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Abstract: Fibrosis is a life-threatening disorder caused by excessive formation of connective tissue
that can affect several critical organs. Innate immune cells are involved in the development of various
disorders, including lung fibrosis. To date, several hematopoietic cell types have been implicated in
fibrosis, including pro-fibrotic monocytes like fibrocytes and segregated-nucleus-containing atypical
monocytes (SatMs), but the precise cellular and molecular mechanisms underlying its development
remain unclear. Repetitive injury and subsequent cell death response are triggering events for lung
fibrosis development. Crosstalk between lung structured and non-structured cells is known to regulate
the key molecular event. We recently reported that RNA-binding motif protein 7 (RBM7) expression
is highly upregulated in the fibrotic lung and plays fundamental roles in fibrosis development.
RBM7 regulates nuclear degradation of NEAT1 non-coding RNA, resulting in sustained apoptosis
in the lung epithelium and fibrosis. Apoptotic epithelial cells produce CXCL12, which leads to
the recruitment of pro-fibrotic monocytes. Apoptosis is also the main source of autoantigens. Recent
studies have revealed important functions for natural autoantibodies that react with specific sets
of self-antigens and are unique to individual diseases. Here, we review recent insights into lung
fibrosis development in association with crosstalk between structured cells like lung epithelial
cells and non-structured cells like migrating immune cells, and discuss their relevance to acquired
immunity through natural autoantibody production.
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1. Introduction

Fibrosis is a chronic progressive disorder that causes severe damage to several critical organs
and can lead to life-threatening tissue dysfunction through excessive deposition of the extracellular
matrix (ECM). Pulmonary fibrosis is the terminal stage of a broad range of heterogeneous interstitial
lung diseases (ILDs) that can be divided into various disease types [1].

Idiopathic pulmonary fibrosis (IPF) is the most common progressive ILD of unknown origin.
Its prognosis is very poor, with a median survival of three–five years after diagnosis [2]. IPF is
characterized by distinct histopathological and radiological findings of usual interstitial pneumonia of
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unknown cause. Although the pathogenetic mechanisms remain to be determined, it has long been
believed that a chronic inflammatory process holds the key to fibrosis development (inflammation
hypothesis) [3]. In this hypothesis, chronic inflammation injures and damages the lung and provokes
fibrogenesis, leading to the development of fibrosis. Based on this model, anti-inflammatory agents such
as corticosteroids and immunosuppressive agents have gained rationales for use and are regarded as
the main promising treatment methods. However, despite considerable efforts to examine the impacts
of inflammation on the fibrotic disease process through clinical measurements of histopathological,
radiological, and serum inflammatory markers, there still exists little evidence that inflammation is
prominent in the disease process of fibrotic lung diseases such as IPF [4]. Moreover, clinical trials
on the impact of anti-inflammatory therapy have been performed. For example, the PANTHER IPF
clinical trial was conducted to assess the impact of a potent anti-inflammatory regimen of prednisone,
azathioprine, and N-acetylcysteine [5]. However, this randomized, double-blind, placebo-controlled
trial found that mortality and risk of hospitalization were increased in patients treated with the potent
anti-inflammatory regimen compared with the placebo, suggesting that inflammation may not be
an essential component of fibrosis development in IPF. These observations challenge the hypothesis that
inflammation itself drives fibrogenesis, and thus research interests have shifted toward the identification
of other essential processes that can lead to lung fibrosis [4,6]. Currently, the progressive fibrotic
reactions in fibrosis are considered to reflect an aberrant wound healing process, and clarification of
the cascades specific to fibrogenesis is the main issue in fibrosis research. We recently investigated
the mechanism of fibrosis onset and development in the lung [7,8]. In our previous studies, we found
that RNA-binding motif protein 7 (RBM7) in lung structured cells is selectively elevated in the fibrotic
phase and critical for fibrosis development, and uncovered an unprecedented role of sustained cell
death of lung structured cells in the fibrotic phase regulated by RBM7 via nuclear degradation of
NEAT1 non-coding RNA (ncRNA). Further, apoptotic lung epithelial cells in the fibrotic lung produce
CXCL12, which leads to the recruitment of pro-fibrotic monocytes, i.e., segregated-nucleus-containing
atypical monocytes (SatMs), resulting in the initiation of fibrosis.

Taken together, these results suggest that close interactions between structured cells like
lung epithelial cells and non-structured cells like migrated immune cells are critical for
myofibroblastdifferentiation/activation leading to fibrosis development.

Failure of central or peripheral immunological tolerance leads to the production of autoantibodies,
which are generated against self-antigens [9]. However, recent studies have revealed that sera from
patients both with and without autoimmune diseases contain considerable amounts of IgG subclass
autoantibodies that react with disease-specific sets of self-antigens [10,11]. After disease onset, tissue
damage is induced and requires an effective debris clearance system, leading to increased production
of natural autoantibodies [10]. Therefore, natural autoantibodies are thought to be produced for
clearance of debris as an adaptive mechanism. In addition, certain disease environments can induce
relocation of particular antigens to the cell surface. Thus, ongoing disease environments may be
reflected by disease-specific natural autoantibodies, which can potentially modify the original disease
course through associations with extracellular or cell surface proteins [12].

Here, we summarize recent insights into the pathogenesis and disease course of fibrotic lung
disease in association with interactions between structured and non-structured cells triggered by cell
death responses, and discuss their potential relevance to natural autoantibody production, which can
modify the course of the original disease (Figure 1).



Diagnostics 2020, 10, 504 3 of 14

Figure 1. Schematic representation of fibrosis regulation by RBM7 via NEAT1 ncRNA decay in the lung.
Following bleomycin (BLM) administration, RBM7 expression is selectively elevated in the fibrotic
phase, and it leads to sustained apoptosis in the epithelium via regulating NEAT1 ncRNA decay.
CXCL12 from apoptotic non-hematopoietic cells is critical for segregated-nucleus-containing atypical
monocyte (SatM) migration followed by fibrosis initiation. These events, together with the conventional
TGF-β/growth factor-driven fibrosis pathway, accelerates extracellular matrix (ECM) production by
activated myofibroblasts. Also, apoptosis is the major source of autoantigens for natural autoantibodies,
which can reflect the ongoing disease pathology and modify the disease course.

2. Cell Death in Structured Cells Initiates Fibrosis Development

Fibrosis, characterized by excessive ECM accumulation, is a progressive disease that eventually
leads to failure of several critical organs. Following tissue damage, tissue repair mechanisms heal
the resulting wound. However, when this process fails, a permanent fibrotic “scar” can be formed
at the site of tissue injury, characterized by exacerbated accumulation of ECM components like
hyaluronic acid, fibronectin, proteoglycans, and interstitial collagens. [13,14]. As a consequence,
fibrogenesis is often defined as a dysregulated wound healing response accompanied by excessive
accumulation of ECM [15].

Among experimental animal models, single intratracheal administration of the chemotherapeutic
agent bleomycin (BLM) is widely used for the induction of lung fibrosis [16]. Although several
histological characteristics of the BLM model, including epithelial cell injury followed by reactive
hyperplasia that leads to interstitial fibrosis, are similar to those of IPF, the BLM model shows some
marked differences from IPF, including partial reversibility and rapid onset and progression of fibrosis
in response to severe injury to the lung. Despite several limitations, the BLM model continues to
exist as a standard pulmonary fibrosis model for investigating disease pathogenesis and testing novel
pharmaceutical compounds. Administration of BLM results in oxidative stress and acute lung injury
accompanied by subsequent onset of pulmonary fibrosis. After intratracheal administration, BLM
causes widespread oxidant-mediated DNA damage [17]. Bronchial epithelial cell death, including
necroptosis and apoptosis, is observed as early as within a few hours [8,18]. Apoptotic death usually
leads to immunologically silent responses, whereas necrotic or necroptotic death releases molecules
like damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns
that promote inflammation [19,20]. Surprisingly and interestingly, the cell death responses after BLM
administration are biphasic [8,18]. The initial cell death responses occur soon after BLM administration,
peak at day 1, and subside thereafter. The subsequent cell death response begins to increase after
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the peak of inflammation and continues for more than 10 days. Previous reports suggested that
cell death, regardless of induction by drug administration, infection, or physical trauma, can cause
fibrosis through the release of endogenous ligands from dead cells and, importantly, that inhibition
of this process by pan-caspase inhibitors can inhibit fibrosis development [21,22]. Indeed, several
molecules involved in apoptosis regulation have been reported to be associated with lung fibrosis
development, including increased alveolar epithelial cell Fas activation by FasL, upregulation of
p53 expression and DNA damage induced by reactive oxygen species (ROS), decreased telomerase
activity, and decreased Bcl-2 expression in lung epithelial cells [23]. In addition, transforming growth
factor (TGF)-β, a central mediator of fibrogenesis, plays pro-apoptotic roles in structured cells [24],
and the anti-fibrotic effects of pirfenidone are partially explained by reduced TGF-β expression [25].
In our previous study, we found that sustained apoptosis of structured cells, especially lung epithelial
cells occurs in the fibrotic lung, and that this event is regulated by the novel fibrosis-related molecule
RBM7 [8]. RBM7 is an RNA-binding protein and its physiological function has not been clearly
understood. In 2011, RBM7 was identified as a component of a novel RNA exosome complex, termed
the nuclear exosome targeting (NEXT) complex [26]. This RNA exosome complex is located in
the nucleus and dedicated to RNA decay. RBM7 is selectively increased from the fibrotic phase in mice
and humans, and genetic deletion of RBM7 suppresses fibrosis in multiple organs including the lung [8].
To determine the role of RBM7 in the fibrotic phase, we intravenously administered lung-specific siRNAs
against RBM7 to wild-type mice during the fibrotic phase only. Of note, we found that repression of
RBM7 alone in the fibrotic phase results in reduced fibrosis, suggesting that RBM7 in the fibrotic phase
is critical for fibrosis development in the lung. RBM7 was shown to regulate the target RNA specificity
of the NEXT complex and bind to U-rich stretches in RNAs, requiring a minimum of four pyrimidine
nucleotides [27]. Previous studies revealed a role of the NEXT complex in the decay of long noncoding
RNAs (lncRNAs) [28,29]. LncRNAs, which are longer than 200 nucleotides and not translated
into proteins, have diverse functions, and the vast majority of individual mammalian genomes are
transcribed into lncRNAs. Recent advances in lncRNAs research have revealed their involvement in
multiple cellular contexts and biological processes [30]. These results suggest that RBM7 functions
in essential cellular processes through RNA decay. Indeed, combined RNA immunoprecipitation
and RNA-seq analyses showed that RBM7 regulates the degradation of specific sets of lncRNAs [8].
Among these, NEAT1 is associated and colocalized with RBM7, and RBM7 associates with NEAT1
through the RNA-binding motif in RBM7 and 7U sequences in NEAT1 RNA. Further, RBM7 promotes
nuclear degradation of NEAT1 ncRNAs, and NEAT1 expression is increased in the RBM7-depleted
condition. NEAT1 is transcribed from the multiple endocrine neoplasia locus. NEAT1 is retained
in the nucleus and acts as a core molecule of paraspeckles [31]. Paraspeckles are recently identified
subnuclear bodies that usually assemble co-transcriptionally at the NEAT1 transcription site. Various
RNA-binding proteins are orchestrated around NEAT1 ncRNA, which functions as a molecular hub for
paraspeckle formation [32]. It was recently shown that NEAT1 and paraspeckles function in diverse
biological processes including DNA damage and apoptosis [33]. Therefore, RBM7 plays an essential
role in regulating ncRNA decay and cell death, prior to the development of fibrosis. Taken together,
excessive apoptosis of lung structured cells is the key cellular event leading to a dysregulated wound
healing response and fibrosis.

3. Interaction between Structured and Non-Structured Cells in the Development of Fibrosis

The initial cell death response following BLM administration induces the release of large
amounts of DAMPs that trigger the migration of non-structured cells such as Ly6c-positive immune
cells, i.e., neutrophils and inflammatory monocytes, leading to a severe inflammatory response
(inflammatory phase) [34]. Whether or not this severe inflammatory response is dispensable for
fibrosis development is a widely debated issue and has pros and cons in the literature [35,36]. It has
been reported that recruited inflammatory cells and lung resident alveolar macrophages produce
large amounts of cytokines like interleukin (IL)-1β, TNF-α, and IL-13, and substantially contribute to
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the development of fibrosis [34]. However, depletion of the main inflammatory cells such as neutrophils
and inflammatory monocytes with an anti-Gr1 antibody does not affect fibrosis development [37,38].
Furthermore, administration of anti-inflammatory drugs like dexamethasone does not inhibit fibrosis
development [23,39]. Therefore, inflammation itself may not be an essential component of fibrosis
development, and studies on fibrosis-specific cascades are recognized as important for understanding
the pathogenesis of fibrosis onset.

Regarding the pathology of fibrosis, phagocytosis of apoptotic cells was reported to induce
the production of pro-fibrotic cytokines, such as TGF-β, by macrophages [40–42]. TGF-β has
been regarded as a key molecule for fibrosis regulation, and further induces the expression of
connective tissue growth factor (CTGF) through a functional Smad3-binding site in the CTGF
promoter [43]. Both TGF-β and CTGF are associated with fibroblast/myofibroblast accumulation
and collagen deposition in fibrotic lesions [44]. In our previous study [8], we found that apoptotic
lung structured cells, such as cleaved caspase 3-positive lung epithelial cells, produce large amounts
of the chemokine CXCL12, which is required for the recruitment of non-structured immune cells
like pro-fibrotic monocytes, i.e., fibrocytes and SatMs. Fibrocytes and SatMs are both derived from
the monocyte lineage and are committed to fibrosis development. Fibrocytes were first described
in 1994 as circulating bone marrow-derived cells that migrate to sites of injury [45]. Fibrocytes
co-express hematopoietic and progenitor cell markers (CD45+ and CD34+), together with fibroblast
markers (collagen1 and vimentin). Another typical characteristic of these cells is their spindle-shaped
fibroblast-like morphology when adherent. SatMs have a bi-lobed segmented nuclear shape and many
cytoplasmic granules. Their differentiation is licensed by CCAAT/enhancer-binding protein-β (CEBPβ).
SatMs, which are derived from Ly6C−-FcεRI+ granulocyte/macrophage progenitors, have hybrid
characteristics of both monocytes and granulocytes. CXCR4, the receptor for CXCL12 is highly
expressed in fibrocytes and SatMs. Inhibition of the CXCL12/CXCR4 axis by neutralizing antibodies
reduces the development of lung fibrosis through regulation of pro-fibrotic monocyte recruitment [8,46].
Therefore, CXCL12 is a critical chemokine for fibrosis development of the lung. Meanwhile, it is also
essential for the tissue repair mechanism [47]. Thus, the CXCL12 balance is a key regulator of normal
wound healing and fibrosis.

CXCL12 expression in lung tissue gradually increases from the early fibrotic phase, and CXCL12
is mainly expressed and produced by apoptotic lung structured cells. CXCL12, also known as cell
growth-stimulating factor and stromal cell-derived factor-1, was initially identified in stromal cell lines
from mice [48] and first characterized as a growth-stimulating factor in a B cell precursor clone [49].
CXCL12 is a member of the α-chemokine subfamily and CXCR4 is its specific receptor. CXCL12
and CXCR4 have been implicated in various developmental processes, including hematopoiesis,
and regenerative processes [50–52]. Chemokines comprise a huge family of small cytokines (8−12 kDa)
that bind to their corresponding G protein-coupled protein receptors and function in diverse cellular
processes such as cell migration [53], tissue formation and regeneration, and recruitment of immune
system cells to sites of inflammation and injury to increase chemokine gradients [54]. CXCR4 is
internalized with CXCL12 via endocytosis by clathrin-coated pits dependent on epidermal growth
factor receptor substrate 15 (Eps15) and RAS associated protein RAB5A (Rab5) [55]. After binding of
CXCL12 to CXCR4, CXCR4 undergoes monoubiquitylation, endocytosis, and relocation to lysosomes for
degradation [56]. The CXCL12-CXCR4 interaction activates several intracellular downstream signaling
pathways such as phosphorylation cascades regulated by the SRC proto-oncogene, Src non-receptor
tyrosine kinase, and AKT serine/threonine kinase that are involved in cell survival, proliferation,
chemotaxis, and migration [57].

The CXCL12/CXCR4 axis is also implicated in several key processes for lung disorders including
migration of immune cells to affected lesions. In asthma patients, stimulation of bone marrow by
an allergen leads to reduced expression of CXCL12 and CXCR4, possibly leading to outflow of immune
cells from bone marrow [58]. In a study on asthma patients, immunohistochemical staining of bronchial
biopsy samples revealed that immunoreactivity of CXCL12 is highly correlated with vascularity [59].
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Furthermore, in acute lung injury patients, resected samples from lung tissue show high expression
levels of CXCL12 and its receptor CXCR4 is elevated in circulating granulocytes [60].

Previous studies examined the role of the CXCL12/CXCR4 system in lung fibrosis and demonstrated
an essential role in fibrosis development, although the detailed mechanisms remain to be clarified.
CXCL12 expression in the lung is increased at the late stage after BLM injury and CXCR4 expression in
the lung accompanies this increase in CXCL12 expression [61,62]. Fibrocytes and SatMs both express
CXCR4 and exert pro-fibrotic functions for trafficking to the lung via the CXCL12/CXCR4 axis. Inhibition
of this axis with neutralizing antibodies against CXCL12 significantly reduces the development of lung
fibrosis [46]. Several studies have investigated the effects of CXCR4 antagonistic chemical compounds
in vitro and in vivo [63–65]. AMD3100, also called plerixafor, was first examined as an antagonist
of CXCL12-CXCR4 signaling, and was shown to exhibit partial agonism at high concentrations [66].
One study using AMD3100 showed that it potently inhibits the recruitment of fibrocytes and lung
fibrosis [64], while another study showed little to no effect of CXCR4 inhibition on BLM- or CCl4-induced
lung and liver lung fibrosis [63]. In the latter report, the authors showed that treatment with AMD070,
a related oral inhibitor of CXCR4, has a negligible impact on ECM deposition. Instead, they found that
the inhibitor blocks the early inflammatory response and vascular leakage that contribute to mortality
following BLM exposure. Meanwhile, the results of AMD3100 administration on lung fibrosis in
other organs have also been controversial [67,68]. Recently, less cytotoxic, more potent, and stable
CXCR4 inhibitors such as BL8040 [69] and LY2510924 [70] have been developed, and thus the effects
of targeting the CXCL12/CXCR4 axis by CXCR4 inhibitors for the treatment of lung fibrosis should
desirably be re-examined. Regarding human diseases, there is an increase in CXCL12 expression
in lung epithelial cells and an elevated number of CXCR4-positive cells in IPF patients, suggesting
that chronic injury in the epithelium induces the recruitment of CXCR4-positive cells such as SatMs
and fibrocytes that may activate fibroblasts or act as sources for new fibroblasts [61]. Furthermore,
anti-fibrotic agents like pirfenidone and nintedanib also reduce CXCL12 expression in lung structured
cells [23,71].

TGF-β signaling induces and maintains CXCL12 signaling by elevating CXCL12 expression,
and both TGF-β and CXCL12 induce CTGF expression in fibroblasts [72,73]. Therefore, crosstalk
between the conventional TGF-β/growth factors-driven fibrosis pathway and the proposed novel
RBM7-NEAT1-CXCL12 pathway would play integral roles in fibrosis development. Collectively, these
signaling cascades result in robust fibrogenic responses that lead to ECM production by differentiated
and activated α-smooth muscle actin-expressing myofibroblasts. Myofibroblasts are the primary
cells responsible for enhanced ECM production, and are derived from a variety of sources including
mesenchymal cells residing in the local environment, bone marrow-derived fibrocytes, and a process
called epithelial mesenchymal transition, whereby epithelial cells transdifferentiate into fibroblast-like
cells [34,74].

4. Natural Autoantibodies in Fibrotic Lung Disease

As discussed above, repetitive injury and sustained cell death of the epithelium in the fibrotic
phase are crucial for lung fibrosis development. Since apoptosis elicits re-localization of several
potential intracellular autoantigens to the cell surface and sometimes induces leakage of cellular
contents, apoptotic cells act as an important source of self-antigens [75]. Recent studies have shown
that sera from patients both with and without autoimmune diseases contain considerable amounts
of IgG class autoantibodies that react with various self-antigens and differ among diseases [10].
These autoantibodies, designated natural autoantibodies, mostly react with intracellular proteins
and lncRNAs [11], and are thought to have evolved as an adaptive mechanism for processes like
clearance of debris from apoptotic cells, suggesting their promising utility as diagnostic and prognostic
factors for various diseases. Thus, the environment in fibrotic lung diseases may accelerate increased
production of fibrosis-specific natural autoantibodies, which can reflect the ongoing disease pathology
and have the potential to modify the disease course (Figure 2). Indeed, in chronic fibrosing pulmonary
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diseases, previous studies have demonstrated correlations between autoantibodies and disease
prognosis [76].

Figure 2. Proposed mechanisms for the associations between cell death responses and natural
autoantibody production in fibrosis development. Sustained apoptosis in the fibrotic lung can
induce natural autoantibody production, which can reflect the ongoing disease pathology and modify
the disease course.

Currently, antifibrotic drugs such as pirfenidone and nintedanib are widely used in clinical settings,
and the precise classification of chronic fibrotic lung disease is of great importance for the selection
of appropriate patients who will gain beneficial effects from these drugs. Chronic lung fibrotic
diseases mostly comprise IPF, idiopathic nonspecific interstitial pneumonia, and other unclassifiable
chronic fibrosing interstitial pneumonias [1]. For clustering of patients with chronic fibrotic lung
diseases without definite diagnoses, the usefulness of circulating autoantibodies has been reported [77].
For example, chronic fibrotic lung disease patients positive for anti-aminoacyl-tRNA synthetase (ARS)
autoantibodies were reported to show good responses to immunosuppressive therapy and have
a better prognosis than patients with IPF [78]. Meanwhile, patients positive for anti-melanoma
differentiation-associated gene 5 (MDA5) autoantibodies tend to have progressive fibrotic interstitial
lung disease with a poor prognosis [79]. Since no studies have directly proven the pathogenesis of
these autoantibodies [80,81], they are thought to represent natural autoantibodies in chronic fibrotic
lung diseases. Therefore, natural autoantibodies would be useful for investigating the pathogenesis
and disease course of fibrotic lung diseases. We previously reported the utility of protein array analyses
for discovering novel autoantibody biomarkers and gaining insights into disease pathogenesis [82].
Protein arrays consist of panels containing more than 8000 peptides and proteins, including known
and candidate autoantigens. Through comprehensive protein array analyses, we identified IPF-specific
natural autoantibody subsets that recognize distinct sets of antigens in IPF [12,82]. These findings
are important because if the specific sets of antigens can reflect the ongoing pathophysiological
processes that are upregulated in fibrotic lesions, we can determine the molecular events that occur
in the disease environment through examination of patient sera [12]. Sera from IPF patients react
with molecules associated with TGF-β and fibroblast activation (transgelin 2 [83], transgelin 3 [84],
LIM domain-binding protein 2 [85], HLA complex P5 [86], PHGDH [87], NAT6 [88], CDK9 [89],
SEPT4 [90]), cell death regulation (14-3-3 protein zeta/delta [91], Trefoil factor 2 protein [92], RAS-like
family 11 member B [93], MRPS11 [94], RSU1 [95], PLCG2 [96], IFI44L [97], YTHDF2 [98], AMOTL2 [99],
ROGDI [100]), and airway clearance (sperm flagellar 1 [101], cilia and flagella associated protein
410 [102], t-complex 10 like [103]) (Table 1). Natural autoantibodies are thought to reflect the ongoing
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disease environment [10,11]. Therefore, some antigens for natural antibodies are key molecules for
disease development and progression. Future research to broaden our knowledge about IPF-specific
natural autoantibody subsets and their related antigens will reveal the essential physiological processes
and mechanisms involved in fibrosis onset.

Table 1. Related signaling pathways of antigens for idiopathic pulmonary fibrosis (IPF)-specific natural
autoantibodies enriched by protein array analysis [82].

Signalling Pathways Antigens for IPF Specific Natural AutoAbs

TGF-β and fibroblast activation transgelin 2 [83], transgelin 3 [84], LIM domain-binding protein 2 [85],
HLA complex P5 [86], PHGDH [87], NAT6 [88], CDK9 [89], SEPT4 [90]

cell death regulation
14-3-3 protein zeta/delta [91], Trefoil factor 2 protein [92], RAS-like

family 11 member B [93], MRPS11 [94], RSU1 [95], PLCG2 [96],
IFI44L [97], YTHDF2 [98], AMOTL2 [99], ROGDI [100]

airway clearance sperm flagellar 1 [101], cilia and flagella associated protein 410 [102],
t-complex 10 like [103]

5. Conclusions

Fibrous connective tissue formation is the hallmark of fibrosis, which is thought to result from
an abnormal wound healing process upon repetitive injury. Fibrosis is a chronic progressive disease
associated with significant morbidity and mortality. Recent investigations have revealed several
key events and provided insights into the pathophysiology of fibrosis onset. Currently, fibrosis is
no longer believed to result from chronic inflammation alone, but instead from repetitive injury to
the epithelium, and the subsequent cell death is considered the important triggering event of fibrosis.
Repetitive injury leads to a vast amount of apoptosis in the epithelium and induces proliferation
of activated myofibroblasts, followed by the formation of a fibrotic lesion. Interactions between
structured cells and non-structured cells are critical for fibrosis development by bridging these
epithelium-myofibroblast cascades. CXCL12, an essential chemokine for wound healing and tissue
homeostasis, is also important for lung fibrosis development by regulating the migration of pro-fibrotic
monocytes such as fibrocytes and SatMs. In injured tissue, RBM7 expression is selectively increased in
the fibrotic phase and sustained apoptosis occurs after NEAT1 degradation. This leads to increased
production of CXCL12, resulting in SatM recruitment and fibrosis development. In addition, evidence
suggests that crosstalk between the conventional TGF-β/growth factor-driven fibrosis pathway
and the proposed novel RBM7-NEAT1-CXCL12 pathway reinforces the pathways and plays an integral
role in fibrosis development. Furthermore, apoptosis is a major source of self-antigens for natural
autoantibodies. Sustained apoptosis in the fibrotic lung also induces natural autoantibody production,
which can reflect the ongoing disease pathology and modify the disease course. Future studies will
clarify the complex crosstalk and diverse mechanisms among immune and non-immune cells bridging
innate and adaptive immunity.
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