCSI-based sensing platforms considered a single subject for investigation.
It is challenging to differentiate the movements of multiple subjects using WCSI measurements.
Considering the COVID-19 isolation or quarantine period guidelines, a single subject is enough for
developing the platform. However, early diagnosis of COVID-19 symptoms requires multi-subject
sensing, because before diagnosing COVD-19 as positive, people are not quarantined from their
families and are living in a multi-subject environment. This stage is difficult to monitor and is the main
source of the viral spread.

E. Privacy and security

With the rapid expansion of Wi-Fi sensing technology, it also raises privacy and security issues.
Existing research has demonstrated that Wi-Fi signals can interfere with other users. Enemies may spy
the activities and position using existing human activity sensing systems. It is necessary to pay more
attention to the improved privacy and security concerns.

7. Future Recommendations

The following are the future recommendations to improve the non-contact sensing platform for
the monitoring of human activities and health conditions to contain COVID-19:

1. It is recommended to perform extensive experiments with different environments and
experimental setups to develop an RT model.

2. It is recommended to collect experimental data by using multi-subjects with extensive
experimentation to develop a model.

3. An efficient and possible solution must develop a rigorous theoretical model independent of
the user’s location and orientation; the correct mapping of the relationship between WCSI
measurements and the human body motions identify the health conditions. It is recommended
to conduct experiments with different orientations and locations for the collection of data for
developing models.

4. It is recommended to extract more prominent features to differentiate human activities and health
conditions. Frequency domain features are useful for classifying multi-subjects.

5. It is recommended to use SDR-based WCSI sensing to counter the privacy and security using a
self-generated signal approach that can switch to different frequency bands.

8. Conclusions

Various measurements and research studies are initiated to contain COVID-19 throughout the
world. Limiting human-to-human contact is the best solution to reduce the spread of COVID-19.
This research presents a comprehensive review on existing non-contact sensing of human activities and
health monitoring that could be used for the development of a COVID-19 pandemic platform. The Wi-Fi
and SDR technology has the potential to contain COVID-19 in a non-contact manner. This study
proposes a non-contact WCSI-based sensing platform for monitoring COVID-19 to contain the deadly
pandemic situation.

The proposed platform has the potential to diagnose the early symptoms like coughing and
shortness of breath. The development of the platform is very useful in the quarantine and isolation
period because it will monitor fall, sleep disorder, shortness of breathing, coughing level, heartbeat
and diet of suspected or confirmed COVID-19 cases. Although the proposed platform is a promising
solution, there still exist limitations to achieve optimal performance. This study highlights the
challenges, and it is expected that proposed solutions will contribute to contain COVID-19.
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