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Abstract
Background: Lung adenocarcinoma (LUAD), as the most common subtype of 
lung cancer, is the leading cause of cancer deaths in the world. The accumulation of 
driver gene mutations enables cancer cells to gradually acquire growth advantage. 
Therefore, it is important to understand the functions and interactions of driver gene 
mutations in cancer progression.
Methods: We obtained gene mutation data and gene expression profile of 506 LUAD 
tumors from The Cancer Genome Atlas (TCGA). The subtypes of tumors with driver 
gene mutations were identified by consensus cluster analysis.
Results: We found 21 significantly mutually exclusive pairs consisting of 20 genes 
among 506 LUAD patients. Because of the increased transcriptomic heterogeneity of 
mutations, we identified subtypes among tumors with non- silent mutations in driver 
genes. There were 494 mutually exclusive pairs found among driver gene mutations 
within different subtypes. Furthermore, we identified functions of mutually exclusive 
pairs based on the hypothesis of functional redundancy of mutual exclusivity. These 
mutually exclusive pairs were significantly enriched in nuclear division and humoral 
immune response, which played crucial roles in cancer initiation and progression. We 
also found 79 mutually exclusive triples among subtypes of tumors with driver gene 
mutations, which were key roles in cell motility and cellular chemical homeostasis. 
In addition, two mutually exclusive triples and one mutually exclusive triple were 
associated with the overall survival and disease- specific survival of LUAD patients, 
respectively.
Conclusions: We revealed novel mutual exclusivity and generated a comprehensive 
functional landscape of driver gene mutations, which could offer a new perspective to 
understand the mechanisms of cancer development and identify potential biomarkers 
for LUAD therapy.
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1 |  INTRODUCTION

Lung cancer is a major public health problem all over the 
world and the second leading cause of death in the world.1,2 
Lung adenocarcinoma (LUAD) is the most common histo-
logic type of primary lung cancer, accounting for about 40% 
of all lung cancers.3 Its incidence rate is increasing in people 
who have never smoked, or are aged 20– 46 years.4 LUAD 
patients can be divided into five groups using the TNM clas-
sifications system.5,6 The higher the grade is, the more malig-
nant the tumor is. The standard treatment of LUAD patients 
is surgery, radiation therapy, chemotherapy, and targeted 
therapies.7– 9

Some studies have shown that solid tumors contain hun-
dreds or thousands of genetic alterations across multiple can-
cers, including lung adenocarcinoma.10– 13 The vast majority 
of them are point mutations, which are composed of driver 
mutations and passenger mutations. The former confer selec-
tive growth advantages to tumor cells,12,14– 16 while the latter 
occur during a large number of cell divisions.17,18 The driver 
gene is defined as one whose mutations increase cell growth 
under the specific conditions in cells.19 There are some 
driver gene mutations found in LUAD, for example, driver 
gene EGFR.20,21 Targeted therapies against several oncogenic 
drivers, such as EGFR and BRAF mutations, have been ap-
proved for the precision treatment of LUAD.22– 24 However, 
patients with the same driver genetic alterations showed ex-
tensive genetic and transcriptomic heterogeneity.25,26

The heterogeneity of tumors could be a major obstacle for 
anticancer treatment, which can occur at genetic, transcrip-
tomic, and histological levels. Transcriptomic heterogeneity 
is very important in cancer researches because mRNAs can 
be treated as a bridge that links genetic variations and phys-
iological traits.27,28 Nowadays, gene expression- based mo-
lecular subtyping has been used in cancers to aid treatment 
decisions due to the existence of transcriptomic heterogene-
ity. For example, breast cancer patients can be divided into 
four intrinsic molecular subtypes (Basal- like, HER- 2 pos-
itive, Luminal A, and Luminal B), which has been proven 
to be clinically effective.29 However, the degree of transcrip-
tomic heterogeneity of LUAD tumors with different driver 
gene mutations is still unclear, which may be the key to un-
derstand the functions of driver gene mutations and improve 
the therapeutic efficacy in cancers.

The accumulating genetic alterations in cancers do not 
occur at random, but mutually depend on each other.30 Some 
co- occurring events were observed in multiple cancers by 
high- throughput sequencing data.31 For example, driver gene 

CTNNB1 and PIK3CA cooperatively promote tumor metas-
tasis.32 Mutual exclusivity refers to the phenomenon that ge-
netic alterations of genes do not tend to occur in the same 
sample, which has been widely observed in numerous can-
cer cohorts.33,34 Some well- known cancer driver genes are 
mutual exclusivity. The mutually exclusive events, includ-
ing BRAF and KRAS mutations (two members of MAPK– 
ERK pathway), are mutual exclusivity and undergo genetic 
alterations in lung cancer patients.35,36 Similarly, KRAS and 
EGFR mutations are also mutually exclusive in LUAD.37 
What's more, the co- occurring or mutually exclusive events 
have been reported to be clinically relevant. For example, the 
mutual exclusivity of ATM and TP53 mutations in mantle cell 
lymphoma patients was associated with significantly reduced 
overall survival.38 Thus, it is necessary to comprehensively 
identify and analyze co- occurring or mutually exclusive 
events of mutations to enhance the understanding of tumor-
igenesis and improve the treatment strategies for precision 
medicine.

In the present study, we comprehensively character-
ized the functions of 178 driver gene mutations within spe-
cific subtypes across 506 LUAD patients from The Cancer 
Genome Atlas (TCGA) project. The tumors with driver gene 
mutations were divided into diverse subtypes based on tran-
scriptomic heterogeneity. Interestingly, we found more co- 
occurring and mutually exclusive pairs of subtypes of tumors 
with driver gene mutations. Furthermore, these mutually ex-
clusive pairs exhibited crucial roles in cancers, including nu-
clear division, humoral immune response, cell motility, cell 
differentiation, and blood circulation. Finally, we observed 
functional and prognostic mutually exclusive triples.

2 |  MATERIALS AND METHODS

2.1 | Data source

In this study, the mutation profile, gene expression profile, 
and corresponding clinical metadata (including clinicopatho-
logical factors, overall survival [OS], disease- specific sur-
vival [DSS]) of LUAD patients were accessed through The 
Cancer Genome Atlas (TCGA) portal (https://portal.gdc.
cancer.gov). Non- silent mutations are of great significance 
for the functional analysis of mutated genes,39 so subsequent 
analysis focused on non- silent mutations. For the mutation 
profile, non- silent somatic mutations (missense mutation, 
nonsense mutation, translation start site, in- frame deletion, 
in- frame insert, frame- shift deletion, frame- shift insert, splice 
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site, and nonstop mutation) remained according to UCSC 
Genome Browser (http://genome.ucsc.edu).40 The data were 
filtered to exclude patients without mutation data or clinical 
information. There were 506 LUAD patients having muta-
tion data and gene expression data. A total of 497 patients 
have available overall survival data and 464 patients have 
disease- specific survival data. Besides, the cancer driver 
genes (n = 846) were obtained from public sources in our 
research. The Catalogue Of Somatic Mutations In Cancer 
(COSMIC) gene census manually collected more than 700 
cancer genes that were mutated and causally implicated in 
cancer development from literatures.41 Matthew H. Bailey 
et al. used 26 computational tools to identify 299 driver genes 
in multiple cancers.42 The Cancer Genome Atlas Research 
Network identified 18 significant mutated genes among 412 
lung adenocarcinomas.43 And, Joshua D Campbell et al. 
identified 66 driver genes in lung cancers.44

2.2 | Identifying subtypes of tumors with 
mutations in each driver gene

For each driver gene, we classified the tumor samples harbor-
ing mutations in this driver gene into subtypes in three steps. 
First, the top 2000 most variant genes were selected accord-
ing to the value of median absolute deviation (MAD) across 
tumors. Expression values of the above variable genes were 
log2 transformed and then median- centered across samples 
for each gene. Second, we performed consensus clustering 
to divide the driver gene- mutated tumors into subtypes by 
ConsensusClusterPlus R package.45 We used Partitioning 
Around Medoids (PAM) algorithm to implement the unsu-
pervised consensus clustering the Pearson's correlation coef-
ficient as a similarity measure based on the expression data 
of most variable genes. The optimal number of subtypes was 
assessed based on 80% sample resampling over 1000 itera-
tions. For driver genes mutations that appeared in more than 
20 samples, the optimal number was determined by consen-
sus membership heatmap. For driver gene mutations that mu-
tated in no more than 20 samples, they were divided directly 
into two subtypes. Third, we calculated the silhouette width 
of each tumor sample within the same subtypes based on the 
Pearson distance. Samples with non- positive silhouette width 
were regarded as unstable and removed. Subtypes with sam-
ples less than five were also removed.

2.3 | Identifying the functions of mutually 
exclusive pairs

We selected 17,887 genes which showed detectable expres-
sion (counts >1 in at least 30% of LUAD samples). At first, 
differential expression analysis was performed based on the 

gene expression profile of LUAD patients by the “DESeq2” R 
package. Genes with the cutoff criteria of |log2- fold change| 
≥1 and FDR <0.05 between some subtype of tumors with 
driver gene mutations and wild- type (WT) patients were re-
garded as differentially expressed genes (DEGs). Functional 
enrichment in Gene Ontology (GO) biological processes of 
the above DEGs was performed using g: profiler,46,47 setting 
a threshold of 0.05 for statistical significance. At this point, 
the functions of driver gene mutations within subtypes were 
found.

Then, we identified the functions of mutually exclusive 
pairs of driver gene mutations within subtypes, which were 
functional intersections between two subtypes of driver gene 
mutations of some mutually exclusive pair. Furthermore, the 
functions of mutually exclusive triples were functional inter-
section in at least two mutually exclusive pairs.

Visualization of GO enrichment was performed using the 
EnrichmentMap plugin48 in Cytoscape.49 Similar GO terms 
were clustered together based on the similarity between each 
other using the overlap coefficient. Clusters were manually 
circled and labeled to highlight the prevalent biological func-
tions among related GO terms.

2.4 | Survival analyses

For survival analysis, overall survival and disease- specific 
survival were used as the end points. The Kaplan– Meier 
method was performed for visualization purposes and the dif-
ferences between survival curves were calculated by log- rank 
test. Univariate and multivariate Cox proportional hazards 
regression models were applied to estimate the prognostic 
capability of mutually exclusive triples. The p values smaller 
than 0.05 were considered to be statistically significant. All 
of the statistical analyses were performed using R software 
(www.r- proje ct.org).

3 |  RESULTS

3.1 | The mutually exclusive/co- occurring 
events of driver gene mutations across LUAD 
patients

Driver gene mutations promote tumorigenesis and play 
major impacts on patient outcome.50,51 To explore the 
functions and associations among driver gene mutations in 
LUAD, we obtained 846 driver genes from public sources 
and mutation profile of patients from TCGA. Among the 
506 LUAD patients, we identified a total of 11,519 non- 
silent mutations in driver genes. The non- silent mutations 
consisted of 9509 missense mutations (83%), 1003 non-
sense mutations (9%), 403 splice site mutations (3%), 9 
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translation start site (0.08%), 2 nonstop mutation (0.02%), 
514 frameshift indels (4%), and 79 in- frame indels (0.7%). 
There were 783 driver genes with at least one mutation 
among LUAD patients. And, 178 driver genes were mu-
tated in more than 15 patients (> 3%) among the above 
genes51– 53 (Figure  1A), which were used for subsequent 
analysis. Seven of these genes appeared in at least 100 
patients, including driver genes TP53 (n = 257), MUC16 
(n  =  211), CSMD3 (n  =  201), LRP1B (n  =  171), KRAS 
(n = 147), SPTA1 (n = 128), and FAT3 (n = 103). These 
seven driver genes could be verified by the oncoKB data-
base54 and by other researches.55– 58

In the profile of non- silent mutations in driver genes, 
which presented in at least 7% of LUAD patients, mutu-
ally exclusive or co- occurring phenomena were observed 
(Figure 1B). Therefore, 21 mutually exclusive events were 
significantly identified in LUAD using the DISCOVER 
method,59 involving 20 driver gene mutations (q value 
<0.05, Figure  1C). We observed that EGFR mutations 
were mutually exclusive with 14 driver gene mutations, 
such as driver oncogene KRAS and KMT2D mutations 
(Figure  1D). KRAS mutations and six driver gene muta-
tions were mutually exclusive (Figure 1D). In addition, on-
cogene TP53 mutations were not only mutually exclusive 

F I G U R E  1  The mutually exclusive events of driver gene mutations across LUAD patients. (A) The numbers of LUAD patients with non- 
silent mutations in driver genes. The red line indicated 15 patients. (B) Heatmap of the top 50 frequently mutated driver genes. The red square 
represented the mutations of driver genes. The X- axis means LUAD patients and the Y- axis means the percentage of patients with non- silent 
mutations in driver genes. (C) All 21 mutually exclusive events were identified in 178 driver gene mutations, including 20 driver genes. (D) The 
mutual exclusivity of EGFR mutations, KRAS mutations, or TP53 mutations. Each column represents mutated tumors. The X- axis means LUAD 
patients and the Y- axis means the percentage of patients with non- silent mutations in driver genes
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with KRAS mutations, but also with STK11 and ATM muta-
tions (Figure 1D). However, no significantly co- occurring 
events were found in our research. These results pointed to 
the existence of mutually exclusive driver gene mutations 
across LUAD patients.

3.2 | High transcriptomic heterogeneity of 
tumors with driver gene mutations

We sought to examine the extent of the transcriptomic het-
erogeneity of 506 LUAD tumors and 59 adjacent normal 
samples. Genes exhibited stable high or low expression in 
normal samples, while the expression of genes was quite 
messy in tumors through unsupervised cluster analysis on the 
top 300 variant genes. This phenomenon indicated that tran-
scriptomic heterogeneity increased in tumors (Figure 2A). To 
quantificationally estimate the transcriptomic heterogeneity 

for samples, we calculated the median absolute deviation of 
all genes in tumor samples. The MAD values of tumors were 
significantly higher than the normal samples (p  <  0.001, 
Wilcoxon rank sum paired test, Figure 2B).

Tumors with various driver gene mutations also consis-
tently had higher transcriptomic heterogeneity compared 
with the normal samples (p  <  0.001, Wilcoxon rank- sum 
paired test, Figure  2C). Besides, cluster heatmap showed 
that genes expressed inconsistently in their respective tumor 
samples with driver gene mutations, such as EGFR- , KRAS- , 
and TP53- mutated tumors (Figure  2D). Meanwhile, we 
compared the transcriptomic similarity within tumors with 
driver gene mutations and normal samples by calculating the 
Pearson distance. A tight correlation among normal samples 
was observed (Figure 2E). In contrast, tumors with various 
driver gene mutations showed great diversity, for example, 
EGFR- mutated tumors, KRAS- mutated tumors, and TP53- 
mutated tumors (Figure 2E). This phenomenon showed that 

F I G U R E  2  High transcriptomic heterogeneity in tumors with driver gene mutations. (A) A heatmap showed the unsupervised hierarchical 
clustering of LUAD tumors (n = 506) and normal samples (n = 59) by the most variable genes (n = 300). (B) The MAD distribution of all genes 
across all tumor and normal samples. The blue and orange lines representing tumor and normal samples, respectively. (C) The MAD distribution of 
all genes across samples with driver gene mutations. The blue and orange lines representing gene- mutated tumors and normal samples, respectively. 
(D) A heatmap was shown by unsupervised hierarchical clustering of the most variable genes (n = 300) among EGFR- , KRAS- , and TP53- mutated 
tumors and normal samples. (E) Pairwise comparison of transcriptomic profiles in normal samples and EGFR, KRAS, and TP53 mutant tumors. The 
heatmaps were plotted using unsupervised hierarchical clustering with Pearson distance (1- Pearson correlation coefficient)
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unknown homogeneous clusters were hidden in the driver 
gene- mutated tumors. These results implied that tumors with 
driver gene mutations were needed to be divided into diverse 
subtypes.

3.3 | Identification of subtypes of tumors 
with driver gene mutations

Next, we identified molecular subtypes of LUAD tumors in 
three steps (Figure 3A). First, LUAD tumors were assigned 
to 178 groups by driver gene mutations. Then, the consensus 

clustering algorithm was applied on the transcriptomic pro-
files of each group of driver gene- mutated tumors to de-
termine subtypes. In order to retain representative samples 
in each subtype, we eventually performed silhouette width 
analysis to exclude the unstable samples. To ensure sufficient 
statistical power, there were five subtypes (COL2A1 subtype 
two, SMAD4 subtype two, IL7R subtype two, MUC6 subtype 
one, and NUP98 subtype two) with the small sample size 
(n < 5) excluded in our study. We finally divided the tumors 
with 178 driver gene mutations into various subtypes and the 
majority of driver- mutated tumor groups had two subtypes 
(143/178, Figure 3B).

F I G U R E  3  Subtypes of tumors with driver gene mutations. (A) The overview of identification of subtypes of tumors with driver gene 
mutations. (B) Ring bar plots (outer) showing the count of subtypes and samples of each driver gene. Bar plots (inner) showing the count of driver 
genes divided into various subtypes. (C) Gene expression heatmap (red =high expression; blue =low expression) of TP53-  (n = 244) and KRAS 
(n = 131)- mutated tumors by the 2000 most variable genes. (D) A principal component analysis (PCA) of TP53-  and KRAS- mutated tumors. (E) 
The MAD distribution of the most variable genes in TP53 (left) and KRAS (right) mutant tumors and corresponding subtypes
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Here, we took the critical driver gene TP53 and KRAS 
as examples. As shown in the cluster heatmap on top 2000 
variable genes, a discriminable expression pattern between 
two subtypes of TP53 mutations was observed (Figure  3C 
top). KRAS- mutated tumors, divided into three subtypes, 
showed a similar phenomenon (Figure 3C bottom). The clus-
tering robustness was assessed with principal component 
analysis, TP53-  and KRAS- mutated tumors formed two and 
three separate groups, respectively, which supported the clas-
sification of subtypes (Figure  3D). In order to observe the 
changes in transcriptomic heterogeneity between tumors with 
driver gene mutations and their corresponding subtypes, we 
compared the MAD of top variable genes. Transcriptomic 
heterogeneity of TP53 subtype two decreased significantly 
(p < 0.001, Wilcoxon rank- sum paired test) compared with 
all tumors with TP53 mutation, while subtype one changed 
little (Figure 3E). Besides, all the three subtypes of KRAS- 
mutated tumor samples decreased significantly (p < 0.0001, 
Wilcoxon rank- sum paired test, Figure 3E). These results in-
dicated that the subtypes of each driver gene- mutated tumors 
were composed of stable subtypes with lower transcriptomic 
heterogeneity.

For further analysis of functions of driver gene mutations 
in subtypes, we identified DEGs between the subtypes of tu-
mors with driver gene mutations and wild- type samples and 
performed functional enrichment analysis based on these 
DEGs using g: profiler.46,47 We found some key biological 
functions of driver gene mutations within subtypes. TP53 
subtype one was significantly enriched in cell cycle, cell di-
vision, and nuclear division (adjusted enrichment p < 0.05, 
Figure  S1A). The cell cycle is associated with a cancer 
hallmark, self- sufficiency in growth signals.60– 62 We also 
identified functions related to other cancer hallmarks. The 
humoral immune process of TP53 subtype two was related to 
tumor- promoting inflammation and evading immune detec-
tion (Figure S1A).60– 62 Importantly, KRAS subtype three was 
specifically enriched in the immune system process, such as 
lymphocyte proliferation, leukocyte proliferation, and T cell 
proliferation (Figure S1B). These results suggested that dif-
ferent subtypes of the same driver gene mutations in LUAD 
patients had diverse functions.

3.4 | The co- occurring or mutually exclusive 
pairs of driver gene mutations within subtypes

We wanted to explore whether the co- occurring or mutually 
exclusive pairs existed in driver gene mutations within sub-
types. At first, we identified 21 significantly co- occurring 
pairs among 394 subtypes of 178 driver gene mutations using 
the DISCOVER method, including 24 subtypes and 24 driver 
genes (q value <0.05, Figure 4A). Among these co- occurring 
pairs, we found TP53  subtype one was co- occurring with 

FAT3 subtype two (q value =0.025, Figure 4B). There were 
22 common samples shared by these two subtypes, encom-
passing 78 samples of TP53 subtype one and 25 samples of 
FAT3  subtype two. However, driver gene TP53 mutations 
were not co- occurring with FAT3 mutations (q value =0.983). 
Another example of TP53 subtype one and LRP1B subtype 
one was observed, which was identified as a co- occurring 
pair (q value =0.011, Figure 4C). This co- occurring pair was 
commonly detected in 33 samples (54 samples of LRP1B 
subtype one). A similar phenomenon was also observed be-
tween ROBO2 subtype two and NSD1 subtype two (q value 
=0.036, Figure  4D). These results revealed that more co- 
occurring pairs of subtypes of tumors with driver gene muta-
tions were found than tumors with mutations in driver genes.

We also identified 494 mutually exclusive pairs of driver 
gene mutations within subtypes (Figure 5A), including 179 
subtypes of 112 driver gene mutations. There was an inter-
esting phenomenon that up to 168 subtypes were mutually 
exclusive with two subtypes of TP53. TP53 subtype one and 
TP53 subtype two were mutually exclusive with 82 subtypes 
and 91 subtypes of driver gene mutations, respectively. Only 
five subtypes (SETD2 subtype one, KEAP1 subtype one, 
KRAS subtype two, ATM subtype three, and KRAS subtype 
three) were mutually exclusive with both two subtypes of 
TP53 mutations (Table S1). Most subtypes were mutually ex-
clusive with one of the TP53 mutations’ subtypes. Although 
PIK3CA subtype two was mutually exclusive with TP53 sub-
type one, it was not mutually exclusive with TP53 subtype 
two. The same result was observed between TP53 subtype 
two and PTPRT subtype two (Figure S2).

Among 494 mutually exclusive pairs, some pairs were 
not only identified among subtypes of tumors with driver 
gene mutations but also among driver gene mutations. Let 
us take an example of the driver gene KRAS and EGFR. 
KRAS mutations and EGFR mutations were significantly 
mutually exclusive events (q value =0.030, Figure 5B). At 
the subtype level, tumors with KRAS mutations and EGFR 
mutations were divided into three and two groups, respec-
tively. Except for the pair of KRAS subtype two and EGFR 
subtype two, the other five pairs of subtypes were all sig-
nificantly mutually exclusive (q value <0.05). Surprisingly, 
most of the mutually exclusive pairs were only observed at 
the subtype level. TP53  subtype one was mutually exclu-
sive with EGFR subtype two (q value =0.000016), where 
tumors with TP53 mutations were divided into two groups 
(Figure  5C). However, TP53 mutations were not signifi-
cantly mutually exclusive with EGFR mutations (q value 
=0.981). A similar phenomenon was found in the pair of 
KRAS subtype one and CNTNAP2 subtype two (Figure 5C). 
These results revealed that more mutually exclusive or 
co- occurring pairs were identified among subtypes of tu-
mors with driver gene mutations based on transcriptomic 
heterogeneity.
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3.5 | Identification of biological functions of 
driver gene mutations within subtypes

Subsequently, we identified the functions of mutually exclu-
sive pairs among driver gene mutations within subtypes by 
functional enrichment analysis (see Methods). As a result, 

numerous biological processes were significantly enriched 
for mutually exclusive pairs, such as cell cycle, cell adhesion, 
and cell differentiation. There were 78 important biological 
functions found among two subtypes of EGFR mutations 
and their mutually exclusive events, including 25 subtypes 
of 13 driver gene mutations (Figure  6A). The mutually 

F I G U R E  4  The co- occurring pairs of driver gene mutations within subtypes. (A) Twenty- one co- occurring pairs of 20 driver gene mutations 
within subtypes. S1, S2, and S3 mean subtype one, subtype two, and subtype three, respectively. (B– D) The co- occurring pairs of TP53 subtype 
one– FAT3 subtype two, TP53 subtype one– LRP1B subtype one, ROBO2 subtype two– NSD1 subtype two, respectively. The heatmap on the left 
showed the mutational status of driver gene mutations within subtypes (red for mutation) for each sample (each column). Venn diagrams on the 
right showing the overlap of samples with co- occurring pairs
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exclusive pair (TP53 subtype one and EGFR subtype two) 
was specifically enriched in nuclear chromosome segrega-
tion and nuclear division (Figure 6B). Besides, the humoral 

immune response was found in the mutually exclusive events 
(CSMD3 subtype two and EGFR subtype two) (Figure 6C), 
which was useful for autoimmunogenic human tumor 

F I G U R E  5  The mutually exclusive pairs of driver gene mutations within subtypes. (A) A total of 494 mutually exclusive pairs of 112 driver 
gene mutations within subtypes. S1, S2, and S3 mean subtype one, subtype two, and subtype three, respectively. (B) The mutually exclusive pair 
of subtypes of KRAS mutations and EGFR mutations (middle). The heatmap showed the top 50 differentially expressed genes between subtypes 
of KRAS- mutated (left) and TP53- mutated (right) tumors. (C) The mutually exclusive pairs of TP53 subtype one– EGFR subtype two and KRAS 
subtype one– CNTNAP2 subtype two
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antigens and cancers.63,64 The similar results were observed 
in other subtypes of driver gene mutations. Take KRAS mu-
tations as an example, the pair of KRAS subtype three and 
TP53 subtype one was associated with cell motility, cell dif-
ferentiation, and blood circulation (Figure S3). These func-
tions played key roles in cancer progression.65– 67 In addition, 
TP53 mutations and RB1 mutations were synthetic lethality 
in the SynLethDB68 database. The common presence of the 
two driver genes could kill cells. All findings suggested that 
we could identify crucial biological processes of driver gene 
mutations according to the analysis of mutual exclusion of 
subtypes of driver gene- mutated tumors.

3.6 | The functions of mutually 
exclusive triples

Furthermore, we identified 79 mutually exclusive triples 
among driver gene mutations within subtypes (Table S2). In 

the mutually exclusive triple, every two subtypes were mutu-
ally exclusive. There were a number of important biological 
processes found related to these mutually exclusive triples. 
Among these mutually exclusive triples, the triple (TP53 sub-
type two– KEAP1 subtype one– TLR4 subtype one) harbored 
the most functions (n  =  70), including cell differentiation, 
homeostatic process, vascular circulatory system, cell– cell 
signaling, and cilium- dependent cell motility (Figure  7A). 
We found 38 mutually exclusive triples were significantly 
enriched in cell motility, which were associated with cancer 
invasion and metastasis.69,70 For example, the functions of a 
mutually exclusive triple (KEAP1 subtype two– FAT3 sub-
type one– EGFR subtype one) were cilium- dependent cell 
motility, cell differentiation, microtubule bundle formation, 
and cellular chemical homeostasis (Figure  7B). The triple, 
FAT3 subtype two– KRAS subtype one– KEAP1 subtype one, 
was significantly enriched in cell– cell adhesion, circula-
tory system process, and immune- mediated antimicrobial 
(Figure 7C).

F I G U R E  6  The functions of mutually exclusive pairs of EGFR mutations within subtypes. (A) The heatmap showed the functions of mutually 
exclusive pairs of EGFR mutations within subtypes. Red represented some mutually exclusive pair was significantly enriched in one function. (B– 
C) The functions of mutually exclusive pairs of TP53 subtype one– EGFR subtype two and CSMD3 subtype two– EGFR subtype two. Functional 
enrichment results were visualized using EnrichmentMap plugin in Cytoscape. Node size was proportional to the size of the functional gene set. 
Clusters were manually circled
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3.7 | The prognostic value of mutually 
exclusive triples

Finally, we explored the prognostic value of 78 mutually ex-
clusive triples. There were six mutually exclusive triples sig-
nificantly predicting the overall survival of LUAD patients 
using the log- rank test (p < 0.05, Figure 8). The samples with 
these mutually exclusive triples had significantly shorter OS 
compared with WT sequences (p < 0.05). To assess whether 
the survival prediction ability of the prognostic triples was 
independent of other clinicopathologic factors in LUAD, uni-
variate and multivariable Cox regression analyses were per-
formed. The covariables included age, gender, AJCC stage, 
T stage, N stage, and these six triples. The patients harbor-
ing “TP53 subtype one– KRAS subtype 3– FAM47C subtype 
2” (HR =1.405, 95% CI 1.014– 1.945, p = 0.041, Table 1), 
“KEAP1  subtype two –  FAT3  subtype one– EGFR subtype 
one” (HR =1.440, 95% CI 1.023– 2.027, p = 0.036, Table 2) 
independently predicted poor OS of the patients with LUAD. 
The other clinical factors, N stage, was also independently 
associated with shorter OS of patients (p  =  0.019 and 
p = 0.013, respectively).

In addition, we investigated the associations of the mutu-
ally exclusive triples and disease- specific survival of LUAD 
patients. We found that eight mutually exclusive triples sig-
nificantly predicted shorter DSS of patients by log- rank test 
(p < 0.05, Figure S4). Furthermore, one mutually exclusive 
triple (TP53 subtype one– MUC16 subtype one– KRAS sub-
type three) significantly independently predicted the survival 
of patients by univariate and multivariable Cox regression 
analyses (HR = 1.475, 95% CI 0.986– 2.207, p = 0.048, Table 
S3), adjusting for other clinicopathologic factors. These re-
sults indicated that the predictive ability of two mutually 
exclusive triples and one mutually exclusive triple was in-
dependent of clinicopathological factors for OS and DSS in 
LUAD, respectively.

4 |  DISCUSSION

In this study, we comprehensively characterized the functions 
of 178 driver gene mutations within specific subtypes across 
506 LUAD patients from TCGA. We identified 21 signifi-
cantly mutually exclusive events of driver gene mutations. 

F I G U R E  7  The functions of mutually exclusive triples. (A– C) The functions of mutually exclusive triples of TP53 subtype two– KEAP1 
subtype one– TLR4 subtype one, KEAP1 subtype two– FAT3 subtype one– EGFR subtype one, and FAT3 subtype two– KRAS subtype one– KEAP1 
subtype one. Functional enrichment results were visualized using EnrichmentMap plugin in Cytoscape. Node size was proportional to the size of 
the functional gene set. Clusters were manually circled and labeled
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Because of increasing transcriptomic heterogeneity of tu-
mors with driver gene mutations, they were divided into 
different subtypes. Notably, using mutual exclusivity, more 
co- occurring (n = 21) and mutually exclusive pairs (n = 494) 
were found among driver gene mutations within subtypes. 
The observation motivated us to explore the functions of 
mutually exclusive pairs. These mutually exclusive pairs of 
mutations within subtypes played crucial roles in cancers, in-
cluding nuclear chromosome segregation, nuclear division, 
humoral immune response, cell motility, cell differentia-
tion, and blood circulation. These results indicated that we 
could identify more crucial and refined functions of driver 
gene mutations according to the analysis of mutual exclu-
sion of subtypes of driver gene- mutated tumors. At last, 79 
mutually exclusive triples were significantly enriched in cell 
differentiation, cell motility, cilium- dependent cell motility, 
and cellular chemical homeostasis. We also observed three 
prognostic mutually exclusive triples, which independently 
predicted the survival of LUAD patients. In summary, we 
found novel mutual exclusivity and functional associations 
of driver gene mutations based on transcriptomic heteroge-
neity, which could offer a new perspective to understand the 
mechanisms of cancer development.

In recent studies, accumulating evidence supported that 
the heterogeneity of LUAD tumors plays an important role 
in tumor progression, and LUAD is composed of subtypes 
distinguishable only at the molecular level.71– 73 Toshiyuki 
Takeuchi et al. established a basis for expression profile- 
defined classification, which can classify adenocarcinomas 
into two major types.74 It should be noted that even the tu-
mors with the same driver gene mutations can cause different 
progression.75 In this study, we have observed high transcrip-
tomic heterogeneity in LUAD tumor samples with various 
driver gene mutations. And, most tumor samples with driver 
gene mutation can be divided into at least two subtypes. 
Interestingly, subtypes of the same driver gene mutations 
were enriched in different functions related to cancer pro-
gression. This suggested that transcriptomic heterogeneity, as 
a confounding factor, may hide the various function of driver 
genes, which can be resolved with subtypes.

In this research, we identified many biological functions 
of mutually exclusive pairs of driver gene mutations within 
subtypes, which played crucial roles in tumorigenesis. Some 
of these functions were associated with cancer hallmarks, in-
cluding self- sufficiency in growth signals, tumor- promoting 
inflammation, and evading immune detection.60– 62 For 

F I G U R E  8  The associations of mutually exclusive triples with clinical outcome. Comparison of overall survival among patients carrying 
mutually exclusive triples (red line) and cases harboring unmutated genes (gray line) by Kaplan– Meier analysis (with log- rank p values) in the 
cohort of LUAD patients from TCGA
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T A B L E  1  Multivariate analysis for a mutually exclusive triple of overall survival in the cohort (TP53 subtype one– KRAS subtype three– 
FAM47C subtype two)

Variables Univariate Multivariate

HR 95% CI p value HR 95% CI p value

Age 1.009 0.994– 1.025 0.249 1.012 0.996– 1.029 0.140

AJCC stage

Stage II versus I 2.345 1.624– 3.388 <0.001* 1.046 0.556– 1.968 0.890

Stage III versus I 3.495 2.379– 5.133 <0.001* 1.59 0.626– 4.034 0.329

Stage IV versus I 3.341 1.834– 6.088 <0.001* 2.123 0.995– 4.531 0.052

T stage

T2 versus T1 1.409 0.984– 2.018 0.061 1.232 0.845– 1.795 0.278

T3 versus T1 3.027 1.798– 5.097 <0.001* 2.534 1.341– 4.788 0.004

T4 versus T1 3.117 1.641– 5.920 <0.001* 1.667 0.778– 3.571 0.189

N stage

N1 versus N0 2.363 1.669– 3.346 <0.001* 2.025 1.124– 3.648 0.019*

N2 versus N0 3.115 2.123– 4.569 <0.001* 1.630 0.698– 3.085 0.258

N3 versus N0 3.842 0- Inf 0.994 1.751 0- Inf 0.994

Gender

Male versus Female 1.050 0.779– 1.416 0.747 0.882 0.641– 1.214 0.441

TP53 subtype one– KRAS subtype three– FAM47C subtype two

Mutations versus wild type 1.345 0.993– 1.820 0.055 1.405 1.014– 1.945 0.041*

Significant p values are labeled with *(p < 0.05).

T A B L E  2  Multivariate analysis for a mutually exclusive triple of overall survival in the cohort (KEAP1 subtype two– FAT3 subtype one– 
EGFR subtype one)

Variables Univariate Multivariate

HR 95% CI p value HR 95% CI p value

Age 1.009 0.994– 1.025 0.249 1.010 0.994– 1.026 0.237

AJCC stage

Stage II versus I 2.345 1.624– 3.388 <0.001* 0.998 0.527– 1.890 0.995

Stage III versus I 3.495 2.379– 5.133 <0.001* 1.110 0.429– 2.877 0.829

Stage IV versus I 3.341 1.834– 6.088 <0.001* 1.641 0.746– 3.607 0.218

T stage

T2 versus T1 1.409 0.984– 2.018 0.061 1.264 0.866– 1.843 0.224

T3 versus T1 3.027 1.798– 5.097 <0.001* 2.446 1.299– 4.607 0.006*

T4 versus T1 3.117 1.641– 5.920 <0.001* 2.062 0.948– 4.484 0.068

N stage

N1 versus N0 2.363 1.669– 3.346 <0.001* 2.127 1.176– 3.846 0.013*

N2 versus N0 3.115 2.123– 4.569 <0.001* 2.274 0.975– 5.302 0.057

N3 versus N0 3.842 0– Inf 0.994 2.570 0– Inf 0.994

Gender

Male versus Female 1.05 0.779– 1.416 0.747 0.951 0.695– 1.302 0.755

KEAP1 subtype two– FAT3 subtype one– EGFR subtype one

Mutations versus wild type 1.573 1.144– 2.163 0.005* 1.440 1.023– 2.027 0.036*

Significant p values are labeled with *(p < 0.05).
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example, the mutually exclusive pair, TP53 subtype one– 
EGFR subtype two, was not only significantly enriched in 
known functions of driver genes, but also in more refined 
functions, including sister chromatid segregation, mitotic 
sister chromatid segregation, and microtubule bundle for-
mation. The famous driver gene TP53, a tumor suppressor 
gene, is the most frequently mutated gene (>50%) in can-
cer, which plays a crucial role in preventing cancer forma-
tion, such as cell cycle and cell differentiation.76– 79 EGFR 
mutations are related to a number of important functions in 
cancers, including LUAD and glioblastoma,80,81 which regu-
late cell– cell adhesion division and cell differentiation.82,83 A 
similar phenomenon was observed in mutually exclusive tri-
ples, such as TP53 subtype two– KEAP1 subtype one– TLR4 
subtype one. These findings revealed that the functions of 
driver gene mutations within subtypes were more refined and 
were associated with cancer hallmarks, which demonstrated 
the functions we identified were reliable.

In this research, there were three mutually exclusive tri-
ples that independently predicted shorter survival of LUAD 
patients than the wild- type samples, namely “TP53  sub-
type one– KRAS subtype three– FAM47C subtype two,” 
“KEAP1  subtype two– FAT3  subtype one -  EGFR subtype 
one,” and “TP53  subtype one– MUC16  subtype one– KRAS 
subtype three.” Although, TP53 mutations,84,85 KRAS muta-
tions,86,87 and KEAP1 mutations88 were predictive of survival 
of lung cancer patients. This result revealed that mutually ex-
clusive triples could serve as biomarkers of LUAD patients 
or therapeutic targets. However, these two prognostic triples 
were needed more data to evaluate their effectiveness in 
cancers.
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