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The effective conduction of action potential in the peripheral nervous system depends on
the structural and functional integrity of the node of Ranvier and paranode. Neurofascin
(NF) plays an important role in the conduction of action potential in a saltatory manner.
Two subtypes of NF, NF186, and NF155, are involved in the structure of the node of
Ranvier. In patients with chronic inflammatory demyelinating polyneuropathy (CIDP),
anti-NF antibodies are produced when immunomodulatory dysfunction occurs, which
interferes with the conduction of action potential and is considered the main pathogenic
factor of CIDP. In this study, we describe the assembling mechanism and anatomical
structure of the node of Ranvier and the necessary cell adhesion molecules for its
physiological function. The main points of this study are that we summarized the
recent studies on the role of anti-NF antibodies in the changes in the node of Ranvier
function and its impact on clinical manifestations and analyzed the possible mechanisms
underlying the pathogenesis of CIDP.

Keywords: chronic inflammatory demyelinating polyneuropathy, blood-nerve barrier, neurofascin, antibodies,
node of Ranvier, IgG4

INTRODUCTION

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune-mediated chronic
inflammatory demyelinating disease, which usually has 6–8 weeks course before the onset
of neurological symptoms. The typical clinical manifestations of CIDP include a progressive
relapsing-remitting pattern in the extremities, symmetric paresthesias and weakness, areflexia,
cranial nerve involvement, autonomic symptoms, and less commonly neuropathic pain. Chemical
analysis of the cerebrospinal fluid of patients reveals the cell-protein separation phenomenon
and electromyography indicates demyelinating or axon damage. Atypical manifestations of CIDP
include simple motor dysfunction, simple sensory dysfunction, and Lewis–Sumner syndrome
(multifocal demyelinating sensory and motor neuropathy with persistent conduction block), for
which conventional immune therapy is not effective (Kuwabara et al., 2015, 2019). The prevalence
of CIDP varies by country because of different diagnostic criteria used; it is estimated to be 1.6–8.9
per 100,000 adults (Broers et al., 2019; Lehmann et al., 2019). The prevalence rate increases with age
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and men are significantly more affected than women. Most
patients have a history of non-specific upper respiratory tract
or gastrointestinal infection within 6 weeks of the onset of
neurological symptoms, while others have had hepatitis virus,
HIV infection, or vaccination (Rodríguez et al., 2019). Some
individuals overreact to such infections due to immune system
dysregulation, resulting in the production of autoantibodies
that inappropriately recognize normal molecules in the node of
Ranvier, leading to peripheral neuropathies. In the recent years,
antibodies to neurofascin 155 (NF155), contactin 1 (CNTN1),
contactin-associated protein 1 (CASPR1), and neurofascin 186
(NF186) have been implicated in the pathogenesis of CIDP via
functional impairment of the node of Ranvier.

The structure of the nervous system is similar to that of a
cable transmission system. With respect to the myelinated axons,
the nodes of Ranvier act as repeaters to regenerate the action
potential, as they propagate in a saltatory manner along the axon
to the terminal nerve and significantly increase the velocity of
action potential conduction (Huxley and Stampfli, 1949; Cohen
et al., 2020). NF plays an important role in the assembly process
and maintains the functional stability of the node of Ranvier.
Previous studies have confirmed that autoantibodies are involved
in the pathogenesis of CIDP including antibodies against NF,
CASPR1, and CNTN1 (Ng et al., 2012; Delmont et al., 2017;
Cortese et al., 2020). A dysfunction of the blood-nerve barrier
(BNB) exposes the antigens of the peripheral nervous system
(PNS), which activate the immune response to cluster immune
cells, secrete cytokines, and produce antibodies (Mathey et al.,
2015). Compared to cellular immunity, humoral immunity is
more significant in the pathogenesis of CIDP by producing anti-
NF antibodies.

Neurofascin comprises two subtypes such as NF186 and
NF155. Due to the diverse functions and structures of each
subtype of immunoglobulin (Ig) and the different anatomical
features of the paranode and node, the manifestation and therapy
of anti-NF155 antibody-positive CIDP are different from those
of anti-NF186 antibody-positive CIDP (Ogata et al., 2015; Kira,
2021). In this study, we mainly discuss the effects of NF on
the assembly and maintenance of the node of Ranvier, the role
of anti-NF antibodies in the pathogenesis of CIDP, and the
corresponding characteristic manifestation of the mechanism.

STRUCTURE OF THE NODE OF RANVIER

In humans, myelin is applied to most nerve fibers in the PNS
by Schwann cells. To some extent, the involved nerves in CIDP
are influenced by the anatomical differences in the peripheral
nerves. A study of 9 patients with anti-NF155 antibody-positive
CIDP showed that the median and ulnar nerves are more
vulnerable than the sural sensory nerves, which are consistent
with their different structures. Moreover, conduction studies
on the median and ulnar nerves show that NF autoantibodies
affect the properties of the nerve terminals, while those on the
sural nerves show that NF autoantibodies affect the intermediate
nerve segment (Kuwabara, 2007; Ogata et al., 2015). These
autoantibodies often preferentially attack sites where the BNB is
anatomically deficient or leaky (Olsson, 1990). The myelinated

sheath is a multilamellar sheet of Schwann cell membrane that
wraps around axons to increase transmembrane resistance and
decrease membrane capacitance, which can be divided into four
parts according to structural features: the nodes of Ranvier,
paranode, juxtaparanode, and internode (Figure 1; Lambert et al.,
1997; Pedraza et al., 2001; Rasband and Peles, 2015). The node of
Ranvier is located in the gap between two segments of the myelin
sheath, which is not completely naked and leaky, but is covered
by the outermost layer of Schwann cell microvilli (Berthold
et al., 1983). There are NF186, sodium ion channels (NaV),
potassium ion channels (including TRAAK, TREK1, Kv7.2/Kv7.3,
and Kv3.1b), and cytoskeletal protein ankyrinG (AnkG)/β4-α2
spectrin or ankyrinR (AnkR)/β1-α2 spectrin on the axon side of
the node of Ranvier (Cooper, 2011; Ho et al., 2014). The main
molecules in the microvilli of Schwann cells are neuronal cell
adhesion molecules (NrCAMs) and gliomedin, both of which
exist as secreted proteins in the gap between Schwann cells
and axons (Davis et al., 1996; Eshed et al., 2005) to promote
the process of NF186 concentration and node assembly (Eshed
et al., 2005; Feinberg et al., 2010; Labasque et al., 2011). The
paranode is a barrier structure that restricts the free movement
of molecules in the two flanks and primarily comprises three
molecules, NF155 on the Schwann cell and CASPR1 and
CNTN1 on the axon. The paranode function depends on the
integrity of the complex (Bhat et al., 2001; Boyle et al., 2001;
Gollan et al., 2002; Pillai et al., 2009; Feinberg et al., 2010).
In addition, 4.1b and β2-α2 spectrin in the axons and AnkB,
4.1 g, and β2-α2 spectrin in Schwann cells constitute paranode-
skeleton components, which are involved in maintaining the
structure and function of the node of Ranvier (Ogawa et al.,
2006; Buttermore et al., 2011; Zhang et al., 2013). Myelin-
associated glycoprotein (MAG) is located at the Schwann cell
paranodal loops, internodes, and Schmidt–Lanterman incisures
(Stathopoulos et al., 2015). MAG is considered to be the antigenic
target of IgM–anti-MAG peripheral neuropathy associated with
monoclonal gammopathy, but it has not been verified in
animal experiments (Montag et al., 1994). The juxtaparanode
is a complex comprising contactin 2 (CNTN2), contactin-
associated protein 2 (CASPR2), and potassium ion channels
(Poliak et al., 2003; Traka et al., 2003). Another molecule
found in the juxtaparanode is disintegrin and metalloproteinase
domain-containing protein 22 (ADAM22), which is a major
neuronal receptor for leucine-rich glioma-inactivated4 (Lgi4)-
mediated Schwann cell signaling (Ozkaynak et al., 2010).
ADAM22-deficient mice develop ataxia and peripheral nerve
hypomyelination (Sagane et al., 2005). Besides, the cytoskeletal
protein β2-α2 spectrin and postsynaptic density protein-95/93
are unnecessary for potassium ion channel clustering in the
juxtaparanode and their functions are unclear (Ogawa et al.,
2010). The integrity of the juxtaparanode, which depends on
the integrity of the paranode, is important for maintaining the
stability of the resting potential and electrical conduction of the
internode (Wang et al., 1993; Rasband, 2010). The paranode
has been viewed as a “fence” of membrane protein that restricts
the diffusion of potassium ion channels into the juxtaparanode.
When any molecular species belonging to the “fence” is absent,
the potassium ion channels spread to the juxtaparanode (Poliak
and Peles, 2003; Salzer, 2003).
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FIGURE 1 | Structure of the node of Ranvier and the pathogenic process of chronic inflammatory demyelinating polyneuropathy (CIDP). The upper half of this figure
shows the morphological structure of the node of Ranvier. According to their molecular composition and function, the node of Ranvier is divided into four parts: the
node, paranode, juxtaparanode, and internode, which is between two juxtaparanodes and is not shown in the figure. In this study, we describe the first three. The
node (mainly NF186, NrCAM, gliomedin, NaV, and Kv) and juxtaparanode (mainly Kv, CNTN2, and CASPR2) have high densities of potassium ion channels to ensure
depolarization and repolarization. The paranode (mainly NF155, CNTN1, and CASPR1) acts as a septate-like junction without ion channels. The lower half of this
figure shows putative pathologic changes in the node of Ranvier in CIDP. As blood-nerve barrier (BNB) dysfunction occurs, the putative antigen is processed by
antigen-presenting cells to T cells, which activate B cells to produce antibodies by secreting cytokines/chemokines. The antibodies pass through the damaged BNB
and then bind to the epitope of the antigen with the assistance of cytokines/chemokines. The formation of antigen-antibody complexes disrupt the structure of the
node of Ranvier, concentration of ion channels, and damage Schwann cell microvilli. CASPR, contactin-associated protein; CNTN, contactin; Kv, voltage-gated
potassium channel; MAG, myelin-associated glycoprotein; Nav, voltage-gated sodium channel; NF, neurofascin; NrCAM, neuronal cell adhesion molecule.

ASSEMBLY OF THE NODE OF RANVIER

All the types of glial cells found in the PNS originate from neural
crest cells, with gliogenesis starting at embryonic day 11 in the
mouse (Jacob, 2015). Two types of glia are generated from neural
crest cells such as satellite glia and Schwann cell precursors.
The latter differentiate into Schwann cells or non-myelinating
Schwann cells, such as melanocytes, parasympathetic neurons,
or mesenchymal stem cells, under the control of the regulatory
factors Notch/Delta, fibroblast growth factors (FGFs), and bone

morphogenetic protein (BMP) (Jacob, 2015). The precise starting
time of gliogenesis in the human embryo is unclear and filling
this gap would be an interesting and attractive domain of study.
As the differentiation of Schwann cell precursors into Schwann
cells completes, the assembly of the node of Ranvier begins. The
conduction of action potentials relies on rapid depolarization
and repolarization, which require the differential distribution of
sodium and potassium ion channels in axons. The structural basis
of saltatory conduction is the integrity of the node of Ranvier
and paranodal structures (Poliak and Peles, 2003; Salzer, 2003).
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Before the formation of the node, NF186 is evenly distributed
on the axons. NF186 concentrates on node through glial-
axon interaction along with two hemi-nodes fused into a node
(Lambert et al., 1997; Salzer, 2003). The assembly of the node of
Ranvier begins with contact between the Schwann cells and the
axon. Cytokines secreted by Schwann cells, such as NrCAM and
gliomedin, interact with NF186 and other adhesion molecules
on the axon surface to promote the assembly of the node of
Ranvier (Zhang et al., 2012). Schwann cells wrap around axons
to form a myelin sheath during the myelin sheath spreading
process and secrete the adhesion molecule NrCAM, which binds
with gliomedin to enhance the movement of NF186 toward the
hemi-node to form a new node (Amor et al., 2017). NrCAM
and NF186 come from two similar Ig families and have highly
similar sequences and domains (Volkmer et al., 1992); when
NrCAM is absent, NaV can cluster at the node, but will be delayed
considerably (Sakurai et al., 2001; Custer et al., 2003). When
both the NrCAM and gliomedin are absent, the density of NaV
at the node is decreased (Amor et al., 2017). The extracellular
domain of NF186 contacts Schwann cell microvilli and moves
toward another hemi-node through the mediation of NrCAM
and gliomedin. The intracellular domain binds to AnkG, which
then connects to the β4-α2 spectrin, NaV, and other cytoskeletal
proteins to form a complex and continues to extend until the
two hemi-nodes fuse into a node (Rasband et al., 1999; Susuki
et al., 2013). Recent evidence has suggested that in addition to
interacting with AnkG, NF186 can also directly interact with
sodium-channel subunits (Lacas-Gervais et al., 2004). When the
binding site of AnkG with NF186 is mutated or absent, the
intracellular domain of NF186 cannot bind to it, which decreases
the stability of NaV in the node and nerve conduction velocity
(Susuki et al., 2013). AnkG deficiency is followed by a lack of β4
spectrum. At this time, AnkR and β1 spectrin will replace their
roles, but they have a low affinity for cell adhesion molecules
(Ho et al., 2014). In addition to participating in the assembly of
the node of Ranvier, NrCAM and gliomedin are related to the
axonal action potential conduction velocity in the mature node
of Ranvier (Feinberg et al., 2010).

The paranode begins to assemble after the node cluster
NaV and then the potassium ion channel concentrates on the
juxtaparanode (Vabnick et al., 1996; Schafer et al., 2006). In the
absence of NF186, NF155 can facilitate the recruitment of NaV
(Zonta et al., 2008; Feinberg et al., 2010; Amor et al., 2017).
CASPR1, CNTN1, and NF155 in the paranode act as transverse
bands to restrict the molecules on both the sides (Sherman
et al., 2005). Once one of the three molecules is dysfunctional,
the barrier effect is impaired, potassium ion channels in the
juxtaparanode diffuse into the paranode, and the normal saltatory
conduction process is destroyed (Poliak and Peles, 2003; Salzer,
2003). NF155 on Schwann cells contacts the CNTN1-CASPR1
complex, which is located on the axon, through the extracellular
molecule domain. The CNTN1-CASPR1 complex connects with
the β2-α2 spectrin and actin through 4.1B to form a transverse
band to complete the barrier function of the paranode and restrict
the voluntary movement of other protein molecules (Rosenbluth,
2009; Horresh et al., 2010; Ogawa et al., 2010). In summary, the
roles of the paranode are as follows: (1) to construct a septate-like

transverse band by cell adhesion molecules and cytoskeleton
proteins to restrict the voluntary movement of molecules on both
the sides of the paranode and increase the electrical resistance
between the internode and node, which is the basic structure of
saltatory conduction; (2) to promote and maintain the stability of
the node. The paranode can compensate for the assembly of the
node and cluster NaV through NF155 when NF186 is absent; and
(3) to connect axons and myelin sheaths to promote the process
of the early node of Ranvier assembly.

ROLE OF NEUROFASCIN IN THE
ASSEMBLY AND MAINTENANCE OF THE
NODE OF RANVIER

Isoform of Neurofascin
Neurofascin, a neural-cell surface protein, is part of the L1
group of the immunoglobulin superfamily, including L1, close
homolog of L1 (CHL1), and NrCAM (Liu et al., 2011). Different
polypeptides of 155, 166, 180, and 186 kDa are produced
by alternative splicing in the isoform of NF (Kriebel et al.,
2012). All are composed of six Ig-like domains, three to four
fibronectin type III (FNIII), the proline-, alanine-, threonine
(PAT)-rich domain (also referred to as mucin-like domain), and
a transmembrane domain (Hassel et al., 1997). The specific
function of each domain in different isoforms of NFs is not clear
so far and further investigation is necessary in the future. NF180
and NF166 are expressed in the surface of immature neurons.
NF166 is composed of six Ig-like domains, FNIII domains 1, 2,
and 4 without the PAT domain, and is expressed in the developing
chick dorsal root ganglia. NF180 is different from NF166 in terms
of its addition to the composition of the PAT domain. Evidence
has shown that the NF180 isoform is expressed in the embryonic
brain and during early development in the rat brain (Hassel et al.,
1997; Burkarth et al., 2007). However, the specific functions of
NF180 and NF 166 remain unclear and additional investigation
is needed. The difference between NF155 and NF186 relies on the
extracellular domains. NF155 carries fibronectin type 3 (FN3);
however, NF186 lacks this domain and instead has FN5 and the
PAT domain between FN4 and FN5. NF is indispensable for
the intact structure and function of axons and the structures of
nodes and paranodes in mice whose NF gene is knocked out
and cannot be assembled properly. NaV is diffusely distributed
in axons, the septate-like transverse band effect of paranode
disrupts, and nerve impulses cannot be transmitted in a saltatory
manner (Sherman et al., 2005). NF is also expressed in human
kidney glomeruli besides the nervous system (Sistani et al., 2013),
which was also verified by a study of two patients with anti-NF186
antibody-positive CIDP who presented with nephrotic syndrome
in the meantime (Delmont et al., 2017).

The PAT domain is thought to confer an extended and more
flexible structure of NF186, which can enhance the interactions
of NF186 with gliomedin and NrCAM and enable NF186
to target at the node and guide NaV and AnkG located at
proper locations. When NF186 is absent, the nodal gap shortens
progressively and AnkG and Nav disappear from the axon,
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resulting in the deduction of conduction velocity. Moreover,
NF186 coordinates nodal organization and the enrichment of
both the neuron-specific proteins and glial-specific proteins to
nodes in PNS myelinated axons and acts as a barrier to restrict
the invasion of flanking paranodal domains in myelinated axons
(Thaxton et al., 2011).

Function of Neurofascin 155 in the Node
of Ranvier
Paranode stability requires interactions between glial NF155
and the CNTN1-CASPR1 complex, which is expressed on
the axonal membrane (Charles et al., 2002). There are three
primary molecules involved in the paranode: NF155, CASPR1,
and CNTN1. NF155 is essential for maintaining ion channel-
related proteins at the proper position in the axons. NF155
plays an important role in the paranode-assembly mechanism
by clustering CASPR1 and CNTN1 through the extracellular
domain. When NF155 is malfunctioning, the total quantity
of CASPR1 and CNTN1 does not decrease, but they cannot
concentrate on the paranode, leading to paranode structure
damage and NaV channels disorderly diffuse on the axon.
The order of saltatory conduction is disrupted and conduction
velocity decreases (Sherman et al., 2005). NF155 is not
indispensable for node assembly, but it is important for the
stability of the node of Ranvier. Once NF155 is attacked, the
restrictive effect of the paranode is disrupted and the potassium
ion channel in the juxtaparanode invades the node, resulting
in the disruption of the proper ion channel distribution and
saltatory conduction (Zonta et al., 2008). Additionally, NF155 has
a vital function in maintaining the stability of nodes; compared
with the loss of NF186 alone and when both the NF186 and
NF155 are lost at the same time, the action potential conduction
velocity and the stability of the node decrease and the axon
degeneration is intensified (Taylor et al., 2017).

In summary, NF is indispensable for the structural integrity of
the node of Ranvier and paranode, which is the basis for saltatory
conduction of action potentials. Both the NF186 and NF155 play
separate roles in the myelin sheath: NF155 is a component of the
paranode that stabilizes ion channels located in two flanks of the
paranode, whereas NF186 acts as a barrier to restrict the invasion
of flanking paranodal domains in myelinated axons.

ROLE OF THE NODE OF RANVIER AND
NEUROFASCIN in CHRONIC
INFLAMMATORY DEMYELINATING
POLYNEUROPATHY

Isoforms of Neurofascin as the Immune
Targets in Chronic Inflammatory
Demyelinating Polyneuropathy
Some patients with CIDP have infections after the onset of
neurological symptoms, but so far, no causative pathogens have
been found to be related to the occurrence of the disease. CIDP
is considered an autoimmune disease and may be treated and
improved by effective targeting of the autoimmune response and
the therapeutic methods include intravenous immunoglobulin

(IVIg), plasma exchange, and corticosteroids, which have been
proven to inhibit the inflammatory response in the blood
circulatory system and peripheral nerves (Querol et al., 2017).
There are many target antigens in CIDP including NF, CASPR1,
CNTN1, and gliomedin. Both the cellular and humoral immunity
are involved in the pathogenesis of CIDP. At onset, cytokines
secreted from T cells trigger inflammation of the BNB, which
accelerates the exposure of autoantigens such as NF186 and
NF155 to circulating immune cells and activates humoral
immunity (Ubogu, 2015). The NF antibodies play a crucial
role in the pathogenesis because of the characteristic position
and function of NF in axons and glial cells (Rasband and
Peles, 2021). With respect to the humoral immune response,
the immunoglobulin G4 (IgG4) subclass was predominant
in antibodies to NF in CIDP and has characteristic clinical
manifestations, while other subclasses of IgG also participate in
this process (Ogata et al., 2015; Burnor et al., 2018).

Features of Antibodies in
Anti-neurofascin Antibody-Positive
Chronic Inflammatory Demyelinating
Polyneuropathy
The isoform of NF155 is more vulnerable to attack in immune
modulatory dysfunction than other molecules in CIDP (Delmont
et al., 2017; Burnor et al., 2018; Kira, 2021). The IgG subclass was
more frequently detected in both the anti-NF186 and anti-NF155
antibody-positive CIDP. The IgG4 subtype is predominant in
patients with CIDP with anti-NF155 antibody positivity, but IgG3
and IgG1 take advantage of IgG4 in patients with CIDP with anti-
NF186 antibody positivity (Ng et al., 2012; Querol et al., 2017;
Kira et al., 2019). Ig is progressively produced by maturing B
cells in a sequential order (IgM→IgG3→IgG1→IgG2→IgG4)
(Collins and Jackson, 2013), which is in accordance with
the fact that both the positive rate and titer of IgG4 are
predominant in CIDP, but IgM and IgG3 are more detectable
in Guillain-Barré Syndrome (GBS) (Burnor et al., 2018). NF186
is more accessible to be attacked by antibodies in circulation
than NF155 because of its anatomical features (Lonigro and
Devaux, 2009). Anti-NF antibodies are found in about 4–18%
in patients with CIDP and acute inflammatory demyelinative
polyradiculoneuropathy (AIDP) (Ng et al., 2012; Ogata et al.,
2015); the positive rate of NF186 is lower than that of NF155
in CIDP, which is probably due to the paranode maintenance
effect to sodium channels. Due to the unique feature of IgG4,
the positive rate of anti-NF155 antibodies is approximately
25% in IVIg-resistant patients with CIDP. The paranode
restricts NaV in nodes when NF186 is decreased or absent
(Lonigro and Devaux, 2009).

FN3 is considered an antigenic determinant of NF155 in
CIDP and other inflammatory demyelinating polyneuropathies
(Delmont et al., 2017; Burnor et al., 2018). However, in another
study, FN3 to FN4 domains were confirmed as targets for NF155-
specific reactivity (Ng et al., 2012). Both the FN5 (Ng et al., 2012)
domain and Ig domain (Delmont et al., 2017) are considered
the target epitopes of NF186 (Figure 2), which require further
study in the future.
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FIGURE 2 | Schematic illustration of different neurofascin isoforms and
epitope. PAT, proline-, alanine-, threonine-rich.

Dysfunction of the Blood-Nerve Barrier
Is the Early Feature in Pathology of
Chronic Inflammatory Demyelinating
Polyneuropathy
The BNB directly communicates with the circulating blood and
nerve lumen and consists of simple endoneurial microvascular
endothelium cells, which are connected by intercellular tight
junction. It is a selectively permeable barrier that increases
transendothelial electrical resistance, regulates the diffusion of
molecules and nutrients, and restricts hematogenous cells from
invading nerves (Ubogu, 2020). The endothelial cells share the
basement membrane with the surrounding cells called pericytes,
which are considered to play a significant part in peripheral
neuropathy. An intact BNB is required for effective nerve
conduction to provide a normal endoneurial homeostasis. In
case of infection, trauma, or dysfunction of the immune system,
cytokines and immune cells disrupt the cellular tight junctions
and change the permeability of the BNB. Ultrastructural
examination of endoneurial microvascular endothelium cells in
patients with GBS and CIDP revealed the presence of tight
junctions between leukocytes and endothelial cells, which change
permeability of the BNB and disrupt endoneurial homeostasis
(Bosetti et al., 2016; Dong et al., 2016).

The BNB dysfunction is the first step in the pathological
cascade of CIDP. Both the cellular and humoral immunities
are involved in the pathogenesis of CIDP. Previous studies
have demonstrated that the filtration of autoreactive T-cells,
macrophages, and cytokines leads to dysfunction of the BNB,
which makes it accessible to antibodies in circulation (Figure 1;
Lonigro and Devaux, 2009). A study showed that injection of
anti-NF antibodies from patients with CIDP to the experimental
autoimmune neuritis (EAN) model could enhance and prolong
an ongoing neuritis, but injection of anti-NF antibodies to
the control group is not pathogenic (Ng et al., 2012). An

electrophysiology test of CIDP showed that distal and F-wave
latencies are influenced more severely than the motor conduction
velocities and compound muscle action potential amplitudes and
have a high frequency of spinal root hypertrophy on MRI images,
which suggest that nerve terminals, major plexuses, and spinal
roots are more frequently involved in patients with anti-NF155
antibody-positive CIDP, where the BNB is anatomically absent or
loose (Ogata et al., 2015; Kira, 2021). The BNB maintains nerve
homeostasis by preventing the free movement of soluble proteins
in the circulation into the endoneurium microenvironment
under normal physiological conditions. In the condition of
dysfunction of the BNB (e.g., the BNB is congenitally absent
or damaged by in situ/systematic inflammation), molecules
involved in Schwann cell-axon interaction, such as NF, CNTN1,
and CASPR1, are accessible to the immune system and act as
putative antigens, which are presented by antigen-presenting
cells through the expression of the costimulatory molecules
CD80 and CD86 to T cells; in effect, T cells activate and
release cytokines, including interleukin-4 (IL-4) and IL-6 (Kiefer
et al., 2000; Murata and Dalakas, 2000; Hu et al., 2007).
These inflammatory mediators, which increase in both the
cerebrospinal fluid and serum in patients with CIDP, not only
activate B cells to produce autoantibodies, but also increase the
permeability of the BNB, which progressively deteriorates the
local inflammatory microenvironment and assists T cells to pass
through the BNB easily, resulting in further severe damage to
the BNB in a vicious cycle (Kieseier et al., 2002; Chi et al.,
2008). The infiltrating inflammatory cells were identified by
sural nerve biopsies in CIDP including macrophages, CD8+ T
cells, and CD4+ T cells (Maimone et al., 1993; Schmidt et al.,
1996; Mahad et al., 2002; Schneider-Hohendorf et al., 2012).
Resident and recruited macrophages, activated by cytokines
produced from T cells, invade the myelin fiber via their Fc
receptor, causing macrophage-mediated demyelination, which
are the predominant infiltrating inflammatory cells in patients
with CIDP. With dysfunction of the BNB, cytokines/chemokines
induce cell infiltration into the nerve microenvironment and
make antibodies accessible to the antigen targets of axons or
Schwann cells. However, previous studies revealed that biopsied
sural nerves from two anti-NF155 antibody-positive patients
with CIDP demonstrated subperineurial edema and occasional
paranodal demyelination, but no vasculitis, inflammatory cell
infiltrates, or onion bulbs (Ogata et al., 2015; Koike et al., 2017).
Another study showed that large myelinated fiber loss without
cellular infiltration was observed in anti-NF186 antibody-positive
patients with CIDP (Pascual-Goñi et al., 2019), which probably
indicates that humoral immunity, not cellular immunity, is the
primary mechanism in anti-NF antibody-positive CIDP.

Characteristics of Anti-neurofascin
Antibody-Positive Chronic Inflammatory
Demyelinating Polyneuropathy
When the pathological changes of CIDP damage the paranode,
severe clinical manifestations are observed with anti-NF186
antibody-positive CIDP, which is not as severe as anti-
NF155 antibody-positive CIDP. Some studies have indicated
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that anti-NF155 antibodies are pathogenic through block
NF155 and CNTN1-CASPR1 complex interaction, which is
verified by the sural nerve biopsy presenting Schwann cell
terminal loop detachment from axons without inflammatory
infiltration (Ogata et al., 2015). Electron microscopy of anti-
NF155 antibody-positive CIDP also revealed detachment of
terminal Schwann cell loops from axons at the paranodes,
which resulted in the disruption of septate-like transverse
bands (Koike et al., 2017; Kuwahara et al., 2018). In patient
with CIPD with anti-NF186 antibodies, all the microvilli of
the checked nodes of Ranvier completely disappeared and
the outermost cytoplasm parts of two adjacent Schwann cells
tended to spread along the nodal axolemma, leading to
the complete block of the nodal gap. Electron microscopy
showed the disappearance of microvilli that were replaced
by elongated extensions of Schwann cell cytoplasm occluding
the node of Ranvier, which disturbs the NaV position and
leads to the failure of impulse conduction (Vallat et al.,
2018). The passive transfer of anti-NF antibodies into mice
with EAN strongly exacerbates the severity of the pathology
(Yan et al., 2014).

Immunoglobulin G4 exists in a monovalent bispecific
form through a process termed Fab-arm exchange (Huijbers
et al., 2015), which results in the inability to internalize the
target antigen (Aalberse and Schuurman, 2002). IgG4 is the
least abundant in serum at approximately 5% of the total
four IgG subclasses and accounts for the majority of anti-
NF155 antibody-positive CIDP cases (Delmont et al., 2017;
Kira et al., 2019). IgG4 cannot activate complement with a
compact structure, which results in inaccessibility for binding
with C1q. Complements have no access to the combination
of IgG4 because of the trans heavy chain CH1–CH2 domain
interaction of IgG4 (Huijbers et al., 2015; Kira et al., 2019).
IgG4 is produced by chronic or long-term stimulation by
antigens in a non-infectious initiation and then may become
the dominant subtype; IgG4 alleviates allergic inflammation by
blocking the binding site of allergen-specific IgE to allergens
(Huijbers et al., 2015), which suggests that IgG4 causes
pathological changes by blocking protein–protein interactions.
Two biopsied sural nerve specimens from patients with anti-
NF155 antibody-positive IgG4-predominant CIDP showed
occasional paranodal demyelination and subperineural edema,
but no inflammatory cell infiltrates, onion bulbs, or vasculitis
(Ogata et al., 2015). The pathogenic mechanism of anti-NF155
antibodies blocks the interaction between NF155 and the
CNTN1-CASPR1 complex, resulting in saltatory conduction
failure but without inducing inflammation (Kira, 2021). An
electron microscopy study showed the disappearance of
microvilli in the sural nerve biopsy specimen from an anti-
NF186 IgG3 antibody patient with CIDP, which were replaced
by elongated extensions of Schwann cell cytoplasm, so that the
nodal gap was occluded (Vallat et al., 2018). IgG4 autoantibody-
mediated disease has strong association with human leukocyte
antigen (HLA) class II alleles. A recent report showed that
the frequency of the HLA-DRB1∗15 allele was significantly
higher in 13 patients with NF155 + CIDP from European
countries (Spain, France, Italy, and the United Kingdom;

92% Caucasians) than in the control Spanish populations
(Martinez-Martinez et al., 2017). However, a Japanese
study showed that all the 22 patients with IgG4 anti-NF155
antibody-positive CIDP had clearly high frequencies of HLA-
DRB1∗15, -DRB1∗15:01, -DQB1∗06:01/06:02, -DQB1∗06:02, and
-DRB1∗15:01-DQB1∗06:02 (Ogata et al., 2020).

Clinical Manifestations of
Anti-neurofascin Antibody-Positive
Chronic Inflammatory Demyelinating
Polyneuropathy
Patients with immunoglobulin G4-predominant anti-NF155
antibody-positive CIDP are often refractory to treatment with
IVIg, but they partially respond to rituximab and corticosteroid
treatment because IgG4 does not fix complements or bind to
Ig receptors in a monovalent bispecific form in vivo (Burnor
et al., 2018; Pascual-Goñi et al., 2019). Most anti-NF186 antibody-
positive CIDPs are responsive to IVIg, probably because IgG4
is not the predominant subtype and the location of NF186
is more accessible to Ig in circulation (Lonigro and Devaux,
2009; Delmont et al., 2017). Another common feature of IgG4-
mediated diseases is their positive response to B-cell depletion
treatment (Querol et al., 2017). IgG4 antibodies are produced by
regulatory B (Breg) cells (van de Veen et al., 2013). The inhibitory
Ig receptor low-affinity IgG Fc region receptor IIb (FcγRIIB) is a
major mediator of the IVIg response. Gene expression profiling
suggests that IL-10-positive Breg cells have reduced expression of
FcγRIIB compared to IL-10-negative Breg cells (Lünemann et al.,
2015). This difference could partly explain the IVIg resistance, but
B cell depletion was efficient.

The clinical features of anti-NF155 antibody-positive
CIDP include younger age at onset, predominant distal limb
weakness, high-amplitude and low-frequency tremors, ataxia
with cerebellar features, and a higher prevalence of poor
response to IVIG when compared with seronegative patients
(Querol et al., 2014; Kadoya et al., 2016). Although tremor
and ataxia accompanied by cerebellar features commonly
occurred in anti-NF155 antibody-positive CIDP, there is no
evidence of abnormalities on MRI of the head in anti-NF155
antibody-positive CIDP. Several studies have reported that MRI
scans of the cervical and lumbosacral nerves show enlarged
nerve roots and proximal nerve segments (Kira, 2021). The
clinical features of anti-NF186 antibody-positive CIDP are
different from those of anti-NF155 antibody-positive CIDP,
which include subacute onset, sensory ataxia, conduction block,
and cranial nerve involvement. In comparison with anti-NF155
antibody-positive CIDP, most patients with anti-NF186 antibody
positivity showed a good response to IVIg and corticosteroid
treatment. None of the patients showed tremor or neuropathic
pain (Delmont et al., 2017).

CONCLUSION

Recently, an increasing number of studies have revealed that the
assembly and maintenance of the node of Ranvier depends on
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the normal functions of various molecules on the node, paranode,
and juxtaparanode including NrCAM, gliomedin, CNTN1/2,
CASPR1/2, MAG, and NF. These molecules keep the ion
channels in proper positions to ensure that the action potential
is conducted in a saltatory manner. The BNB dysfunction is
considered the initiation of pathology of CIDP and passive
transfer of anti-NF antibodies to EAN could aggravate and
delay ongoing neuritis. Antigenic targets should be accessible
to antibodies, which are realized by cytokines and immune cell
infiltration, resulting in opening the BNB and providing access
to autoantibodies. The immune response is activated by the
exposure of autoantigens or foreign antigens, resulting in the
production of cytokines and antibodies to resist the invasion
of the “foreigner.” These immune mediators could disrupt the
physiological effects of the node of Ranvier and lead to the
occurrence of diseases such as CIDP, AIDP, and combined central
and peripheral demyelination. Antibodies to both the NF155
and NF186 are involved in the pathogenesis of CIDP, but Ig
subclasses and clinical manifestations are significantly different.
The positive rate of the anti-NF155 antibody was higher than
that of NF186 in CIDP probably because NF155 can partly
compensate for the function of NF186. The mechanism by which
autoantibodies belonging to the same IgG4 subclass can cause
IgG4 antibody-specific disease features and different responses to
conventional immunotherapy requires further study and it could
guide the development of more efficient treatments and avoid
unnecessary therapy. The sequential order of Ig indicates that the
appearance of IgG4 results from long “foreign” stimulation and
the production of IgG3 and IgM is an acute immune response.
Unique diagnosis and treatment strategies are required for IgG4-
related neuropathy. Previous studies indicate that IgG4-related
CIDP is poorly responsive to IVIg, but no multicenter studies
have focused on the effect of immunosuppressors in patients
with CIDP. Further multicenter studies are necessary to clarify

the clinical characteristics of the autoantibody subtypes, which
assist diagnosis and the choice of therapeutic strategies. Further,
studies are needed to reveal the mechanism of the different
responses of anti-NF186/-NF155 IgG4-positive CIDP to IVIg.
Although we have discussed in depth the mechanism underlying
the pathogenesis of NF in CIDP, many problems remain unsolved
in this field. Further study will be essential for understanding the
specific function of each domain in the different isoforms of NF,
how the NFs interact with their corresponding receptors/ligands,
the factors that trigger dysfunction of the BNB, the role of the
pericytes in pathology of CIDP, and the different modifications of
the BNB that occur in the various subtypes of CIDP.
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