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Abstract T- cell receptors (TCRs) encode clinically valuable information that reflects prior 
antigen exposure and potential future response. However, despite advances in deep reper-
toire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical 
biomarkers. We propose a new framework that leverages experimentally inferred antigen- 
associated TCRs to form meta- clonotypes – groups of biochemically similar TCRs – that can be 
used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We 
apply the framework to TCR data from COVID- 19 patients, generating 1831 public TCR meta- 
clonotypes from the SARS- CoV- 2 antigen- associated TCRs that have strong evidence of restric-
tion to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent 
cohorts, meta- clonotypes targeting these specific epitopes were more frequently detected in 
bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more 
abundant among COVID- 19 patients that expressed the putative restricting HLA allele (false 
discovery rate [FDR]<0.01), demonstrating the potential utility of meta- clonotypes as antigen- 
specific features for biomarker development. To enable further applications, we developed an 
open- source software package, tcrdist3, that implements this framework and facilitates flexible 
workflows for distance- based TCR repertoire analysis.

Editor's evaluation
This paper introduces and validates a novel concept which will be of great interest to all those inter-
ested in T cell immunity and especially the T cell receptor repertoire. The concept builds on the 
idea that TCRs to the same antigen often share sequence similarities, which they quantify using a 
bespoke tool tcrdist3. Using this tool they develop the idea of a meta- clone, a set of TCRs sharing 
biochemical similarities and potentially recognising the same antigen. In this paper they further show 
that such clonotypes may show increased sharing between HLA- related individuals, and explore 
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the use of such clonotypes in characterising antigen- specific immune response across cohorts of 
individuals.

Introduction
An individual’s unique repertoire of T- cell receptors (TCRs) is shaped by antigen exposure and is a 
critical component of immunological memory (Emerson et al., 2017; Welsh and Selin, 2002). With 
the advancement of immune repertoire profiling, TCR repertoires are a largely untapped source of 
biomarkers that could potentially be used to predict immune responses to a wide range of exposures 
including viral infections (Wolf et al., 2018), tumor neoantigens (Ahmadzadeh et al., 2019; Chiou 
et al., 2021; Kato et al., 2018), or environmental allergens (Cao et al., 2020). However, the extreme 
diversity characterizing TCR repertoires, both within and between individuals, presents major hurdles 
to biomarker development. Using peptide—major histocompatibility complex (pMHC) tetramer 
sorting to focus on TCRs recognizing individual epitopes, which depends on knowing the peptide 
antigen and its MHC restriction, typically reveals that many distinct TCRs are able to recognize even a 
single pMHC (Coles et al., 2020; Meysman et al., 2019). This complicates detection of population- 
wide signatures of antigen exposure. Modeling (Elhanati et al., 2018) and empirical evidence (Soto 
et al., 2019) suggest that only 10–15% of single- chain TCRs are public or shared by multiple individ-
uals. Furthermore, only a fraction of the repertoire can be sampled, making it difficult to reproducibly 
detect relevant TCR clonotypes from an individual, let alone reliably detect public clonotypes in a 
population; in practice, the problem can be exacerbated by heterogeneous repertoire sequencing 
depth, which affects the precision with which the frequency of rare TCRs can be estimated. Thus, 
individual T- cell clonotypes are currently suboptimal and underpowered for population- level inves-
tigations of TCR specificity, which limits their application in the development of TCR- based clinical 
biomarkers.

In this study, we describe a framework for engineering ‘meta- clonotypes’: groupings of TCRs 
sharing biochemically similar complementarity determining regions (CDRs), which enable population- 
level biomarker development (Figure 1). Previously, we introduced TCRdist, a biochemically informed 
distance metric that enabled grouping of paired αβ TCRs by antigen specificity based on their 
sequence similarity (Dash et al., 2017). TCRdist is correlated with edit distance, but it can vary consid-
erably among TCRs with identical edit distances (Figure 2). While other tools exist to identify statisti-
cally anomalous groups of TCRs within a single sample that may be indicative of a polyclonal response 
to antigenic selection (Glanville et al., 2017; Huang et al., 2020; Pogorelyy et al., 2019; Pogorelyy 
and Shugay, 2019; Ritvo et al., 2018; Shugay et al., 2015), the meta- clonotype framework has been 
developed for a different task: leveraging receptor–antigen associations determined from in vitro 
experiments to create public, antigen- associated meta- clonotypes from otherwise private TCRs. This 
application is made possible by a new open- source Python3 software package tcrdist3 that brings 
flexibility to distance- based repertoire analysis, allowing customization of the distance metric, and 
at- scale computation with sparse data representations and parallelized, byte- compiled code.

The framework is based on TCR sequences that have been experimentally enriched for antigen 
recognition, most commonly by sorting T cells labeled by peptide–MHC multimers or by activation- 
induced markers upon stimulation (we refer to these as ‘antigen- associated’ TCRs). Each meta- 
clonotype is defined by an antigen- associated centroid TCR and a TCRdist radius chosen so that the 
expected frequency of antigen- naive receptors within the radius is low. A CDR3 ‘motif’ is constructed 
from the subset of antigen- associated TCRs within the radius to further refine the meta- clonotype’s 
specificity. Together the centroid receptor, radius, and the CDR3 motif can be used to search for 
conformant TCRs in large bulk- sequenced repertoires and quantify their frequency (Figure  1). As 
intended, we find that TCR centroids, which are often private, gain publicity as meta- clonotypes. 
The expanded publicity of meta- clonotypes provides an opportunity to develop population- level 
biomarkers that may depend on antigen- specific features of the TCR repertoire. Shifting the focus of 
repertoire analysis from clonotypes to meta- clonotypes increases statistical power; grouping similar 
clonotypes reduces the sparsity of finite repertoire samples and increases the precision with which 
antigen- specific cell abundance can be estimated.

To demonstrate one potential application of meta- clonotypes and to characterize their ability to 
estimate the frequency of similar antigen- specific T cells in bulk- sequenced TCR repertoires, we apply 
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Figure 1. T- cell receptor (TCR) meta- clonotypes. (A) Defining meta- clonotypes from antigen- associated TCRs. Sets of antigen- associated TCRs were 
used together with synthetic background repertoires to engineer TCR meta- clonotypes that define biochemically similar TCRs based on a centroid 
TCR and a TCRdist radius. For each antigen- specific clonotype, we used tcrdist3 to evaluate the proportion of TCRs spanned at different TCRdist radii 
within (i) its antigen- associated TCR set (black) and (ii) a synthetic control V- and J- gene- matched background set (purple). A synthetic background 
was generated using 100,000 Optimized Likelihood estimate of Immunoglobulin Amino acid sequences (OLGA)- generated TCRs and 100,000 TCRs 
subsampled from umbilical cord blood; OLGA- generated TCRs were sampled to match the V–J gene frequency in each MIRA receptor set, with 
weighting to account for the sampling bias (see Methods for details). The objective was to select the largest radius that includes no more than an 
estimated proportion of 1E−6 TCRs in the background. The subset of antigen- associated TCRs spanned by the selected radius were then used to 
develop an additional meta- clonotype motif constraint based on conserved residues in the complementarity determining region (CDR)3 (see Methods 
for details). An example logo plot shows the CDR3 β-chain motif formed from TCRs – activated by a SARS- CoV- 2 peptide (MIRA55 ORF1ab amino 
acids 1316:1330, ALRKVPTDNYITTY) – within a TCRdist radius 16 of this meta- clonotype’s centroid TCR. (B) Quantifying meta- clonotype conformant 
TCRs in bulk repertoires. The definition of each TCR meta- clonotype can be used to quantify the frequency of similar TCRs in bulk repertoires. EXACT 
sequences match the meta- clonotype centroid at the amino acid level, RADIUS- conformant sequences diverge from the centroid by no more than the 
radius distance, and RADIUS + MOTIF conformant sequences is the subset of radius- conformant TCRs with a CDR3 sequences matching the meta- 
clonotype’s CDR3 motif. (C) Population- level analysis of TCR meta- clonotype frequency. The frequency of meta- clonotype conformant sequences in 
multiple bulk repertoires allows comparison across a population. In this study, to test whether meta- clonotypes carry important antigen- specific signals 
above and beyond individual clonotypes, we searched for meta- clonotype conformant TCRs in COVID- 19 patients with repertoires collected 0–30 days 
after diagnosis. We found stronger associations with predicted HLA restrictions based on counts of meta- clonotype conforming TCRs compared to 
associations using counts of exact clonotypes.

https://doi.org/10.7554/eLife.68605
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the meta- clonotype framework to a large publicly available dataset of SARS- CoV- 2 antigen- associated 
TCRs. The dataset comes from a recent study that sought to elucidate the role of cellular immune 
responses in acute SARS- CoV- 2 infection and examined the TCR repertoires of patients diagnosed 
with COVID- 19 disease. Researchers used an assay based on antigen stimulation and flow cytometric 
sorting of activated CD8+ T cells to identify SARS- CoV- 2 peptide- associated TCR β-chains; the assay 

Figure 2. TCRdist compared to edit distance. (A) Correspondence between edit distance (x- axis) and TCRdist (y- axis) for MIRA55 T- cell receptors (TCRs) 
with matching TRBV genes. The grayscale colormap shows the percentage of TCRs with a given TCRdist score within each edit distance category. 
(B) Examples of complementarity determining region (CDR)3s with TCRdist varying between 6 and 24 units among sequences with edit distance 2 (2 
substitutions) from a centroid with matching TRBV genes. TCR distances range based on differential penalties assigned to specific residue substitutions.

https://doi.org/10.7554/eLife.68605
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is called ‘multiplex identification of TCR antigen specificity’ or MIRA (Klinger et al., 2015) and the 
output is a set of predicted antigen- associated TCR sequences. Data from these experiments were 
released publicly in July 2020 by Adaptive Biotechnologies and Microsoft as part of ‘immuneRACE’ 
and their efforts to stimulate science on COVID- 19 (Nolan et al., 2020; Snyder et al., 2020). The 
MIRA antigen stimulation assays identified 253 sets of 6 or more TCR β-chains associated with CD8+ 
T cells activated by exposure to SARS- CoV- 2 peptides, with TCR sets analyzed ranging in size from 6 
to 16,607 TCRs (Supplementary file 1b); we refer to these sets as MIRA0 through MIRA252 in rank 
order by their size. The deposited immuneRACE datasets also included bulk TCR β-chain repertoires 
from 694 patients within 0–30 days of COVID- 19 diagnosis. Our analysis of these data demonstrates 
how it is possible to define public meta- clonotypes from sets of private antigen- associated TCRs and 
directly evaluates their ability to carry population- level antigen- specific signals in comparison with 
individual clonotypes.

Results
Experimental enrichment of antigen-specific T cells allows discovery of 
TCRs with biochemically similar neighbors
Searching for identical TCRs within a repertoire – arising either from clonal expansion or convergent 
nucleotide encoding of amino acids in the CDR3 – is a common strategy for identifying functionally 
important receptors. However, in the absence of experimental enrichment procedures, observing T 
cells with the same amino acid TCR sequence in a bulk sample is rare. For example, in 10,000 β-chain 
TCRs from an umbilical cord blood sample, less than 1 % of TCR amino acid sequences were observed 
more than once, inclusive of possible clonal expansions (Figure 3A). By contrast, a valuable feature 
of antigen- associated TCRs is the presence of multiple receptors with identical or highly similar 
amino acid sequences (Figure 3A). For instance, 45% of amino acid TCR sequences were observed 
more than once (excluding clonal expansions) in a set of influenza M1(GILGFVFTL)- A*02:01 peptide–
MHC tetramer- sorted subrepertoires from 15 subjects (Dash et al., 2017). Enrichment was evident 
compared to cord blood for additional peptide–MHC tetramer- sorted subrepertoires obtained from 
VDJdb (Shugay et al., 2018), though the proportion of TCRs with an identical or similar TCR in each 
set was heterogeneous.

We investigated the degree to which the MIRA assay employed by Nolan et al., 2020 identified 
TCRs with identical or similar amino acid sequences. In general, across sets of MIRA- identified β-chain 
TCRs, each associated with a different antigen, the proportion of amino acid sequences observed 
more than once was generally lower than in the tetramer- enriched repertoires and varied considerably 
across the sets; some MIRA sets resembled tetramer- sorted subrepertoires (Figure 3B; see MIRA133), 
while others were more similar to unenriched repertoires (Figure 3B; see MIRA90). The increased 
diversity in MIRA- enriched TCR sets versus tetramer- enriched TCR sets may, in part, be explained by: 
(1) peptides being presented by the full complement of the native host’s MHC molecules compared 
to a single defined peptide–MHC complex, (2) recruitment of lower affinity receptors, (3) antigen 
specificity conferred primarily by the alpha rather than the sequenced beta chain, or (4) nonspe-
cific ‘bystander’ activation in the MIRA stimulation assay. From an experimental standpoint, MIRA 
offers the benefit of being able to identify TCRs associated with an antigen before a specific pMHC 
has been identified; however, the resultant diversity in antigen- associated TCRs recovered by MIRA 
poses a challenge for identifying relevant TCR motifs associated with multiple possible TCR:pMHC 
interactions.

TCR biochemical neighborhood density is heterogeneous among set of 
antigen-associated TCRs
We next investigated the proportion of unique TCRs with at least one biochemically similar neighbor 
among TCRs with the same putative antigen specificity. We and others have shown that a single 
peptide–MHC epitope is often recognized by many distinct TCRs with closely related amino acid 
sequences Dash et al., 2017; in fact, the detection of such clusters in bulk- sequenced repertoires is the 
basis of several existing tools: GLIPH (Glanville et al., 2017; Huang et al., 2020), ALICE (Pogorelyy 
et al., 2019), TCRNET (Ritvo et al., 2018), and RepAn (Yohannes et al., 2021). Therefore, to better 
understand sets of antigen- associated TCRs, like the SARS- CoV- 2 MIRA data, we evaluated the 

https://doi.org/10.7554/eLife.68605
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Figure 3. Experimental enrichment of antigen- associated T- cell receptors (TCRs) increases neighbor density. (A) TCR repertoire subsets obtained by 
single- cell sorting with peptide–major histocompatibility complex (MHC) tetramers (green), MIRA peptide stimulation enrichment (MIRA55, MIRA48; 
purple), or random subsampling of umbilical cord blood (1000 or 10,000 TCRs; blue). Biochemical distances were computed among all pairs of TCRs in 
each subset using the TCRdist metric. Neighborhoods were formed around each TCR using a variable radius (x- axis) and the percent of TCRs in the set 
with at least one other TCR within its neighborhood was computed; notably the line represents a summary of TCRs in each set and is therefore more 
precise for larger TCR sets. A radius of zero indicates the proportion of TCRs that have at least one TCR with an identical amino acid sequence (solid 
square). Dash BMLF (Epstein–Barr Virus), M1 (Influenza), and pp65 (Cytomegalovirus) refer to epitopes from Dash et al., 2017. ELAGIGILTV (Human 
Mart- 1 antigen) and LLLGIFILV (HM1.24 antigen in multiple myeloma) downloaded from VDJdb (Shugay et al., 2018), which were submitted by Andrew 

Figure 3 continued on next page
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neighborhood surrounding each TCR, defined as the set of similar TCRs whose sequence divergence 
is within a specified radius. The radius was measured using TCRdist, a position weighted, multi- CDR 
distance metric. Briefly, differences in the amino acid sequences of the CDRs are totaled based on the 
number of gaps (−4) and their BLOSUM62 substitution penalties (ranging from 0 to −4) with a default 
threefold weighting on CDR3 substitutions (see Methods for details of tcrdist3 reimplementation of 
TCRdist); a one amino acid mismatch in the CDR3 results in a maximal distance of 12 TCRdist units 
(tdus). As the radius about a TCR centroid expands, the number of TCRs it encompasses naturally 
increases. The increase was greater among the sets of antigen- associated TCRs compared to the 
‘background’ repertoires that were not experimentally enriched for antigen- specific T cells (Figure 3).

To better understand the relationship between the TCR distance radius and the density of prox-
imal TCRs, we constructed empirical cumulative distribution functions (ECDFs) for each unique TCR 
(Figure 4). The ECDF for each unique TCR (each represented by one line in Figure 4) shows the 
proportion of all TCRs within the indicated radius; those with sparse neighborhoods appear as lines 
that remain low and do not increase along the y- axis even as the search radius expands (lines are 
hidden by the x- axis). The proportion of these TCRs with sparse or empty neighborhoods (ECDF 
proportion <0.001) is indicated by the height of the gray area plotted below the ECDF (Figure 4). We 
observed the highest density neighborhoods within repertoires that were sorted based on binding to 
a single peptide–MHC tetramer. For instance, with the influenza M1(GILGFVFTL)- A*02:01 tetramer- 
enriched repertoire from 15 subjects, we observed that many TCRs were concentrated in dense neigh-
borhoods, which included as much as 30 % of the other influenza M1- recognizing TCRs within a radius 
of 12 tdus (Figure 4A). Notably there were also many TCRs with empty or sparse neighborhoods 
using a radius of 12 tdus (111/247, 44%) or 24 tdus (83/247, 34%). Based on previous work (Dash 
et al., 2017), we assume that the majority of these tetramer- sorted CD8+ T cells with few proximal 
neighbors do indeed bind the influenza M1:A*02:01 tetramer. This suggests that TCRs within sparse 
neighborhoods represent uncommon modes of antigen recognition and highlights the broad hetero-
geneity of neighborhood densities even among TCRs recognizing a single peptide–MHC.

Neighbor densities for individual TCRs within the MIRA sets were highly heterogeneous. Densities 
for an illustrative MIRA set are shown in Figure 5 (MIRA55:ORF1ab; 1316:1330 [amino acid]; peptide 
ALRKVPTDNYITTY). Within this antigen- associated repertoire, at 24 tdus 8.9 % (44/497) of TCR neigh-
borhoods included >10% of the other antigen- activated CD8+ TCRs (Figure 5A). As expected, TCR 
neighborhoods in the umbilical cord blood repertoire were sparser (Figure 5B); the densest neigh-
borhood included only 0.13 % of the repertoire at 24 tdus. We also noted that TCRs with sparse 
or empty neighborhoods tended to have longer CDR3 loops (Figure 4C) and lower generation of 
probability (pgen; Figure 5B). This is consistent with mathematical modeling that shows that TCRs with 
longer CDR3 loops have a lower pgen during genomic recombination of the TCR locus (Marcou et al., 
2018; Murugan et al., 2012; Sethna et al., 2019). Absent strong selection for antigen recognition, 
longer TCRs with lower generation probabilities are thus likely to have less dense biochemical neigh-
borhoods. Together, these observations suggest that biochemical neighborhood density is highly 
heterogeneous among TCRs and that it may depend on mechanisms of antigen recognition as well as 
receptor V(D)J recombination biases (Thomas and Crawford, 2019).

Meta-clonotype radius can be tuned to balance sensitivity and 
specificity
The utility of a TCR- based biomarker depends on the antigen specificity of the TCRs. Therefore, a 
limitation of distance- based clustering is the presence of similar TCR sequences that lack the ability 
to recognize the target antigen. To be useful, a meta- clonotype definition should be broad enough 
to capture multiple biochemically similar TCRs with shared antigen recognition, but not excessively 
broad as to include a high proportion of nonspecific TCRs. Statistically, we think of a meta- clonotype 
definition as a way to balance sensitivity and specificity, respectively, the ability to include antigen- 
recognizing TCRs and exclude nonspecific TCRs. Because the density of neighborhoods around TCRs 
are heterogeneous, we hypothesized that the optimal radius defining a meta- clonotype may differ for 

Sewell et al. (B) Analysis of MIRA sets for which the participants contributing the TCRs were significantly enriched with a specific class I HLA allele 
Supplementary file 1c. Colors are assigned based on the vertical ranking of the lines along the right y- axis and match the order in the color legend.

Figure 3 continued
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each TCR. To find the ideal radius we proposed comparing the relative density of a radius- defined 
neighborhood within a set of antigen- associated TCRs (Figure 5A) to the density of the radius- defined 
neighborhood within a background TCR repertoire (Figure 5B,C); here, the background repertoire 
can be any set of TCRs from antigen- naive repertoires. Though ideally this background comparator 
would explicitly exclude antigen- specific TCRs, we can use a nonselected repertoire as a background 
because the frequency of antigen- specific T cells in a large background drawn from antigen- naive 
donors is assumed to be low. Also, a nonselected background is a relevant comparator because it 
provides an estimate of the number of false detections we expect when each meta- clonotype is ulti-
mately used to search for and quantify putatively antigen- specific sequences in bulk repertoires.

Figure 4. T- cell receptor (TCR) neighborhoods have higher density among TCRs that have been experimentally enriched for antigen- specific T cells 
compare to unenriched repertoires. TCR β-chains from (A) a peptide–major histocompatibility complex (MHC) tetramer- enriched subrepertoire (n = 247), 
(B) a MIRA peptide stimulation- enriched subrepertoire (n = 497), or (C) an umbilical cord blood unenriched repertoire (n = 9966), and (D) synthetically 
generated sequences using Optimized Likelihood estimate of Immunoglobulin Amino acid sequences (OLGA; n = 10,000; Sethna et al., 2019). Within 
each subrepertoire, an empirical cumulative distribution function (ECDF) was estimated for each TCR (one line) acting as the centroid of a neighborhood 
over a range of distance radii (x- axis). Each ECDF shows the proportion of TCRs within the set with a distance to the centroid less than the indicated 
radius. ECDF color corresponds to the length of the complementarity determining region (CDR)3-β loop. ECDF curves were randomly shifted by <1 unit 
along the x- axis to reduce overplotting. Vertical ECDF lines starting at 10−4 indicate no similar TCRs at or below that radius. Percentage of TCRs with an 
ECDF proportion <10−3 (bottom panels), indicates the percentage of TCRs without, or with very few biochemically similar neighbors at the given radius.

https://doi.org/10.7554/eLife.68605
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Figure 5. Radius- defined neighborhood densities within an antigen- associated and a synthetic background 
repertoire. (A) Each T- cell receptor (TCR) (one line, n = 497) in the MIRA55 antigen- associated set acts as the 
centroid of a neighborhood and an empirical cumulative distribution function (ECDF) is estimated over a range 
of distance radii (x- axis). Each ECDF shows the proportion of TCRs within the MIRA set having a distance to the 
centroid less than the indicated radius. The ECDF line color corresponds to the TCR probability of generation (pgen) 

Figure 5 continued on next page
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An ideal radius would define a meta- clonotype with a high density of conformant sequences within 
a set of antigen- associated TCRs and a low density among a set of background TCRs. We demon-
strate an algorithm for selecting an optimal radius for each TCR in the MIRA55:ORF1ab dataset, which 
includes TCRs from 15 COVID- 19 diagnosed subjects (see Methods for details about MIRA and the 
immuneRACE dataset). First, an ECDF is constructed for each centroid TCR showing the relation-
ship between the meta- clonotype radius and its sensitivity: its inclusion of similar antigen- recognizing 
TCRs, approximated by the proportion of TCRs in the antigen- associated MIRA set that are within the 
centroid’s radius (Figure 5A). Next, an ECDF is constructed for each TCR showing the relationship 
between the meta- clonotype radius and its specificity: its exclusion of TCRs with divergent antigen 
recognition, approximated by the proportion of TCRs in a background repertoire within the centroid’s 
radius (Figure 5B). The objective is to select the largest radius that includes no more than one in 
one- million background TCRs; while this threshold is arbitrary, practically it means that in a deeply 
sampled repertoire we expect to observe only a few TCRs within the radius and that deviation from 
this may indicate antigenic selection. Typically, to accurately estimate the frequency of a rare event, 
one would prefer to observe many such events and use the average; here, this would require having 
a background set of many millions of TCRs that would be used to evaluate every potential radius for 
each TCR centroid, presenting a substantial computational hurdle.

We noted that, based on germline encoded CDR residues alone, much of the TCR background is 
too distant from a single TCR to be relevant and therefore realized that efficiency could be gained 
by focusing on TCRs that share the same TRBV and TRBJ genes. Therefore, for each set of antigen- 
associated TCRs identified using MIRA, we created a two part background. One part consisted of 
100,000 synthetic TCRs whose TRBV- and TRBJ- gene frequencies matched those of the antigen- 
associated TCRs; TCRs were generated using the software OLGA with slight modification to allow 
V–J gene directed sequence generation (Marcou et al., 2018; Sethna et al., 2019). The other part 
consisted of 100,000 umbilical cord blood TCRs sampled from 8 subjects (Britanova et al., 2016). 
This composition balanced denser sampling of sequences near the candidate meta- clonotype 
centroids with broad sampling of TCRs from an antigen- naive repertoire. The dense sampling of TCRs 
with similar V–J combinations to the antigen- associated TCRs allowed for estimation of the overall 
frequency of meta- clonotype neighbors in the background well below 1 in 200,000. Conceptually, 
this is achievable because we oversampled the TCRs that were more likely to be within the meta- 
clonotype radius, therefore greatly increasing the statistical efficiency and precision with which we 
could estimate the overall frequency of meta- clonotype neighbors in the background. This idea is 
an adaptation of methods that are commonly used to adjust survey results when the sampling has 
known biases (Gelman, 2007). It is helpful to demonstrate the concept with an example: suppose 
we generate background TCRs (i.e., OLGA- generated) from one V–J gene combination, if we find 
that 5/50,000 (i.e., 10–4) TCRs are within a TCR’s radius, but that they are sampled from a V–J gene 
combination with 1% (i.e., 10–2) prevalence, the estimated frequency in the full background would be 
1 in 1 million (10−4 × 10−2 = 10−6). Across all V–J gene defined strata in the synthetic background, the 
adjusted frequency PBG can be estimated as a weighted average, with V–J gene strata frequencies 
from the full background as the weights (wi):

 
PBG =

NVJ∑
i=1

Yi
ni

wi
  

estimated using Optimized Likelihood estimate of Immunoglobulin Amino acid sequences (OLGA; Sethna et al., 
2019). The ECDF curves are randomly shifted by <1 unit along the x- axis to reduce overplotting. The bottom panel 
shows the percentage of TCRs with an ECDF proportion <10−3. (B) Estimated ECDF for each MIRA55 TCR based on 
the proportion of TCRs in a synthetic background repertoire that are within the indicated radius (x- axis). A synthetic 
background was generated using 100,000 OLGA- generated TCRs and 100,000 TCRs subsampled from umbilical 
cord blood; OLGA- generated TCRs were sampled to match the V–J gene frequency in the MIRA 55 receptor set, 
with weighting to account for the sampling bias (see Methods for details). (C) Antigen- associated ECDF (y- axis) 
of one example TCR’s neighborhood (red line) plotted against ECDF within the synthetic background (x- axis). 
Example TCR neighborhood is the same indicated by the red line in (A) and (B). The dashed gray line indicates 
neighborhoods that are equally dense with TCRs from the antigen- associated and background subrepertoires. 
Annotations indicate the meta- clonotype radius for each data point in TCRdist units.

Figure 5 continued
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where Yi is the number of TCRs within the radius of the centroid in the ith V–J gene defined 
strata and ni is the number of total sampled TCRs in the strata. Estimating neighbor frequency from a 
V–J gene- matched background alone, however, assumes there are zero neighbors in the unobserved 
strata with nonmatched V–J genes. Therefore, to avoid overlooking other regions of TCR space, we 
combined the synthetic background with a uniformly sampled background from antigen- naive cord 
blood repertoires. This is potentially important because with TCRdist – in contrast to metrics that 
require a matched V- gene – it is possible to find biochemically similar TCRs with different V- genes.

We found that for each TCR, its radius- defined meta- clonotype was more abundant within a 
repertoire and more prevalent in a human cohort than the exact clonotype; for example, TCR meta- 
clonotypes formed from the MIRA55:ORF1ab TCR set were detected in 3–12 (median 6) of 15 HLA- 
A*01 participants in the MIRA cohort, despite 34 of the 46 centroid clonotype TCRs being private (i.e., 
found in only 1 of 15 HLA- A*01 participants) (Figure 6). Generally, the neighborhoods around TCR 
centroids with higher probabilities of generation consistently spanned a larger proportion of back-
ground TCRs across a range of radii, suggesting that a smaller radius may be desirable for forming 
meta- clonotypes from high pgen TCRs. With a large radius, most TCR centroids had high sensitivity 
but low specificity, indicated by the meta- clonotypes including both a high proportion of TCRs from 
the antigen- associated and background repertoires. Some TCRs had low sensitivity even at a radius 
of 24 tdus, which is indicative of a low pgen or a ‘snowflake’ TCR: a seemingly unique TCR among 
the antigen- associated and background TCRs. However, radius- defined neighborhoods around many 
TCRs in the MIRA55:ORF1ab repertoire included 1–10% of the antigen- associated TCRs (5–50 clono-
types) with a radius that included fewer than 0.0001 % of background TCRs (equivalent to 1 out of 
106), demonstrating a level of sensitivity and specificity that would be favorable for the development 
of a TCR biomarker. In Supplementary file 1, additional information is provided about the other MIRA 
sets and the properties of meta- clonotypes that were generated.

Sensitivity of optimized meta-clonotype radius to background size and 
specification
We conducted sensitivity analyses to evaluate how the optimal radius was dependent upon the size 
of the synthetic background. Using meta- clonotype centroids from the MIRA55:ORF1ab TCR set we 
recomputed the optimal radius for each meta- clonotype using 2,000,000 background sequences 
(1,000,000 synthetics V–J- matched OLGA and 1,000,000 cord blood TCRs), then drew repeated 
random samples from that background varying in size from 25,000 to 1,000,000 TCRs. We found 
that with a smaller background the optimal radius tended to be greater and was more variable over 
repeat samples; this is consistent with a lower and more variable chance of finding a sequence in the 
background that would help constrain the optimal radius. As the size of the background increased to 
1,000,000 the estimates of the optimal radius generally approached the estimate using a 2,000,000 
TCR background (Figure 7). For large sets of antigen- associated TCRs (i.e., greater than 10,000) or for 
users with modest computing resources, using 200,000 sequences with V–J- matched sampling strikes 
a balance between computational efficiency and bias in radius estimates, where the median radius 
over many iterations coincided with the median radius estimated from a background of 2,000,000 
TCRs. Generally, the potential bias in estimation of an optimal radius is small, with the IQR ranging 
from 0 to 6 tdus, however, reducing bias by estimating optimal radii from a larger synthetic back-
ground (1–2  million TCRs) may still be prudent and computationally tractable. For instance, with 
tcrdist3, computing radii for 500 unique MIRA TCRs using a synthetic background of 1,000,000 TCRs 
(500,000 synthetic V–J matched and 500,000 sampled from cord blood) can be completed in 1 min 
using 12 CPUs and 48 GB of memory.

Next, for a fixed background size (200,000 TCRs), we evaluated the ability to estimate the optimal 
radius using three background sets: (1) 100,000  V–J gene- matched OLGA + 100,000  cord blood 
(primary background), (2) 200,000  V–J gene- matched OLGA, or (3) 200,000 OLGA without V–J 
gene matching (Figure 7). Each method was benchmarked against the optimal radii estimated from 
1,000,000 cord blood TCRs from eight individuals. We found that the 200,000 TCRs generated from 
OLGA without V–J gene- matched sampling resulted in radii estimates that were substantially larger 
and more variable than those that were estimated using V–J gene- matched sampling and adjustment; 
this bias suggests that the resulting meta- clonotypes would have reduced specificity and therefore 
supports use of V–J gene focused sampling and adjustment to obtain less biased and more efficient 

https://doi.org/10.7554/eLife.68605
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Figure 6. Publicity analysis in MIRA participants of CD8+ T- cell receptor (TCR) β-chain features activated by SARS- 
CoV- 2 peptide ORF1ab (MIRA55) predicted to bind HLA- A*01. The grid shows all features that were present in two 
or more MIRA participants. TCR feature publicity across individuals was assessed using two methods: (1) tcrdist3 
meta- clonotypes (rectangles) – inclusion criteria defined by a centroid TCR and all TCRs within an optimized 

Figure 6 continued on next page
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estimation of the optimal radius. There was minimal further reduction in the estimation bias by using 
the background that mixed cord blood and OLGA- generated TCRs. We concluded that using a mixed 
background was desirable because it reduced dependency on sampling from TCRs with specific V–J 
gene rearrangements, which may be limiting for rarer V–J gene rearrangements; also, the mix helped 
guard against any idiosyncrasies that may exist in purely synthetic or purely cord blood backgrounds. 
Ultimately, the best choice for a background may depend on the question being asked and the data 
that is available, with the ideal background considering factors including donor HLA, age, potential 
antigen exposures, and other factors that may influence the repertoires.

Application and meta-clonotype evaluation: engineering meta-
clonotypes for SARS-CoV-2
The MIRA antigen stimulation assays used to generate the IMMUNEcode 2.0 database (Nolan et al., 
2020) identified sets of TCR β-chains associated with recognition of a SARS- CoV- 2 antigen using 
CD8+ T cells enriched from PBMC samples from 62 COVID- 19 diagnosed patients and 26 COVID- 
19- negative subjects. Of these, 253 included at least 6 unique TCRs and included TCRs from more 
than 1 subject, which we refer to as MIRA0 – MIRA252 based on the number of sequences observed, 
in descending order (Supplementary file 1b). From the MIRA sets, all TCR clonotypes (defined by 
identical TRBV gene, TRBJ gene, and CDR3 at the amino acid level) were initially considered as candi-
date centroids; only 2.7 % of the clonotypes were found in more than one MIRA participant. For each 
candidate TCR, a meta- clonotype was engineered by estimating the maximum radius that limited 
the estimated number of neighboring TCRs in a bulk antigen- naive repertoire to less than 1 in 106, 
using a synthetic background as described above. For each MIRA set we then ranked the meta- 
clonotypes by their sensitivity, approximated as the proportion of TCRs in the set that were within the 
meta- clonotype radius and matched by CDR3 motif (diagrammed in Figure 1). Lower- ranked meta- 
clonotypes were eliminated from further analysis if all included sequences were completely encom-
passed by a higher- ranked meta- clonotype; while this reduced redundancy, some overlap remained 
among meta- clonotypes. We further required that meta- clonotypes be public, including sequences 
from at least two subjects in the MIRA cohort. We found that 97 of the 252 MIRA sets had sufficiently 
similar TCRs observed in multiple subjects allowing formation of public meta- clonotypes. From 91,122 
TCR β-clonotypes across these 97 MIRA sets – targeting antigens in ORF1ab (n = 35), S (n = 27), N (n = 
10), M (n = 7), ORF3a (n = 7), ORF7a (n = 4), E (n = 2), ORF8 (n = 2), ORF6 (n = 1), ORF7b (n = 1), and 
ORF10 (n = 1) – we engineered 4548 public meta- clonotypes, which spanned 15 % (13,949/91,122) of 
the original TCR sequences (Supplementary file 1f). The proportion of MIRA antigen- associated TCRs 
spanned by the meta- clonotypes ranged widely from <1% in MIRA25% to 63% in MIRA7, reflecting 
broad heterogeneity in the diversity of TCRs inferred as activated by each peptide in the assay.

As an example, the MIRA55 ORF1ab set (TCRs associated with stimulation peptides ALRKVPTD-
NYITTY or KVPTDNYITTY) included TCR clonotypes from 15 individuals. From the 449 potential 
centroids, we defined 40 public meta- clonotypes. Among these features, the radii ranged from 10 to 
36 tdus (median 22 tdus), and the publicity – the number of unique subjects spanned by the meta- 
clonotype – ranged from 3 to 12 individuals (median 6). Meta- clonotype summary statistics for other 
antigen- associated repertoires are provided in Supplemental Materials (Supplementary file 1f). The 
result was a set of nonredundant, public meta- clonotypes (Supplementary file 1g) that could be used 
to search for and quantify similar putative SARS- CoV- 2- specific TCRs in bulk repertoires. In addition to 
the radius- defined meta- clonotypes (RADIUS), we also developed a modified approach that addition-
ally enforced a sequence motif constraint (RADIUS + MOTIF). The constraint further limited sequence 
divergence in highly conserved positions of the CDR3, requiring that candidate bulk TCRs match 
specific amino acids found in the meta- clonotype CDR3s to be counted as part of the neighborhood 
(see Figure 1 and Methods).

TCRdist radius selected to span <10−6 TCRs in a bulk- sequenced background repertoire, and (2) exact public 
clonotypes (circles) are defined by matching TRBV gene usage and identical complementarity determining region 
(CDR)3 amino acid sequence. Per subject, the color- scale shows the meta- clonotype conformant clone with the 
highest probability of generation (pgen). All TCRs captured by a ‘redundant’ meta- clonotypes were completely 
captured by a higher- ranked meta- clonotype. Redundant meta- clonotypes were not subsequently evaluated.

Figure 6 continued
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Figure 7. Sensitivity of optimized meta- clonotype radius to background size and specification. (A) Radius estimates for MIRA55 T- cell receptors (TCRs) 
using different synthetic backgrounds: (i) randomly generated TCRs from Optimized Likelihood estimate of Immunoglobulin Amino acid sequences 
(OLGA; Sethna et al., 2019), (ii) V–J gene- matched sequences generated with OLGA, and (iii) an equal mixture of V–J gene- matched sequences 
with randomly sampled cord blood TCRs. We compare the estimates generated with the three synthetic backgrounds (of total size 50 , 100 , 200 , 
and 500 K) to the radii estimates derived using 1 million cord blood TCRs uniformly sampled from eight donors. Weights were applied to correct for 
biased sampling as described in the paper. (B) Evaluation of bias in radius estimates based on background size. Here, we compared bias in subsampled 
estimate to the estimate derived from a synthetic background of 2 million TCRs (50 % [1 million] cord blood and 50 % [1 million] V–J gene- matched 
sequences synthesized with OLGA). For each background size, we drew 10 subsamples from the 2 million TCR set.

https://doi.org/10.7554/eLife.68605
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Validating meta-clonotypes through confirmation of HLA restriction in 
COVID-19 patients
Given the integral role of HLA class I molecules in antigen presentation and TCR repertoire selection 
(DeWitt et al., 2018), we further focused on 17 of the 252 MIRA sets that showed strong evidence 
of HLA- A or HLA- B restriction based on meeting both criteria: (1) computational prediction of HLA 
binding to the SARS- CoV- 2 stimulation peptides, and (2) enrichment of an HLA among participants 
contributing to the MIRA TCRs. With each set of the MIRA TCRs and the associated SARS- CoV- 2 
peptides we used HLA- binding predictions (NetMHCpan4.0) to identify the class I HLA alleles that 
were predicted to bind with strong (IC50 < 50 nM) or weak (50 nm < IC50 < 500 nM) affinity to any 
of the 8-, 9-, 10-, or 11- mers derived from the stimulation peptides (Supplementary file 1c and d). 
For instance, the peptides associated with MIRA55 TCRs (ORF1ab amino acid positions 1316:1330) 
are predicted to preferentially bind A*01 (IC50 21 nM), B*15 (IC50 120 nM), and B*35 (IC50 32 nM), 
and 13 of 13 A*01- positive, and 2 of 34 A*01- negative, patients contributed to the MIRA55 TCR set 
(Fisher’s exact test, p = 10e−7). We found that for 17 of the MIRA sets, the patients contributing TCRs 
were significantly enriched for at least 1 HLA- A or HLA- B allele (Fisher’s exact test, p < 0.001) (Supple-
mentary file 1e). Strong HLA restriction in 17 SARS- CoV- 2 MIRA- identified TCR sets provided us an 
opportunity to validate that meta- clonotypes are antigen- specific features. We hypothesized that in 
an independent cohort of COVID- 19 patients, the abundance of TCRs conforming to each meta- 
clonotype would be greater in patients having the restricting HLA genotype.

To test this hypothesis, we compared three TCR- based feature sets: (1) radius- defined meta- 
clonotypes (RADIUS), (2) radius and motif- defined meta- clonotypes (RADIUS + MOTIF), and (3) 
centroid clonotypes alone, using TRBV- CDR3 amino acid matching (EXACT). Using the features 
in each set we screened TCRs from the bulk TCR β-chain repertoires of 694 COVID- 19 patients 
whose repertoires were publicly released as part of the immuneRACE datasets (see Methods for 
details); these patients were not part of the smaller cohort that contributed samples for TCR iden-
tification in MIRA experiments. Testing the HLA restriction hypothesis required having the HLA 
genotype of each individual, which was not provided in the dataset. To overcome this, we inferred 
each participant’s HLA genotype with a classifier that was based on previously published HLA- 
associated TCR β-chain sequences (DeWitt et  al., 2018) and their abundance in each patient’s 
repertoire (see Methods for details). MIRA TCRs were not used to assign HLA types to the 694 
COVID- 19 patients. We then used a beta- binomial counts regression model (Rytlewski et al., 2019) 
with each TCR feature to test for an association of feature abundance with the presence of the 
restricting allele in the participant’s HLA genotype, controlling for participant age, sex, and days 
since COVID- 19 diagnosis. We conducted tests for each meta- clonotype individually, aggregating 
in each bulk sample the sum of counts of all TCRs conformant with that meta- clonotype’s definition. 
The models revealed that there were radius- defined meta- clonotypes with a strong positive and 
statistically significant association (FDR <0.01) for 11 of the 17 HLA- restricted MIRA sets that were 
evaluated (Figure 8A; Supplementary file 1g); the significant HLA regression odds ratios ranged 
from 1.4 to 40 (median 4.9), indicating differences in the frequency of meta- clonotype conformant 
TCRs between patients with and without the HLA genotype. Across all MIRA sets, a positive HLA 
association (FDR <0.01) was detected for 51.5 % (943/1831) and 59.7 % (1093/1831) of the meta- 
clonotypes using the RADIUS or RADIUS + MOTIF definitions, respectively. In comparison, an HLA 
association (FDR <0.01) was detected for fewer than 3.7 % (69/1831) of EXACT centroid features, 
largely because the specific TRBV gene and CDR3 sequences discovered in the MIRA experiments 
were infrequently observed in bulk- sequenced samples (Figure 8B). When detectable, the abun-
dance of centroid TCRs in bulk repertoires tended to be positively associated with expression of 
the restricting HLA allele, as hypothesized. However, in most cases, the associated FDR- adjusted 
q value of these associations were orders of magnitude larger (i.e., less statistically significant) 
than those obtained from using the engineered RADIUS or RADIUS + MOTIF feature with the 
same clonotype as a centroid (Figure 9). The improved performance of meta- clonotypes as query 
features is particularly evident when testing for HLA- associated enrichment of TCRs recognizing 
MIRA1 A*01, MIRA48 A*02, MIRA51 A*03, MIRA53 A*24, and MIRA55 A*01 (Figure 9B). Moreover, 
the regression models with meta- clonotypes also revealed possible negative associations between 
TCR abundance and participant age and positive associations with sample collection more than 2 
days post- COVID- 19 diagnosis (Figure 9A).

https://doi.org/10.7554/eLife.68605
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Meta-clonotypes provide opportunities to better understand antigen 
specificity
Since meta- clonotypes cluster similar antigen- annotated TCRs and allow further clustering of similar 
TCRs from bulk repertoires, they provide an opportunity to visualize and refine hypotheses about 
the characteristics of TCRs that confer antigen specificity. After observing that in many instances, the 

Figure 8. HLA restriction of T- cell receptor (TCR) clonotypes and meta- clonotypes in bulk- sequenced TCRβ repertoires of COVID- 19 patients. (A) 
Percentage of TCR features with a statistically significant (false discovery rate [FDR] <0.01) association with a restricting HLA allele. We tested for 
associations between patients’ inferred genotype and TCR feature abundance using beta- binomial regression controlling for age, sex, and days since 
COVID- 19 diagnosis. (B) For each clonotype/meta- clonotype, the percent of bulk repertoires from COVID- 19 patients (n = 694) containing TCRs meeting 
the criteria defined by (1) EXACT (TCRs matching the centroid TRBV gene and amino acid sequence of the complementarity determining region 
[CDR]3), (2) RADIUS (TCR centroid with inclusion criteria defined by an optimized TCRdist radius), or (3) RADIUS + MOTIF (inclusion criteria defined by 
TCR centroid, optimized radius, and the CDR3 motif constraint). See Figure 1 and Methods for details. Meta- clonotype radii were engineered using 
synthesized backgrounds developed for each MIRA set. Each background contained 100,000 Optimized Likelihood estimate of Immunoglobulin Amino 
acid sequences (OLGA)- generated TCRs and 100,000 TCRs subsampled from umbilical cord blood; OLGA- generated TCRs were sampled to match 
to the V–J gene frequency in each MIRA receptor set (i.e., MIRA1, 10, 30, 44, 45, 48, 51, 53, 55, 70, 99, 110, 111,118, 133, 140, or 183) with weighting to 
account for the sampling bias (see Methods for details).

https://doi.org/10.7554/eLife.68605
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Figure 9. Associations of T- cell receptor (TCR) features with participant age, days postdiagnosis, HLA genotype, 
and sex in TCR β-chain repertoires of COVID- 19 patients (n = 694). (A) Beta- binomial regression coefficient 
estimates (x- axis) and negative log10 false discovery rates (y- axis) for features developed from CD8+ TCRs activated 
by SARS- CoV- 2 MIRA55 ORF1ab amino acids 1636:1647, HTTDPSFLGRY. The abundances of meta- clonotype 

Figure 9 continued on next page

https://doi.org/10.7554/eLife.68605


 Research article      Computational and Systems Biology | Immunology and Inflammation

Mayer- Blackwell et al. eLife 2021;10:e68605. DOI: https://doi.org/10.7554/eLife.68605  18 of 32

strength of evidence of HLA- restriction in bulk repertoires was greater for RADIUS + MOTIF versus 
RADIUS meta- clonotypes, we sought to directly inspect the differences between MOTIF- conformant 
and non- MOTIF- conformant TCRs and utilize one meta- clonotype as an illustrative example. The 
MIRA55 meta- clonotype based on the centroid TRBV28*01 + TRBJ27*01 + CASSLKTDAYEQFY 
provided substantially stronger evidence of HLA association in bulk samples when applied as a 
RADIUS + MOTIF (radius = 20 tdus, motif = SL[RK][ST][ND].YEQ; FDR- q = 2.4e−10) versus as a RADIUS 
(radius = 20 tdus; FDR- q = 1.4e−5) or an individual TCR (i.e., EXACT comparator, FDR- q = 1.0).

To identify critical residues, we constructed a logo plot of all TCR CDR3 amino acid sequences 
from the COVID- 19 patient repertoires that were within the optimal radius (20 tdus) and conformed 
to the motif constraint (SL[RK][ST][ND].YEQ) together with a ‘background- adjusted’ logo plot. The 
background- adjusted plot shows the position- specific Kullback–Leibler divergence from an alignment 
of background CDR3s that were sampled from cord blood and constrained to use the same V and 
J genes; it emphasizes the uncommon amino acid residues in the meta- clonotype, reducing the size 
in particular of residues encoded by the germline V and J genes (Figure  10A). Inspection of the 
logo plots shows that five positions in the CDR3 often contain the amino acids ‘LRTDS’, which are 
not commonly found in CDR3s using TRBV28*01 and TRBJ2- 7*01. Next, we constructed a second 
background- adjusted logo from the CDR3s that were within the meta- clonotype radius, but did 
not conform to the meta- clonotype motif (i.e., RADIUS- ONLY TCRs) (Figure 10B). These TCRs are 
important to characterize because they represented the TCRs that decrease the strength of the 
meta- clonotype’s HLA association and therefore may be more likely to contain nonspecific receptors. 
RADIUS- ONLY CDR3s tended to differ from the MOTIF conformant sequences at logo positions 6 
and 8. The interchangeability of basic amino acids R and K at position 6, which is accommodated by 
the meta- clonotype MOTIF, was supported by the appearance of both ‘LRTDS’ and ‘LKTDS’ in the 
COVID- 19 patient repertoires. However, RADIUS- ONLY TCRs, which may be less likely to recognize 
the target epitope, frequently differed at position 6, where a G residue or a deletion was present. 
At position 8, the MOTIF tolerated N or D, as both residues were observed in the aligned MIRA- 
derived TCRs used to form the meta- clonotype. However, in bulk samples no sequences with N at 
position eight were detected within 20 tdus of this centroid. An E or a deletion in position eight was 
common in RADIUS- ONLY neighbors. At position 9, the MOTIF tolerated any amino acid, as there 
was substantial variability there among the MIRA- derived TCRs, however an S was common in motif- 
conformant TCRs and A was exclusively found among RADIUS- ONLY TCRs. Together, these analyses, 
made possible by meta- clonotypes and tcrdist3, generate hypotheses about the positions and amino 
acid residues that are important for antigen specificity.

Comparison to k-mer-based CDR3 features
Alternative methods exist for generating public TCR features from clustered clonotypes. One strategy 
is to identify clusters of TCRs that are each uniquely enriched with a short CDR3 k- mer, as implemented 
in GLIPH2 Huang et al., 2020; this approach is well suited for identifying CDR3 k- mers associated 
with antigenic selection across bulk repertoires when knowledge of the specific antigens is unavailable 

conformant TCRs are more robustly associated with predicted HLA type than for exact clonotypes. (B) Signal 
strength indicating a positive association between the HLA genotype (two- digit) with TCR β-chain clonotypes 
(EXACT) and meta- clonotype conformant TCRs (RADIUS or RADIUS + MOTIF), where the restricting HLA genotype 
was inferred from independent data: (i) MIRA48, (ii) MIRA51, (iii) MIRA53, (iv) MIRA55, (v) MIRA110, and (vi) 
MIRA111 (Supplementary file 1f). Each set of three symbols connected by a line represents an evaluation TCRs 
conformant to an individual clonotype or a meta- clonotype. Models were estimated with counts of productive 
TCRs matching a clonotype (EXACT) or conforming to a meta- clonotype (RADIUS or RADIUS + MOTIF) with the 
following definitions: (1) EXACT (inclusion of TCRs matching the centroid TRBV gene and amino acid sequence 
of the complementarity determining region [CDR]3), (2) RADIUS (inclusion criteria defined by a TCR centroid and 
optimized TCRdist radius), and (3) RADIUS + MOTIF (inclusion criteria defined by TCR centroid, optimized radius, 
and CDR3 motif constraint). See Methods for details. Meta- clonotype radii were engineered using synthesized 
backgrounds developed for each MIRA set. Each background contained 100,000 Optimized Likelihood estimate 
of Immunoglobulin Amino acid sequences (OLGA)- generated TCRs and 100,000 TCRs subsampled from umbilical 
cord blood; OLGA- generated TCRs were sampled to match to the V–J gene frequency in each MIRA receptor set 
(i.e., MIRA1, 48, 51, 53, 55, 110, or 111) with weighting to account for the sampling bias (see Methods for details).

Figure 9 continued

https://doi.org/10.7554/eLife.68605


 Research article      Computational and Systems Biology | Immunology and Inflammation

Mayer- Blackwell et al. eLife 2021;10:e68605. DOI: https://doi.org/10.7554/eLife.68605  19 of 32

(Chiou et al., 2021). Here, we evaluate the similarities and differences of GLIPH2 and distance- based 
meta- clonotypes for generating public TCR features from antigen- associated TCRs, by applying 
both methods to the HLA- restricted MIRA sets (see Methods for details). Both methods identified 
public molecular patterns from MIRA TCRs (Figure 11) that were strongly HLA associated in the large 

Figure 10. Meta- clonotypes provide opportunities to investigate basis of antigen specificity. Logo plots of T- cell 
receptors (TCRs) from bulk repertoires of acute and convalescent COVID- 19 patients (n = 694) within 20 TCRdist 
units of MIRA- identified TCR β-chain meta- clonotype M_55_1E6+ TRBV28*01+ CASSLKTDAYEQYF + 20+(SL[RK]
[ST][ND].YEQ) centroid. (A) Logo plot of TCRs with complementarity determining region (CDR)3 conforming to 
motif- constraint (SL[RK][ST][ND].YEQ), and (B) logo plot of TCRs with CDR3 that do not conform to the motif 
constraint. The MIRA55 antigen- associated TCR set used to learn the motif included 21 antigen- associated TCRs 
from 10 subjects. In both panels (A) and (B), the upper logo motif depicts a ‘background- adjusted’ logo plot 
showing the position- specific Kullback–Leibler divergence from an alignment of background CDR3s that were 
sampled from cord blood TCRs using the same TRBV and TRBJ genes. Lower logo motifs show position- specific 
amino acid usage. To accommodate CDR3s of different length in the logo plot we aligned each CDR3 to the 
centroid. The background- adjusted logos are constructed by randomly sampling TCR beta receptors from cord 
blood with the same TRBV- and TRBJ- gene usage, with 100 V–J- matched TCRs sampled for every receptor in the 
foreground set.

https://doi.org/10.7554/eLife.68605
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Figure 11. Publicity and breadth analysis of CD8+ T- cell receptor (TCR) β-chain features activated by SARS- CoV- 2 peptide ORF1ab (MIRA55) using 
tcrdist3 and GLIPH2. TCR feature publicity was determined using two methods for clustering similar TCR sequences: (A) tcrdist3- identified meta- 
clonotypes and (B) GLIPH2 specificity groups, sets of TCRs with a shared complementarity determining region (CDR)3 k- mer pattern uncommon in the 
program’s default background CD8+ receptor data. Grid fill color shows the breadth – or number of conformant clones – within the MIRA- identified 
clones from each patient.

https://doi.org/10.7554/eLife.68605
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Figure 12. Associations between HLA genotypes in COVID- 19 patients and abundance of epitope- specific complementarity determining region 
(CDR)3 k- mers or meta- clonotypes. (A) Beta- binomial regression coefficient estimates (x- axis) for participant genotype matching a hypothesized 
restricting HLA allele and negative log10 false discovery rates (FDRs; y- axis) for features developed from CD8+ T- cell receptors (TCRs) activated by one 
of 17 HLA- restricted SARS- CoV- 2 epitopes found in ORF1ab, ORF3a, nucleocapsid (N), and surface glycoprotein (S). MIRA183 yielded no significant 
meta- clonotypes (results not shown). Regression models included age, sex, and days postdiagnosis as covariates (not shown). Positive HLA coefficient 
estimates correspond with greater abundance of the TCR feature in those patients expressing the restricting allele. (B) Distribution of FDRs by feature 
identification method (k- mer local, k- mer global, or meta- clonotype [RADIUS + MOTIF]). Larger negative log10- tranformed FDR values (y- axis) indicate 
more statistically significant associations. Local k- mer (e.g., FRTD) and global k- mer (e.g., SFRTD.YE) were identified using GLIPH2 (Huang et al., 2020) 
and were used to quantify counts of conforming TCRs in each bulk- sequenced COVID- 19 repertoire (see Method for details).

https://doi.org/10.7554/eLife.68605
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independent cohort of COVID- 19 diagnosed patients (Figure 12). For this nonstandard application 
of GLIPH2, we found that specificity groups based on global CDR3 k- mers (e.g., ‘SFRTD.YE’) tended 
to be more consistently HLA associated than specificity groups based on shorter local k- mers (e.g., 
‘FRTD’). Compared to the GLIPH2 specificity groups based on global CDR3 kmers, meta- clonotypes 
tended to show similar or more evidence of HLA association (i.e., smaller FDR- q values) (Figure 12). 
MIRA55:ORF1ab is an illustrative example; both the tcrdist3 meta- clonotypes and GLIPH2- identified 
TCR groups were more strongly associated with the predicted A*01 HLA restriction than exact 
clonotypes, supporting the general applicability of using antigen- associated TCRs to create public 
features from otherwise private antigen- recognizing TCRs. Inspection of the meta- clonotypes and 
GLIPH2 groups showed that they were often overlapping, with meta- clonotypes subsuming multiple 
GLIPH2 groups. For example, the A*01- associated meta- clonotype motif S.G[QE]G[AS]F[ST]DTQ (p 
value 1E−12) fully overlaps several A*01- associated GLIPH2 patterns including S.GQGAFTDT (p value 
1E−12), QGAF (p value 1E- 11), and SLG.GAFTDT (p value 1E−6). Similarly, the A*01- associated meta- 
clonotype motif S[RLMF][RK][ST][ND].YEQ (p value 1E−13) covers 21 global GLIPH motifs including 
SFRTD.YE (p value 1E−10), SLRTD.YE (p value 1E−7), and SF.TDSYE (p value 1E−4) (Supplementary 
file 1i). These observations suggest that the motif constraints of the meta- clonotypes were able to 
match a broader set of antigen- specific CDR3s compared to any one GLIPH2 specificity pattern, which 
may have helped boost detection sensitivity in the COVID- 19 repertoires.

Discussion
Given the extent of TCR diversity, only antigen- associated TCRs with high probability of generation 
(pgen) are likely to be detected reliably across individuals (Figure 13). While public, high- pgen TCRs may 
sometimes be available for detecting a prior antigen exposure, to better understand the population- 
level dynamics of complex polyclonal T- cell responses across a gradient of generation probabilities, it 

Figure 13. Detectable HLA association and complementarity determining region (CDR)3 probability of generation. We evaluated 1831 meta- clonotypes 
from 17 MIRA sets in a cohort of 694 COVID- 19 patients for their association with predicted HLA- restricting alleles. Statistical evidence of the HLA 
association for each meta- clonotype (RADIUS or RADIUS + MOTIF) and the centroid alone (EXACT) is indicated by the associated false discovery rate 
(FDR; y- axis) in beta- binomial regressions (see Methods for model details). The probability of generation (pgen) of each centroid’s CDR3-β was estimated 
using the software OLGA (x- axis). Using exact matching, only associations with high probability of generation (pgen) antigen- specific T- cell receptors 
(TCRs) are likely to be detected reliably. However, using meta- clonotypes, tcrdist3 revealed strong evidence of HLA- restriction for TCRs with both 
high and low probability of generation. Meta- clonotype radii were engineered using synthesized backgrounds developed for each MIRA set. Each 
background contained 100,000 Optimized Likelihood estimate of Immunoglobulin Amino acid sequences (OLGA)- generated TCRs and 100,000 TCRs 
subsampled from umbilical cord blood; OLGA- generated TCRs were sampled to match to the V–J gene frequency in each MIRA receptor set with 
weighting to account for the sampling bias (see Methods for details).

https://doi.org/10.7554/eLife.68605
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is critical to develop methods for finding public meta- clonotypes that capture otherwise private TCRs 
(Figure 13). We developed a novel framework, leveraging antigen- associated TCRs and efficiently 
sampled background repertoires, to engineer meta- clonotypes that balance the need for sufficiently 
public features with the need to maintain antigen specificity. The output of the analysis framework 
(Figure 1) is a set of portable meta- clonotypes, each defined by a (1) centroid, (2) radius, and (3) a 
CDR3 motif pattern, that can be used to rapidly search bulk repertoires for similar TCRs that likely 
share a cognate antigen. To demonstrate this analytical framework, we analyzed publicly available sets 
of antigen- associated TCR β-chain sequences that putatively recognize SARS- CoV- 2 peptides (Nolan 
et al., 2020). From these, we generated 4548 TCR radius- defined public meta- clonotypes that can 
be used to further investigate CD8+ T- cell response to SARS- CoV- 2 (Supplementary file 1G and H).

To evaluate the properties of radius- defined meta- clonotypes we utilized the immuneRACE dataset 
and focused on the SARS- CoV- 2 epitopes with the strongest evidence of HLA restriction (Supple-
mentary file 1g, n = 1831 associated meta- clonotypes). We reasoned that we could compare the 
abundance of meta- clonotypes in COVID- 19 patients with and without the restricting HLA geno-
type, and that a significant positive association of abundance with the restricting genotype would 
provide confirmatory evidence of the meta- clonotype’s SARS- CoV- 2 antigen specificity in addition 
to its HLA restriction. Overall, we found significant confirmatory evidence of the HLA restriction 
of meta- clonotype abundance for a majority of the MIRA sets we analyzed (11/17, 64%) and for 
a majority (1080/1831, 59%) of the individual meta- clonotypes tested using the RADIUS + MOTIF 
approach; importantly, there were no meta- clonotypes significantly associated with the absence of 
expression of the restricting HLA allele. There are several plausible explanations for the remaining 
meta- clonotypes that did not have a significant signal of HLA restriction in this study. One possibility 
is that meta- clonotype definitions were not sufficiently specific for the target antigen; the radius is 
optimized for specificity, but not all amino acid substitutions accommodated within the radius are 
guaranteed to preserve antigen recognition, and while the motif constraint increases specificity, it is 
likely that meta- clonotype definitions could be further refined with more antigen- associated TCR data 
and enhanced motif refinement methods. Also, subdominant SARS- CoV- 2 epitopes may not be ubiq-
uitously presented, even among participants that share the required HLA genotype, which weakens 
the signal of HLA restriction detectable by regression analysis.

The meta- clonotype framework we present joins a class of commonly used methods for TCR 
analysis that depend on comparisons to an antigen- naive background repertoire. For example, 
GLIPH2 attempts to find CDR3 k- mers that are significantly more frequent in the data compared 
to a naive background and TCRNET organizes repertoires into networks to identify nodes with an 
enriched number of edges compared to the number of edges formed within a background reper-
toire. An important distinction is that the meta- clonotype framework is designed to leverage data 
that has been experimentally pre- enriched with antigen- specific TCRs. In contrast, GLIPH2 and 
TCRNET have been designed to identify clusters of similar TCRs in a bulk repertoire and calibrated 
to find statistically significant enrichment of each cluster in the bulk repertoire compared to a 
background. This distinction is important because among a set of TCRs enriched for antigen spec-
ificity, it is possible that many CDR3 signatures (or network nodes) might be statistically enriched 
compared to a background, yet they may still be abundant in the background and lack sufficient 
specificity for subsequent analyses of bulk repertoires. We saw evidence of this in our compar-
ison with GLIPH2; while many ‘global’ GLIPH2 groups performed similar to meta- clonotypes, the 
short ‘local’ groups identified by the algorithm were often too short to be specific, and they were 
generally not as strongly associated with the restricting HLA in our analysis. The meta- clonotype 
approach is distinct because it estimates an optimal radius to control the probability of finding 
conformant TCRs in a naive background at a prespecified level (i.e., 1 in 1 million). This probability 
is further reduced by the CDR3 motif constraint, which requires that conformant TCRs match at 
least one of the residues in the antigen- associated sequences at critical conserved positions; other 
methods developed primarily for identifying TCRs under antigenic selection from bulk repertoire 
data do not leverage this information. Finding a radius to control the frequency of meta- clonotype 
conformant TCRs in the background was also made more efficient by a background sampling algo-
rithm that focused on TCRs with matching V and J genes with weighting to account for the sampling 
bias. Ultimately, it is the focus on controlling the absolute frequency of meta- clonotype conformant 
TCRs in an antigen- naive background that gives the meta- clonotype definitions portability to be 
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applied to analyses of bulk repertoires, where quantification of similar antigen- specific TCRs is 
required.

Recently, Snyder et al., 2020 analyzed 1521 bulk TCR β-chain repertoires from COVID- 19 patients 
in the immuneRACE dataset and an additional 3500 (not yet publicly available) repertoires from 
healthy controls to identify public TCR β-chains that could be used to identify SARS- COV- 2 infected 
individuals with high sensitivity and specificity. Their results show that with sufficient data it is possible 
to engineer performant TCR biomarkers of antigen exposure from exact clonotypes. We show that by 
leveraging antigen- associated TCR repertoires it is possible to engineer meta- clonotypes from a rela-
tively small group of COVID- 19 diagnosed individuals (n = 62; HLA- typed n = 47), with TCRs confor-
mant to these meta- clonotypes frequently detectable in a larger independent cohort. We propose 
that meta- clonotypes constitute a set of potential features that could be leveraged in developing TCR- 
based clinical biomarkers that go beyond detection of infection or exposure. For example, biomarkers 
predictive of infection, disease severity, or vaccine protection may each require different TCR features. 
We note that meta- clonotypes are often overlapping in that a single TCR may be conformant with the 
definition of multiple meta- clonotypes, which should be a consideration when applying a set of meta- 
clonotypes together. For instance, tallying conformant TCRs in a repertoire should avoid counting a 
TCR more than once, while in a biomarker context many statistical and machine learning algorithms 
may benefit from a set of partially redundant features to amplify the clinically relevant signals. We also 
note that it may be more immunologically relevant to quantitate the frequency of unique clonotypes 
conforming to a meta- clonotype in each repertoire (i.e., clonal breadth) in addition to the overall 
frequency; it is plausible both may carry important signals. Much like any biomarker study, to establish 
a TCR- based predictor of a particular outcome, the features must be measured among a sufficiently 
large cohort of individuals, with a sufficient mix of outcomes; meta- clonotypes offer a way to build 
public features that are suitable for this process.

Though demonstrating HLA restriction of the SARS- CoV- 2 meta- clonotypes establishes their poten-
tial utility, it also highlighted how HLA diversity could be a major hurdle to biomarker development. 
The sensitivity of a TCR- based biomarker in a diverse population may depend on combining meta- 
clonotypes with diverse HLA restrictions since individuals with different HLA genotypes often target 
different epitopes using divergent TCRs. Our analysis shows that having HLA genotype information 
for TCR repertoire analysis can be critical to interpreting results. The simple HLA classifier we devel-
oped suggests that soon it may be possible to infer high- resolution HLA genotype from bulk TCR 
repertoires, but until then it is valuable to have sequenced- based HLA genotyping. In the absence of 
HLA genotype information, it may still be feasible to generate informative TCR meta- clonotypes. For 
example, a poly- antigenic TCR- enrichment strategy (i.e., peptide pools or whole proteins) could help 
generate meta- clonotypes that broadly cover HLA diversity if the sample donors are racially, ethni-
cally, and geographically representative of the ultimate target population. For these reasons, donor 
unrestricted T cells and their receptors (e.g., MAITs and γδ T cells) may also be good targets for TCR 
biomarker development.

To enable TCR biomarker development and innovative extensions of distance- based immune 
repertoire analysis, we developed tcrdist3, which provides open- source (https://github.com/kmayerb/ 
tcrdist3), documented (https://tcrdist3.readthedocs.io) computational building blocks for a wide array 
of TCR repertoire workflows in Python3. The software is highly flexible, allowing for: (1) customization 
of the distance metric with position and CDR- specific weights and amino acid substitution matrices, 
(2) inclusion of CDRs beyond the CDR3, (3) clustering based on single- chain or paired- chain data for 
α/β or γ/δ TCRs, and (4) use of default as well as user- provided TCR repertoires as background for 
controlling meta- clonotype specificity (e.g., users may want to use HLA genotype- matched, or age- 
matched backgrounds). tcrdist3 makes efficient use of available CPU and memory resources; as a 
reference, identification of meta- clonotypes from the MIRA55:ORF1ab dataset (n = 479 TCRs) was 
completed in less than 5 min using 2 CPUs and <4 GB of memory including distance computation 
and radius optimization. Quantification of the identified meta- clonotypes (n = 40) conformant TCRs 
in 694 bulk β-chain repertoires, ranging in size from 10,395 to 1,038,012 in- frame clones (~5 billion 
total pairwise comparisons) could be completed in less than 2 hr using 2 CPUs and <6 GB memory. 
The package also can generate multiple types of publication- ready figures (e.g., background- adjusted 
CDR3 sequence logos, paired TRAV–TRAJ/TRBV–TRBJ- gene usage chord diagrams, and annotated 
TCR dendrograms). The continued maturation of multiple adaptive immune receptor repertoire 
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sequencing technologies will open possibilities for basic immunology and clinical applications, and 
tcrdist3 provides a flexible tool that researchers can use to integrate the data sources needed to 
detect and quantify antigen- specific TCR features.

Materials and methods
Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm

Python3,
Numpy,
Pandas,

Python Programming 
Language, 
RRID:SCR_008394
NumPy, RRID:SCR_00863
Pandas, RRID:SCR_01821

Software, algorithm R, ggplot2

R Project for 
Statistical Computing, 
RRID:SCR_001905
ggplot2, RRID:SCR_014601

Software, algorithm tcrdist3 This study tcrdist3 0.2.0 https://github.com/kmayerb/tcrdist3

Software, algorithm pwseqdist This study pwseqdist 0.5 https://github.com/agartland/pwseqdist

Script, algorithm hla3 This study version 0.1.0 https://github.com/kmayerb/hla3

Software, algorithm corncob

Martin et al., 2020
doi:10.1214/19-
aoas1283

https://github.com/bryandmartin/corncob (Martin, 
2021)

Software, algorithm OLGA

Sethna et al., 2019
10.1093/bioinformatics/
btz035

https://github.com/statbiophys/OLGA
(Isacchini, 2021) See slight modifications in: https:// 
github.com/kmayerb/tcrdist3/blob/master/tcrdist/olga_ 
directed.py

Software, algorithm GLIPH2

Huang et al., 2020
 10.1038/s41587-020-
0505-4 version 2 http://50.255.35.37:8,080

TCR data: immuneRACE datasets and MIRA assay
The study utilized two primary sources of TCR data (Nolan et al., 2020; Snyder et al., 2020). The 
first data source was a table of TCR β-chains amplified from CD8+ T cells activated after exposure to 
a pool of SARS- CoV- 2 peptides, using a Multiplex Identification of Receptor Antigen (MIRA) (Klinger 
et  al., 2015); data were accessed July 21, 2020 and labeled ‘ImmuneCODE- MIRA- Release002’. 
The samples used for the MIRA analysis included samples from 62 individuals diagnosed (3 acute, 
1 nonacute, 58 convalescent) with COVID- 19, of whom 47 (3 acute, 44 convalescent) were HLA 
genotyped in the ImmuneCODE- MIRA- Release002  subject-  metadata. csv file. When assessing the 
frequency of neighboring TCRs in antigen- associated MIRA sets, we also used TCRs evaluated by 
MIRA from 26 COVID- 19- negative control subjects activate by SARS- CoV- 2 peptides that were part 
of ImmuneCODE- MIRA- Release002. We analyzed the 253 MIRA sets with at least six unique TCRs 
contributed by ≥2 people, referred to as MIRA0- MIRA252 in rank order by their size (Supplementary 
file 1b); each ‘MIRA set’ included antigen- associated TCRs across all assayed individuals. Adaptive 
Biotechnologies also made publicly available bulk- sequenced TCR β-chain repertoires from COVID- 19 
patients participating in a collaborative immuneRACE network of international clinical trials. We 
analyzed repertoires from 694 individuals where meta- data were available indicating that the sample 
was collected from 0 to 30  days from the time of diagnosis. COVID- 19- DLS (Alabama, USA, n = 
374); COVID- 19- HUniv12Oct (Madrid, Spain, n = 117); COVID- 19- NIH/NIAID (Pavia, Italy, n = 125)+ 
COVID- 19- ISB (Washington, USA, n = 78). The sampling depth of these repertoires varied from 15,626 
to 1,220,991 productive templates (median 208,709) and 10,395–1,038,012 productive rearrange-
ments (median 113,716). We did not use bulk samples from the COVID- 19- ADAPTIVE dataset as 
the average age was substantially lower than other immuneRACE populations and to avoid possible 
overlap with individuals that contributed samples to the MIRA experiments.

https://doi.org/10.7554/eLife.68605
https://identifiers.org/RRID/RRID:SCR_008394
https://identifiers.org/RRID/RRID:SCR_00863
https://identifiers.org/RRID/RRID:SCR_01821
https://identifiers.org/RRID/RRID:SCR_001905
https://identifiers.org/RRID/RRID:SCR_014601
https://github.com/kmayerb/tcrdist3
https://github.com/agartland/pwseqdist
https://github.com/kmayerb/hla3
https://doi.org.10.1214/19-aoas1283
https://doi.org.10.1214/19-aoas1283
https://github.com/bryandmartin/corncob
https://doi.org.10.1093/bioinformatics/btz035
https://doi.org.10.1093/bioinformatics/btz035
https://github.com/statbiophys/OLGA
https://github.com/kmayerb/tcrdist3/blob/master/tcrdist/olga_directed.py
https://github.com/kmayerb/tcrdist3/blob/master/tcrdist/olga_directed.py
https://github.com/kmayerb/tcrdist3/blob/master/tcrdist/olga_directed.py
https://doi.org.10.1038/s41587-020-0505-4
https://doi.org.10.1038/s41587-020-0505-4


 Research article      Computational and Systems Biology | Immunology and Inflammation

Mayer- Blackwell et al. eLife 2021;10:e68605. DOI: https://doi.org/10.7554/eLife.68605  26 of 32

HLA genotype inferences
No publicly available HLA genotyping was available for the 694 bulk- sequenced immuneRACE T- cell 
repertoires (Nolan et al., 2020). Before considering SARS- CoV- 2- specific features, we inferred the 
HLA genotypes of these participants based on their TCR repertoires. Predictions were based on previ-
ously published HLA- associated TCR β-chain sequences (DeWitt et al., 2018) and their detection in 
each repertoire. Briefly, a weight- of- evidence classifier for each HLA loci was computed as follows: For 
each sample and for each common allele, the number of detected HLA- diagnostic TCR β-chains was 
divided by the total possible number of HLA- diagnostic TCR β-chains. The weights were normalized as 
a probability vector and the two highest HLA- allele probabilities (if the probability was larger than 0.1) 
were assigned to each repertoire; homozygosity was inferred if only one allele had probability >0.1. 
The sensitivity and specificity of this simple classifier for each allele prediction were assessed using 
550 HLA- typed bulk repertoires (Emerson et  al., 2017). Sensitivities for common alleles A*01:01, 
A*02:01, A*03:01, A*24:02, A*11:01, B*07:02, B*44:02, B*15:01, B*35:01, B*40:01, and B*57:01 were 
between 0.85 and 1. Specificities for these major HLA- A and HLA- B alleles were between 0.97 and 
1.0. Inference of the HLA genotype of most participants was deemed sufficient in the absence of 
direct HLA genotyping. This weight- of- evidence predictor is implemented as an open- source python 
script (https://github.com/kmayerb/hla3, copy archived at swh:1:rev:daaa03b89883629e53974c8e-
5cab2563971acfa0, Mayer- Blackwell, 2021a).

Peptide–HLA-binding prediction
HLA- binding affinities of peptides used in the MIRA stimulation assay were computationally predicted 
using NetMHCpan4.0 (Jurtz et  al., 2017). Specifically, the affinities of all 8-, 9-, 10-, and 11- mer 
peptides derived from the stimulation peptides were computed with each of the class I HLA alleles 
expressed by participants in the MIRA cohort (n = 47). From these data, we derived two- digit HLA- 
binding predictions (e.g., A*02) for each MIRA set by pooling the predictions for all the four- digit 
HLA variants (e.g., A*02:01, A*02:02) across all the derivative peptides and selecting the lowest IC50 
(strongest affinity). Predictions with IC50 <50 nM were considered strong binders and IC50 <500 nM 
were considered weak binders (Supplementary file 1c and d).

TCR distances
Weighted multi- CDR distances between TCRs were computed using tcrdist3, an open- source Python3 
package for TCR repertoire analysis and visualization, using the procedure first described in Dash 
et al., 2017. The package has been expanded to accommodate γδ TCRs; it has also been recoded to 
increase CPU efficiency using numba, a high- performance just- in- time compiler. A numba- coded edit/
Levenshtein distance is also included for comparison.

Briefly, the distance metric in this study is based on comparing TCR β-chain sequences. The tcrdist3 
default settings compare TCRs at the CDR1, CDR2, and CDR2.5 and CDR3 positions. By default, 
IMGT aligned CDR1, CDR2, and CDR2.5 amino acids are inferred from TRVB gene names, using the 
*01 allele sequences when allele- level information is not available. The CDR3 junction sequences are 
trimmed three amino acids on the N- terminal side and two amino acids on the C- terminus, positions 
that are highly conserved and less crucial for mediation of antigen recognition. For two CDR3s with 
different lengths, a set of consecutive gaps are inserted at a position in the shorter sequence that 
minimizes the summed substitution penalties based on a BLOSUM62 substitution matrix. Insertions 
are penalized as nonconservative amino acid substitutions. Distances are then the weighted sum of 
substitution penalties across all CDRs, with the CDR3 penalty weighted three times that of the other 
CDRs.

Synthetic TCR backgrounds
To estimate optimal radii at which background TCRs are expected to be detected at a frequency 
of <10−6, for each antigen- associated MIRA set, we constructed synthetic backgrounds that combine 
efficient sampling of OLGA- generated TCR sequences V–J matched to the MIRA set with randomly 
sampled antigen- naive TCRs from eight cord blood donors (Britanova et al., 2016). A slightly modi-
fied version of OLGA (Optimized Likelihood estimate of Immunoglobulin Amino acid sequences) from 
Sethna et  al., 2019 was used to efficiently generate V–J gene- matched CDRs based on a previ-
ously trained statistical model of VDJ recombination (Marcou et al., 2018). Prevalence weights were 

https://doi.org/10.7554/eLife.68605
https://github.com/kmayerb/hla3
https://archive.softwareheritage.org/swh:1:dir:9a9cf65125b450c5b8b7082cd71912c51db363b2;origin=https://github.com/kmayerb/hla3;visit=swh:1:snp:141220cefe7c28fe33b2bbec8d0047fb1fdb873f;anchor=swh:1:rev:daaa03b89883629e53974c8e5cab2563971acfa0
https://archive.softwareheritage.org/swh:1:dir:9a9cf65125b450c5b8b7082cd71912c51db363b2;origin=https://github.com/kmayerb/hla3;visit=swh:1:snp:141220cefe7c28fe33b2bbec8d0047fb1fdb873f;anchor=swh:1:rev:daaa03b89883629e53974c8e5cab2563971acfa0


 Research article      Computational and Systems Biology | Immunology and Inflammation

Mayer- Blackwell et al. eLife 2021;10:e68605. DOI: https://doi.org/10.7554/eLife.68605  27 of 32

assigned to the OLGA sequences to correct for the oversampling of specific V–J gene pairings in the 
synthetic background. The expected prevalence of TCRs using a given V–J gene pairing was inferred 
from natural frequencies observed in the cord blood data. The slightly modified version of OLGA 
source code used to generate synthetic TCRs directed by selected V and J genes is contained within 
the tcrdist3 source code.

TCR meta-clonotype MOTIF constraint
Radius- optimized meta- clonotypes from antigen- associated TCRs provided an opportunity to discover 
key conserved residues most likely mediating antigen specificity. We developed a ‘motif’ constraint 
as an optional part of each meta- clonotype definition that limited allowable amino acid substitu-
tions in highly conserved positions of the CDR3 to those observed in the antigen- associated TCRs. 
The motif constraint for each radius- defined meta- clonotype was defined by aligning each of the 
conformant CDR3 amino acid sequences to the centroid CDR3. Alignment positions with five or fewer 
distinct amino acids were considered conserved and added to the motif as a set of possible residues. 
Thus, the motif constraint is permissive of only specific substitutions in select positions relative to the 
centroid, however these substitutions are still penalized by the radius constraint. The motif constraint 
was encoded as a regular expression, with the ‘.’ character indicating nonconserved positions and 
bracketed residues indicating a degenerate position with a set of allowable residues (e.g., ‘SL[RK]
[ND]YEQ’). Position with gaps, where some sequences are missing a residue, are accommodated 
by making that position optional (e.g., ‘SL[RK]?[ND]YEQ’). Since the motif constraints form regular 
expressions, they can be used to rapidly scan large repertoires for conformant TCRs and easily be 
combined with a radius constraint. When applied to bulk repertoires, the motif constraint eliminates 
CDR3s that did not match key conserved residues.

Quantifying meta-clonotype conformant TCRs in bulk repertoires
After defining a set of meta- clonotypes using antigen- associated TCRs, we searched for similar TCRs 
in 694 bulk repertoires from COVID- 19 patients 0–30 days from diagnosis. Association with predicted 
HLA was tested based on the count TCRs conformant with each meta- clonotype individually; however, 
we note that meta- clonotypes are often overlapping in that a single TCR may be conformant with the 
definition of multiple meta- clonotypes. A full example of tabulating EXACT, RADIUS, and RADUS+ 
MOTIF meta- clonotypes conformant TCRs in a bulk repertoire, while avoiding such double counting, 
is provided in tcrdist3 documentation page (https://tcrdist3.readthedocs.io).

Abundance regression modeling
Similar to bulk RNA sequencing data, TCR frequencies are count data drawn from samples of hetero-
geneous size. Thus, we initially attempted to fit a negative binomial model to the data, for example, 
DESEQ2 (Love et al., 2013). We found that the negative binomial model did not adequately fit TCR 
counts, which – compared to transcriptomic data – were characterized by (1) more technical zeros due 
to inevitable under sampling and (2) even greater biological overdispersion, which could be due to 
clonal expansions and HLA genotype diversity. Instead we found that the beta- binomial distribution, 
which was recently used for TCR abundance modeling (Rytlewski et al., 2019), provided the flexibility 
needed to adequately fit the TCR data. We used an R package, corncob, which provides maximum 
likelihood methods for inference and hypothesis testing with beta- binomial regression models (Martin 
et al., 2020). Due to the sparsity of some meta- clonotypes, 7% of coefficient estimates in regression 
models had p values larger than 0.99 (i.e., nonsignificant) and unreliable high magnitude coefficient 
estimates. These values are not shown in the horizontal range of the volcano plots. From the p values 
for each regression coefficient we computed FDR- adjusted q values and accepted q values <0.01 (1%) 
as statistically significant; adjustment was performed across meta- clonotypes within each MIRA set 
and within each variable class (e.g., HLA, age, sex, or days since diagnosis). The HLA regression coef-
ficients from the beta- binomial models indicate log- fold differences in meta- clonotype abundance 
between patients with and without the HLA genotype.

Comparison with k-mer-based CDR3 features
GLIPH2 (Huang et  al., 2020) software  irtools. osx was applied to 17 antigen- associated subreper-
toire of TCRs with epitopes with strong prior evidence of restriction to an HLA- A or HLA- B allele to 

https://doi.org/10.7554/eLife.68605
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demonstrate how a k- mer- based tool might also be used to cluster biochemically similar antigen- 
specific TCRs to discover potential TCR biomarker features. GLIPH2 generates ‘global’ TCR specificity 
groups of CDR3s of identical length with a single optional nonconserved position based on enrich-
ment frequency of ‘local’ continuous 2-, 3-, and 4- mers. We used the GLIPH2- provided ‘ ref_ CD8_ v2. 0. 
txt’ background file as a background to identify enriched features. Across epitope- specific MIRA sets, 
we tested HLA associations of 812 GLIPH2 pattern ranging from 3 to 11 amino acids in length. The 
MIRA55:ORF1ab set was chosen for detailed analysis because, among the MIRA sets, it is comprised 
of CD8+ TCR β-chains activated by a peptide with the strongest evidence of HLA restriction, primarily 
HLA- A*01. The MIRA55 set of TCRs, GLIPH2 returned 121 testable public clusters based on 67 local 
k- mers (e.g., FRTD) and 54 global k- mer (e.g., SFRTD.YE), associated with CDR3 patterns enriched rela-
tive the program’s default CD8+ TCR background (GLIPH2 default Fisher’s exact test, p value <0.001). 
The GLIPH2 patterns and their associated ‘specificity group’ TRBV gene usages and sequence length 
were then used to search for conforming TCRs in the 694 bulk- sequenced COVID- 19 repertoires, 
allowing comparison to exact and meta- clonotype features. GLIPH2 represents degenerate positions 
using the ‘%’ character, which we represent throughout this study by the ‘.’ character.

Tcrdist3: software for TCR repertoire analysis
tcrdist3 is an open- source Python3 package for TCR repertoire analysis and visualization. The core of 
the package is the TCRdist, a distance metric for relating two TCRs, which has been expanded beyond 
what was previously published (Dash et al., 2017) to include γδ-TCRs. It has also been recoded to 
increase CPU efficiency using numba, a high- performance just- in- time compiler. A numba- coded edit/
Levenshtein distance is also included for comparison, with the flexibility to accommodate novel TCR 
metrics as they are developed. The package can accommodate data in standardized format including 
AIRR, vdjdb exports, MIXCR output, 10× Cell Ranger output or Adaptive Biotechnologies immunoSeq 
output. The package is well documented including examples and tutorials, with source code available 
on github.com under an MIT license (https://github.com/kmayerb/tcrdist3; Mayer- Blackwell, 2021b). 
tcrdist3 imports modules from several other open- source, pip installable packages by the same 
authors that support the functionality of tcrdist3, while also providing more general utility. Briefly, the 
novel features of these packages and their relevance for TCR repertoire analysis is described here: 
pwseqdist enables fast and flexible computation of pairwise sequence- based distances using either 
numba- enabled tcrdist and edit distances or any user- coded Python3 metric to relate TCRs; it can also 
accommodate computation of ‘rectangular’ pairwise matrices: distances between a relatively small set 
of TCRs with all TCRs in a much larger set (e.g., bulk repertoire). On a modern laptop, distances can 
be computed at a rate of ~70 M per minute, per CPU.

tcrsampler is a tool for subsampling large bulk datasets to estimate the frequency of TCRs and 
TCR neighborhoods in background repertoires. The module comes with large, bulk sequenced, 
default databases for human TCR α, β, γ, and δ and mouse TCR β (Britanova et al., 2016; Ravens 
et al., 2018; Wirasinha et al., 2018). Datasets were selected because they represented the largest 
preantigen exposure TCR repertoires available; users can optionally supply their own background 
repertoires when applicable. An important feature of tcrsampler is the ability to specify sampling 
strata; for example, sampling is stratified on individual by default so that results are not biased by one 
individual with deeper sequencing. Sampling can also be stratified on V- and/or J- gene usage to over-
sample TCRs that are somewhat similar to the TCR neighborhood of interest. This greatly improves 
sampling efficiency, since comparing a TCR neighborhood to a background set of completely unre-
lated TCRs is computationally inefficient; however, we note that it is important to adjust for biased 
sampling approaches to estimate the frequency of oversampled TCRs in a bulk- sequenced repertoire.

palmotif is a collection of functions for computing symbol heights for sequence logo plots and 
rendering them as SVG graphics for integration with interactive HTML visualizations or print publica-
tion. Much of the computation is based on existing methods that use either KL divergence/entropy or 
odds ratio- based approaches to calculate symbol heights. We contribute a novel method for creating 
a logo from CDR3s with varying lengths. The target sequences are first globally aligned (parasail C++ 
implementation of Needleman–Wunsch) to a preselected centroid sequence (Daily, 2016). For logos 
expressing relative symbol frequency, background sequences are also aligned to the centroid. Logo 
computation then proceeds as usual, estimating the relative entropy between target and background 
sequences at each position in the alignment and the contribution of each symbol. Gaps introduced 

https://doi.org/10.7554/eLife.68605
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in the centroid sequence are ignored, while gap symbols in the aligned sequences are treated as an 
additional symbol.

Software availability
The tcrdist3 code base used in this analysis is freely available at https://github.com/kmayerb/ 
tcrdist3/ (copy archived at swh:1:rev:ecfc60a1569d656440c7fcfda841132451ad8b6e, Mayer- 
Blackwell, 2021b) with documented examples at https://tcrdist3.readthedocs.io/ relies on the Python 
package pwseqdist – freely available at https://github.com/agartland/pwseqdist (copy archived at 
swh:1:rev:d48d3bf4e6c79e5ba2417a1010f673179b27da68, Fiore- Gartland, 2021) – for numba- 
optimized just- in- time compiled versions of the TCRdist measure.
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