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ABSTRACT Proinflammatory cytokines are involved in clearance of Plasmodium falci-
parum, and very high levels of these cytokines have been implicated in the patho-
genesis of severe malaria. In order to determine how cytokines vary with disease se-
verity and syndrome, we enrolled Malawian children presenting with cerebral
malaria (CM), severe malarial anemia (SMA), and uncomplicated malaria (UCM) and
healthy controls. We analyzed serum cytokine concentrations in acute infection and
in convalescence. With the exception of interleukin 5 (IL-5), cytokine concentrations
were highest in acute CM, followed by SMA, and were only mildly elevated in UCM.
Cytokine concentrations had fallen to control levels when remeasured at 1 month of
convalescence in all three clinical malaria groups. Ratios of IL-10 to tumor necrosis
factor alpha (TNF-�) and of IL-10 to IL-6 followed a similar pattern. Children present-
ing with acute CM had significantly higher concentrations of TNF-� (P � 0.001), in-
terferon gamma (IFN-�) (P � 0.0019), IL-2 (P � 0.0004), IL-6 (P � 0.001), IL-8 (P �

0.001), and IL-10 (P � 0.001) in sera than healthy controls. Patients with acute CM
had significantly higher concentrations of IL-6 (P � 0.001) and IL-10 (P � 0.0003)
than those presenting with acute SMA. Our findings are consistent with the concept
that high levels of proinflammatory cytokines, despite high levels of the anti-
inflammatory cytokine IL-10, could contribute to the pathogenesis of CM.
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Nearly 214 million clinical episodes of malaria were reported in 2015, leading to
438,000 deaths, the majority of which were among African children and

attributable to Plasmodium falciparum malaria (1). Clinical P. falciparum malaria
presents either as uncomplicated malaria (UCM) or as one of the following severe
forms of the disease: cerebral malaria (CM), severe malarial anemia (SMA), metabolic
acidosis (MA), or respiratory distress (RD) and other complications, including some
overlap syndromes (1, 2).

Immunity to malaria is both humoral and cell mediated and involves various
mechanisms (3). Antibodies that develop through exposure to P. falciparum play a role
(3), and the involvement of different lymphocyte subsets has been implicated in both
protection against, and pathogenesis of, malaria (4–6).

Cytokines are regulatory proteins or glycoproteins secreted by white blood cells and
various other cells in response to a number of stimuli (7). “Cytokine” is a general term,
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but cytokines have more-specific names depending on the type of cells that produce
them and on the functions that they perform, such that lymphokines are produced by
lymphocytes and monokines by monocytes and macrophages (8). Lymphokines such as
interferon gamma (IFN-�) and interleukin 4 (IL-4) stimulate B cells to produce antibod-
ies and attract and activate immune cells such as macrophages and other lymphocytes
at sites of infection (8–11). In contrast, monokines such as tumor necrosis factor alpha
(TNF-�), IL-1, IL-6, and IL-8 play roles that are inflammatory in nature and also attract
neutrophils by chemotaxis (9, 10). However, it is clear now that the majority of cytokines
can be produced by a range of different cell types, questioning the apparent specificity
of “lymphokine” and “monokine.”

Cytokines can also be grouped based on the T cells that produce them when the T
cells are stimulated to differentiate. T helper 1 (Th1) cells are known to produce large
quantities of IFN-�, induce delayed hypersensitivity reactions, and activate macro-
phages and are crucial for the defense against intracellular pathogens (11, 12), whereas
Th17 cells produce IL-17, IL-21, and IL-22 (11). Th2 cells produce IL-4 and are important
in inducing IgE production, recruiting eosinophils to sites of inflammation and helping
clear parasitic infections (8, 11).

When categorized based on their effect on inflammation, cytokines can be termed
proinflammatory, with the cytokines IL-1, TNF-�, IFN-�, IL-12, and IL-18 included in this
group, while cytokines such as IL-4, IL-10, IL-13, and transforming growth factor beta
(TGF-�) are referred to as anti-inflammatory cytokines (12, 13). Proinflammatory cyto-
kines are produced by a multiplicity of cells, including lymphocytes, monocytes,
macrophages, fibroblasts, neutrophils, endothelial cells, and mast cells, and are known
to be involved in clearing the initial parasitemia in the early stages of P. falciparum
infection (7, 14, 15). Proinflammatory cytokines such as TNF-� (16), IFN-�, IL-6, and IL-1
(17, 18), when produced in an unregulated manner, have been implicated in the
pathogenesis of cerebral malaria (19) and correlate with disease severity and death (20).

In contrast, anti-inflammatory cytokines such as IL-10 have been shown to down-
regulate the proinflammatory cytokines (15, 21). Experiments in which IL-10 was
administered in mouse models of malaria resulted in a lower production of TNF-� and
a lower incidence of experimental cerebral malaria (ECM) (22, 23), leading some to
hypothesize that IL-10 counteracts the potentially pathological host proinflammatory
response to malaria (14).

Inflammatory cytokines also play an important role in the pathogenesis of SMA, with
high levels of TNF-� but low levels of IL-10 (24) being associated with SMA in areas of
high malaria endemicity (24, 25). IL-12 has been shown to be involved in protective
immunity against malaria by regulating IFN-�, TNF-�, and nitric oxide responses in
experimental studies (26) and enhancing erythropoiesis in Plasmodium chabaudi-
infected susceptible mice (27).

Although cytokines may act on the same cells that secrete them (autocrine action),
on cells within close proximity (paracrine action), or in some cases on distant cells
(endocrine action) (8), in vitro assays can only either measure the proportions of
cytokine-producing cells by intracellular cytokine staining or quantify cytokine concen-
trations in serum or plasma samples extracted from stimulated or unstimulated venous
blood samples using commercially available enzyme immunoassays (28). We analyzed
serum samples from children presenting with different clinical presentations of malaria
during acute infection and in convalescence, together with samples from healthy
children, in order to determine the concentrations of different cytokines.

RESULTS
Characteristics of study children. The number of participants recruited in each

group and their demographic and hematological characteristics have been published
previously (6) and are presented in Table 1. Briefly, consent was obtained for 188
children aged 5 to 84 months to participate in the study. Blood samples from 33
children were excluded for the following reasons: HIV infection (n � 14), malaria
parasites in the blood of control subjects (n � 14), Blantyre coma score (BCS) greater
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than 2 at 4 h postadmission in children with suspected CM (n � 4), and hemoglobin
below 5 g/dl in one child with CM. Five children (four with CM and one with SMA) died
days after therapy had been administered.

Cytokine concentrations during acute infection and in convalescence. The
median concentration of IFN-� (Fig. 1A; see also Table S1 in the supplemental material)
was significantly (P � 0.0019) higher in acute CM cases (17.3 pg/ml) than in controls
(2.32 pg/ml) and in acute SMA (P � 0.0248) and acute UCM (P � 0.0295) cases, and
these levels then decreased significantly (P � 0.001) in convalescence (Fig. 2A). TNF-�
levels during acute disease were higher in all types of clinical malaria than in controls
(Fig. 1B), with significant (P � 0.0313 for UCM, P � 0.0060 for SMA, and P � 0.0391 for

TABLE 1 Demographic and clinical details of study participantsa

Characteristic Controls Cerebral malaria
Severe malarial
anemia

Uncomplicated
malaria

No. of participants 42 29 30 54
No. who died after recruitment 4 1 0
No. reviewed in convalescence 18 21 34
Sex (M:F) 29:13 10:19 19:11 38:16
Age (mo) 20 (5–76) 30 (5–84) 23 (5–38) 27 (6–58)
No. of parasites/�l blood 0 41,800 (900–517,000) 3,500 (20–296,000) 52,300 (460–768,000)
Blantyre coma score 5 1 (0–2) 5 5
Hemoglobin concn (g/dl) 11.2 (7.0–14.1) 7.7 (5.3–12.5) 3.9 (2.4–4.9) 9.3 (5.0–13.0)
aSubjects were children with cerebral malaria, severe malarial anemia, and uncomplicated malaria presenting to the Pediatric Accident and Emergency Clinic at Queen
Elizabeth Central Hospital in Blantyre, Malawi. Control subjects were children admitted for elective surgical procedures who were medically healthy. Values are
medians (ranges). These participants’ details have been published previously (6).

FIG 1 (A to J) Plots of log-transformed concentrations (picograms per milliliter) of different cytokines (IFN-�, TNF-�, IL-1�, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and
IL-12p70) in serum samples collected from healthy controls (Control) and from patients with acute uncomplicated malaria (UCM), acute severe malarial anemia
(SMA), and acute cerebral malaria (CM). (K and L) Plots of the ratios of log-transformed IL-10 to TNF-� and IL-10 to IL-6, respectively, during acute infection,
showing medians and 10th and 90th percentiles.
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CM) differences observed between CM patients (median, 3.76 pg/ml) and controls
(median, 1.41 pg/ml) and between SMA patients (median, 2.95 pg/ml) and controls.
UCM patients also had significantly (P � 0.0012) higher TNF-� levels (2.12 pg/ml) than
controls (1.41 pg/ml) but significantly (P � 0.0006) lower levels than CM cases (median,
3.76 pg/ml). TNF-� levels decreased significantly in convalescence (Fig. 2B) for both CM
(median, 3.76 pg/ml, falling to 1.69 pg/ml; P � 0.0002) and SMA (median, 2.95 pg/ml,
falling to 1.80 pg/ml; P � 0.0020).

Acute CM patients had significantly (P � 0.0009) higher median concentrations of
IL-1� (2.48 pg/ml) than controls (median, 1.89 pg/ml) during acute infection (Fig. 1C),
and surprisingly, the level in the CM group remained elevated (median, 3.09 pg/ml) in
convalescence (Fig. 2C). SMA patients had significantly (P � 0.0358) higher median
concentrations of IL-1� during convalescence (median, 3.34 pg/ml) than during acute
disease (median, 2.21 pg/ml) (Fig. 2C).

Both CM patients (median, 3.34 pg/ml) and SMA patients (median, 2.55 pg/ml) had
significantly higher (P � 0.0004 for CM and P � 0.0130 for SMA) levels of IL-2 in acute
disease than controls (2.12 pg/ml) (Fig. 1D). Levels in both CM and SMA were signifi-
cantly higher (P � 0.05) than levels in acute UCM (2.02 pg/ml). IL-2 levels in convales-
cence in all malaria types were similar to those of controls (medians, 1.60 pg/ml for
UCM, 1.30 pg/ml for SMA, 1.65 pg/ml for CM) (Fig. 2D).

On admission, CM (median, 3.62 pg/ml) and SMA (median, 2.03 pg/ml) groups had
significantly (P � 0.0006 for CM and P � 0.0037 for SMA) higher concentrations of IL-4
than controls (median, 1.41 pg/ml) (Fig. 1E), with levels in the disease groups decreas-
ing in convalescence (Fig. 2E). IL-4 levels in acute CM were significantly (P � 0.005)
higher than those in acute SMA and UCM (median, 1.49 pg/ml). Concentrations of IL-5

FIG 2 (A to J) Plots of log-transformed concentrations (in picograms per milliliter) of different cytokines (IFN-�, TNF-�, IL-1�, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and
IL-12p70) in serum samples collected from healthy controls (Control) and from patients with convalescent uncomplicated malaria (UCM-F), severe malarial
anemia (SMA-F), and cerebral malaria (CM-F). (K and L) Plots of the ratios of log-transformed IL-10 to TNF-� and IL-10 to IL-6, respectively, during convalescence,
showing medians and 10th and 90th percentiles.
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in acute infection of all three types of malaria were similar to those of healthy controls
(Fig. 1F), although the levels of IL-5 in acute CM (median, 1.74 pg/ml) were significantly
higher (P � 0.05) than the levels in UCM (median, 1.54 pg/ml). IL-5 levels in all three
malaria types were similar in acute infection and in convalescence (Fig. 2F).

IL-6 levels in all three malaria types (medians, 17.31 pg/ml for UCM, 12.20 pg/ml for
SMA, and 156.3 pg/ml for CM) were significantly (P � 0.001) higher during acute
disease than in controls (2.37 pg/ml) (Fig. 1G). Among the three malaria types, CM
patients had the highest IL-6 levels and the differences between the levels in acute SMA
and CM and between acute UCM and CM were significant (P � 0.001). All three malaria
types had significantly (P � 0.001) lower IL-6 levels (medians, 1.90 pg/ml for UCM, 2.09
pg/ml for SMA, and 1.87 pg/ml for CM) in convalescence (Fig. 2G) than in acute
infection.

During acute illness (Fig. 1H), IL-8 levels were higher in all malaria types (medians,
8.47 pg/ml for UCM, P � 0.031; 13.03 pg/ml for SMA, P � 0.002; and 29.71 pg/ml for
CM, P � 0.001) than in controls (median, 6.55 pg/ml). IL-8 concentrations in CM patients
were significantly (P � 0.001) higher than in both SMA and UCM patients. In conva-
lescence, IL-8 levels had significantly decreased in all three malaria types (P � 0.0059
for UCM and P � 0.001 for SMA and CM) (Fig. 2H).

During acute illness, median IL-10 levels were significantly (P � 0.001 for UCM, SMA,
and CM) higher in children presenting with each of the malaria syndromes than in
controls (Fig. 1I). Similar to the trend for IL-8, levels of IL-10 in acute SMA and UCM
patients were significantly (P � 0.001) lower than in acute CM. IL-10 levels in all malaria
groups were significantly (P � 0.001) lower in convalescence (medians, 4.13 pg/ml for
UCM, 4.50 pg/ml for SMA, and 4.64 pg/ml for CM) than in acute disease (Fig. 2I). Patients
presenting with acute CM had significantly (P � 0.0168) higher levels of IL-12p70
(median, 2.09 pg/ml) than controls (median, 1.52 pg/ml) (Fig. 1J). Levels of IL-12p70
were similar in acute infection and convalescence (Fig. 2J).

IL-12 is the main driver of the IFN-� response in the T helper 1 pathway, and so,
perhaps surprisingly, IL-12p70 was significantly elevated only in CM compared with
controls, but only to a modest degree (medians, 2.13 pg/ml and 1.52 pg/ml; P �

0.0168).
CM patients (n � 4) and one SMA patient who had died had significantly (P � 0.05)

higher levels of all cytokines (Fig. 3; Table 2) during acute illness than those who
survived (n � 25).

Comparison of IL-10/TNF-� and IL-10/IL-6 ratios between different groups. The
IL-10-to-TNF-� ratio was significantly (P � 0.001) higher in acute UCM, SMA, and CM
(medians, 43.25, 25.16, and 140.2, respectively) patients than in controls (median, 3.47),
while the ratio in acute SMA was significantly (P � 0.001) lower than the ratio in acute

FIG 3 Cytokine levels in children with CM and SMA who died or who survived. Plot of log-transformed
concentrations (in picograms per milliliter) of different cytokines (IFN-�, TNF-�, IL-1�, IL-2, IL-4, IL-5, IL-6,
IL-8, IL-10, and IL-12p70) in serum samples collected from five children who died (D, red dots) and those
children who survived (S, black dots) after presenting with acute CM and SMA, showing medians and
10th and 90th percentiles.
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CM (Fig. 1K). The IL-10-to-TNF-� ratios for all three malaria types (medians, 2.10 for
UCM, 2.60 for SMA, and 3.65 for CM) in convalescence were similar to ratios in controls
(median, 1.63) (Fig. 2K).

The IL-10-to-IL-6 ratios in acute UCM, SMA, and CM (medians, 4.58, 3.92, and 2.93,
respectively) were significantly (P � 0.001 for UCM, P � 0.0003 for SMA, and P � 0.0090
for CM) higher than the ratio in controls (median, 1.63) (Fig. 1L and Table 2). During
convalescence, UCM (median, 2.20) still had significantly (P � 0.0149) higher IL-10-to-
IL-6 ratios than controls (median, 1.63) but SMA (median, 2.20) and CM (median, 2.20)
ratios were just as low as those of controls (Fig. 2L; Table S1).

DISCUSSION

Cytokine production by different cell types in response to foreign antigen is one of
the defense mechanisms that characterize cellular immunity and can drive both normal
and pathological immune responses (7). Previous studies have shown that when
proinflammatory cytokines (produced by a variety of cells, including Th1 cells and
macrophages) such as TNF-� (16), IFN-�, IL-6, and IL-1 (17, 18) are produced in an
unregulated manner, they contribute to the pathogenesis of cerebral malaria (19) and
to disease severity and death (20). In contrast, anti-inflammatory cytokines (produced
by cells that include monocytes and Th2 cells) such as IL-10 and IL-13 have been shown
to downregulate the production of proinflammatory cytokines (15, 21) and to reduce
the incidence of experimental cerebral malaria (ECM) in mouse models (22).

We analyzed concentrations of serum cytokines in Malawian children presenting
with CM, SMA, and UCM in acute illness and in convalescence and compared these
levels with those in healthy controls (Table S1; Table 2). We found that both proin-
flammatory (TNF-�, IFN-�, IL-1, IL-6) and anti-inflammatory (mainly IL-10) cytokine
concentrations were markedly elevated over control levels in Malawian children pre-
senting with CM, moderately raised in SMA patients, and minimally but significantly
increased in those children presenting with UCM. In all patient groups, cytokine
concentrations decreased to control levels in convalescence. A similar trend was
observed for IL-10-to-TNF-� and IL-10-to-IL-6 ratios. These results indicate that acute
malaria, regardless of severity, is characterized by higher-than-normal levels of a broad
range of, but not all, cytokines, whether in the “Th1 group” (IFN-�, TNF-�, and IL-1) or
the “Th2 group” (IL-4, IL-6, and IL-10). These high levels decrease significantly in
convalescence.

In line with our findings, most studies that have determined cytokine concen-
trations in Plasmodium malaria, both in mouse models (22, 26, 27) and in humans
(12, 14, 17, 21, 23, 29–41), have reported highly elevated cytokine concentrations in
symptomatic malaria of all clinical varieties. Although murine studies provide some
insight into malaria-related cytokine perturbations, data from humans with various
malaria syndromes are essential for understanding the pathogenesis of human
disease.

TABLE 2 Median concentrations of different cytokines in serum samples collected from
children

Cytokine

Median concn (pg/ml) in serum samples from:

P valueDead children (n � 5)a Surviving children (n � 25)b

IFN-� 2.22 0.94 0.0030
TNF-� 1.23 0.76 0.0543
IL-1� 1.125 0.385 0.0010
IL-2 0.805 0.45 0.0012
IL-4 0.75 0.425 0.0065
IL-5 0.59 0.22 0.0009
IL-6 2.33 1.84 0.0061
IL-8 2.24 1.24 0.0007
IL-10 3.65 2.34 0.0039
IL-12p70 0.38 0.22 0.0035
aFour children had CM, and 1 child had SMA.
bChildren who survived after presenting with acute CM (n � 11) and SMA (n � 14).
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Among the various studies that have investigated cytokine perturbation in P.
falciparum malaria in other countries (12, 29–41), few have compared the levels in
the different clinical types of malaria, namely, UCM, SMA, and CM (12, 14). TNF-�,
IFN-�, IL-1, IL-6, IL-8, and IL-10 have been found in increased levels in patients with
severe malaria compared to healthy controls (14, 25), decreasing in convalescence
to control levels, but in these studies the clinical syndromes of severe malaria were
not fully described. Cytokine data from children presenting with strictly defined
UCM, SMA, and CM and a month in convalescence in this study provide additional
valuable information.

Interestingly, there are some apparent paradoxes between the cytokine concentra-
tions reported in this paper and the monocyte intracellular cytokine staining (42) and
immunophenotyping (6) findings that we have reported previously for the same study
participants. We observed decreased IL-6 and TNF-� production by monocytes in
children with different forms of malaria (42). This indicates that the elevated levels of
these cytokines in serum in the current report are produced by cells other than
monocytes (or macrophages), most likely T cells and NK cells. Moreover, we reported
panlymphopenia among children with cerebral malaria and uncomplicated malaria.
Therefore, elevated cytokine production by lymphocytes in these groups would have to
come either from, counterintuitively, a reduced number of peripheral blood lympho-
cytes or from lymphocytes retained in secondary lymphoid tissues or sequestered in
other vascular structures.

Not all malaria-infected children with high levels of Th1 proinflammatory cytokines,
such as TNF-�, develop severe malaria (14), suggesting that the cytokine network as a
whole, rather than a single cytokine, may contribute in different ways to severe disease
(12, 25). Thus, severe P. falciparum malaria could be associated with an inadequate
negative-feedback response by Th2 anti-inflammatory cytokines such as IL-10. The
timing of IL-10 production is likely to be important in determining the effectiveness of
IL-10 as an anti-inflammatory cytokine, with in vitro studies showing that TNF-�, IL-6,
and IL-1� are produced within 2 to 4 h of stimulation while IL-10 is first detected after
8 h, supporting the concept that IL-10 counterregulates the proinflammatory response
to P. falciparum (12). The in vitro observations that IL-10 was detected 7 h after
activation of monocytes with lipopolysaccharide (LPS) and that maximal IL-10 levels
were observed only after 24 to 48 h of stimulation with LPS (43) are consistent with this
concept.

Since IL-10 serves to regulate both the production and functions of TNF-� and IL-6
(19, 43), it has been suggested that children with a low IL-10-to-TNF-� ratio may be
more likely to develop severe malaria than children with a higher ratio (14). In a study
from Kenya (25), children with severe malaria (the type of severe malaria was not
specified) had higher IL-10-to-TNF-� ratios than did children presenting with mild
disease. Here we found that Malawian children presenting with all forms of malaria had
high IL-10-to-TNF-� and IL-10-to-IL-6 ratios, so high levels of TNF-� and IL-6 in CM could
not be attributed to a lack of IL-10 response. Nevertheless, it is apparent that the IL-10
response observed in CM was unable to prevent these high proinflammatory cytokine
levels, since higher levels of IL-6 and TNF-� in malaria patients who died than in those
who survived, as found previously in adults in Vietnam (19), suggest that uncontrolled
levels of these cytokines may have contributed to the demise of these children. In a
separate study in Malawian children, those presenting with severe malaria had higher
levels of IL-6 and TNF-� than did those presenting with UCM, although severe malaria
was not further subcategorized (29).

Overall, the observation that higher levels of the proinflammatory/Th1 cytokines
were found in CM than in SMA is consistent with the concept that CM results from an
immunopathological response in which the production of proinflammatory cytokines is
poorly regulated (19, 43). Other investigators have argued that early, as opposed to late,
production of IFN-� and TNF-� correlates well with protection, since when these are
produced early, overproduction can more easily be kept in check by the presence of
anti-inflammatory cytokines such as IL-10 (30).
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The present study was limited in that the analyzed blood samples were collected
only at two time points, one at the acute phase and one in convalescence, that were
roughly 30 days apart. It would be informative to conduct a longitudinal study
recruiting children that present with different forms of malaria who are then monitored
closely to provide a time course curve for these cytokines, as has been done before with
blood samples from South African adults (37), although these were monitored for only
5 days.

An unavoidable limitation of clinical studies of natural infection is that we do not
know the point in time at which plasmodial sporozoites are first inoculated by the
mosquito, nor do we know the time when merozoites first emerge from the liver to
invade erythrocytes. Although we have reported on the proportion of cytokine-
producing monocytes from each of these three malaria groups (42), inclusion of an
intracellular cytokine analysis for other cytokine-producing cells could enable the
identification of the main producers of the cytokines present in the corresponding
serum/plasma. Lastly, although this study analyzed serum samples for concentrations
of some cytokines, analysis of additional cytokines that are suspected to play some
roles in malaria immunity (40, 41) as well as concentrations of chemokines such as
RANTES and IP-10, which have been shown to vary with malaria severity (40), would
provide additional insight into their separate and/or synergistic roles in malaria. Sub-
sequent studies should combine analysis of serum or plasma samples for cytokines with
intracellular cytokine staining in samples collected from children presenting with
different forms of clinical malaria.

We have shown that just as different clinical malaria syndromes are characterized by
diverse perturbations of leukocyte and lymphocyte subsets (6), they are also charac-
terized by altered cytokine patterns. While in acute CM there are a transient panlym-
phopenia (6) and the lowest proportion of IL-6- and TNF-�-producing monocytes (42),
there is a paradoxical concomitant elevation of circulating cytokine levels, with all
perturbations normalizing in convalescence (6, 42). Many studies of cytokine levels in
malaria have been published, yielding generally similar findings. In this paper, however,
we bring together various malarial syndromes, different classes of cytokines, and
admission and convalescent time points in the same group of children, in whom
circulating leukocyte counts and lymphocyte subsets have already been quantitated.
The question as to why the cells that might have been expected to increase in
association with their secretory product actually decrease during acute illness (6) could
be addressed by the hypothesis that the secretory cells get sequestered in secondary
lymphoid tissue during acute disease, whereas the observation of high cytokine levels
in acute disease but low proportion of cytokine-producing monocytes (42) could be
explained by the hypothesis that the monocytes responsible for producing the ob-
served high cytokine levels are anergic to further stimulation during the phase of acute
disease when a venous sample is collected.

Our findings support the suggestion that cytokines, particularly in CM, may
promote the transient sequestration of lymphocytes in secondary lymphoid tissue,
potentially causing the observed paradoxical lymphopenia (6) by contributing to
the upregulation of CD69 that is recognized in CM (44). The differences in cytokine
levels between CM and other malarial syndromes may reflect the severity of the
disease (CM has the highest case fatality rate among these syndromes) and/or the
parasite burden, which, in most studies that include these three syndromes, is
greatest in CM (2).

With developing technologies for bedside diagnosis, patterns of circulating cytokine
concentrations may in due time contribute to the rapid differentiation between malaria
and other causes of fever. For this possibility to be realized, increased amounts of data
on immunological and biochemical parameters, including cytokine levels, will need to
be gathered from clinically well-characterized patients, so that new tests can be
evaluated for their practical usefulness.
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MATERIALS AND METHODS
Study area and study population. The study was conducted within the Malawi-Liverpool-Wellcome

Trust Clinical Research Programme and Department of Pediatrics, College of Medicine, University of
Malawi, and Blantyre Malaria Project. Participants were children admitted with acute malaria to Queen
Elizabeth Central Hospital (QECH) and medically healthy children attending surgical outpatient clinics at
QECH and Beit Cure International Hospital, both in Blantyre, Malawi. Demographic and clinical features
of the participants have been reported previously (6). In brief, children were enrolled during the rainy
season (November 2005 to April 2006) after informed consent was obtained from the parent or guardian.
Each child was examined by a research nurse and clinical officer, baseline demographic data were
recorded, and a venous blood sample was collected. Criteria defining clinical malaria were fever, a clinical
syndrome compatible with malaria without any apparent alternative cause, and a thick blood film
positive for Plasmodium falciparum asexual parasites on microscopy. Children were assessed for level of
consciousness using the Blantyre coma score (BCS) on admission and at 2- to 4-hour intervals during
intensive clinical care. Over 40 children were prospectively enrolled into each of the four clinical groups
defined by diagnoses of cerebral malaria (CM), severe malarial anemia (SMA), or uncomplicated malaria
(UCM) or healthy controls.

Children with CM had a BCS of 2 or less at admission and 4 h later, while children in all other groups
had a score of 5 at both times (Table 1). Children with SMA had a blood hemoglobin concentration of
5 g/dl or less, and all other children had a hemoglobin concentration of �5 g/dl. Children who tested
positive for HIV infection were excluded from the study and referred to the antiretroviral therapy clinic.
Children who presented with UCM or SMA were treated with a standard regimen of sulfadoxine-
pyrimethamine (SP), which was the first-line treatment for malaria in Malawi at the time the study was
conducted. In contrast, children presenting with CM were treated with intramuscular (i.m.) quinine as
recommended for CM patients at that time. Study participants in the UCM, SMA, and CM groups were
seen again approximately 30 days after treatment (convalescence or follow-up [F] visit), at which time a
second blood sample was collected.

Malaria microscopy. Thick and thin films were prepared for determining the density of malaria
parasitemia. Preparation and reading of malaria slides were performed in accordance with standard WHO
procedures (45). Briefly, two blood slides were prepared from each participant’s blood sample. Each slide
had a measured volume of 6 �l of blood for the thick film and 2 �l for the thin film. A 3% working stock
of Giemsa stain was prepared using a principal Giemsa-staining stock solution and Giemsa buffer
prepared from buffer tablets. Thin and thick blood smears were stained with Giemsa after fixing the thin
smear with absolute methanol. The stained slides were read by two competent, independent malaria
microscopists. The entire smear was first screened at a low magnification (10� and 40� objective lenses)
to detect suitable fields with even distribution of white blood cells (WBC) (10 to 20 WBC/field). Smears
were then examined using a 100� oil immersion lens. At least 100 low-power fields were examined
before a thick smear was declared negative. A blood slide was declared positive when a concordant
result was produced by the microscopists. P. falciparum parasites were counted per 200 or 500
leukocytes, in order to estimate the parasite density per microliter of blood. Discordant results were
resolved by a third reading of the films. Thin films were examined to confirm the species of the infecting
Plasmodium.

HIV and malaria tests. HIV testing was performed using two rapid tests, Determine (Abbott
Laboratories, Tokyo, Japan) and UniGold (Trinity Biotech, Dublin, Ireland). Discordant results and positive
results in children under 18 months were confirmed by PCR as previously described (46).

Serum collection and preservation. Whole-blood samples from study participants were collected
on admission (prior to administering antimalarial therapy) and 1 month after treatment as previously
described (6). An aliquot of the blood sample was collected in a plain tube and allowed to coagulate with
serum separation by centrifugation. Serum was divided into aliquots and preserved at �80°C until
required for cytokine analysis.

Cytokine analysis. Concentrations of various cytokines were determined using Becton Dickinson
(BD) cytokine bead array (CBA) kits. Sera were thawed and centrifuged at maximum speed for 10 min to
remove fibrin deposits. A 25-�l volume of each sample was mixed with 25 �l of the capture bead mixture
and then with 25 �l of detection reagent. Subsequent steps were performed according to the manu-
facturer’s instructions (BD CBA Instruction Manuals, 2006). The kit sensitivity (minimum detectable
concentration) limits for the various cytokines are provided in Table S1.

Statistical analysis. Statistical tests were performed using GraphPad Prism version 6.01 for Windows
(GraphPad Software, San Diego CA, USA). The Kruskall-Wallis test was used to compare the medians of
the different cytokine concentrations (in picograms per milliliter) and ratios in different clinical groups.
Between-group comparisons of cytokine concentrations for the four groups (controls, UCM, SMA,
and CM) were assessed with Bonferroni’s multiple-comparison test, and P values of �0.0125 were
considered statistically significant. The Wilcoxon matched-pair test was used to determine the
statistical significance of the differences in concentrations and ratios observed during acute infec-
tion and in convalescence for each clinical syndrome of malaria, and P values of �0.05 were
considered statistically significant.

Ethical approval. The study was approved by the College of Medicine Research and Ethics
Committee, University of Malawi, and Ethics Committee of the Liverpool School of Tropical Medi-
cine, UK.
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