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ABSTRACT We report here the draft genome sequences of four strains isolated from
spacecraft-associated surfaces exhibiting increased resistance to stressors such as UV ra-
diation and exposure to H2O2. The draft genomes of strains 1P01SCT, FO-92T, 50v1, and
2P01AA had sizes of 5,500,894 bp, 4,699,376 bp, 3,174,402 bp, and 4,328,804 bp, respec-
tively.

Bacillus horneckiae strain 1P01SCT was isolated from a spacecraft assembly clean
room at Kennedy Space Center (KSC), where the Phoenix spacecraft was assembled

(1). As previously reported, spores of this strain were resistant to UV254 radiation up to
1,000 J m�2. Bacillus nealsonii FO-92T was isolated from fall-out particles collected from
a spacecraft assembly facility at the Jet Propulsion Laboratory (2). Spores of FO-92T have
exhibited resistances to UV254 up to 300 J m�2, and vegetative cells and spores of this
organism were resistant in up to 5% liquid H2O2 (2). Acinetobacter radioresistens 50v1
was isolated from the surface of the Mars Odyssey orbiter (3). Vegetative cells of this
organism were capable of surviving a combination of stressors, including desiccation,
up to 1,000 J of UV254 radiation, and up to 0.33 mg/ml of H2O2 (3). Acinetobacter
proteolyticus strain 2P01AA was isolated from the Payload Hazardous Servicing Facility
at KSC during the assembly of the Phoenix spacecraft (4). As reported previously, strain
2P01AA exhibited increased resistance to H2O2 exposure and survival in up to 320 mM
H2O2 (5). Here, we report the first draft genome sequences of B. horneckiae type strain
1P01SC, B. nealsonii type strain FO-92, and two Acinetobacter species strains, 50v1, and
2P01AA, isolated from spacecraft hardware and associated surfaces.

Strains 1P01SCT, FO-92T, 50v1, and 2P01AA, were sequenced using a shotgun
sequencing approach on the Illumina HiSeq paired-end platform. The reads were de
novo assembled using CLC Genomics Workbench version 10.1.1, resulting in total
genome sizes of 5,500,894 bp, 4,699,376 bp, 3,174,402 bp, and 4,328,804 bp, respec-
tively. Genome statistics are given in Table 1 for all the strains. Annotations were
produced using both the Rapid Annotations using Subsystems Technology server (6)
and the NCBI Prokaryotic Genome Annotation Pipeline (7, 8) and visualized using the
SEED viewer (9).

The Bacillus strains 1P01SCT and FO-92T had 103 and 99 putative genes coding for
dormancy and sporulation, respectively. Both strains had MutS, RecA, MutL, excinu-
clease ABC, beta-lactamase, and genes coding for the formation of persister cells
(10). Strain FO-92T had a prophage-associated DNA repair protein (RecT), six genes
associated with spore DNA protection, exodeoxyribonuclease III, and a peroxide stress
regulator (PerR). Strain 1P01SCT had cold shock proteins (CspD and CspA) and a
heat-inducible transcriptional repressor (HrcA).

Acinetobacter strains 50v1 and 2P01AA possessed putative genes coding for per-
sister cell formation, heat shock and cold shock responses, superoxide dismutase,
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rubredoxin-NAD(�) reductase, and cobalt, zinc, cadmium, and arsenic resistance (11).
Strain 2P01AA had putative genes coding for heme oxygenase (HemO) and four genes
coding for quorum-sensing molecules, which initiate biofilm biosynthesis and adhesion
(12). Strain 50v1 had genes associated with betaine and choline uptake, which further
allow for increased water retention in the cells (13), as well as alkyl hydroperoxide
reductase subunit C and a DNA-binding protein (Dps), which has been shown to
protect organisms from oxidative stress (14).

Accession number(s). The genome sequences of all four isolates have been de-
posited at DDBL/EMBL/GenBank under the accession numbers listed in Table 1.
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TABLE 1 Genome statistics of four microbial strains isolated from spacecraft hardware and associated surfaces

Strain
GenBank
accession no.

No. of
contigs

Genome
size (bp)

N50

size (bp)

Largest
contig
size (bp)

GC
content
(%)

No. of
rRNAs

No. of protein-
coding genes

Coverage
(�)

No. of
filtered
reads

B. horneckiae 1P01SCT PISD00000000 104 5,500,894 93,836 456,652 37.48 1 (16S), 1 (23S) 5,708 326 11,967,132
B. nealsonii FO-92T PISE00000000 92 4,699,376 104,758 307,322 34.67 6 (5S), 2 (16S),

3 (23S)
4,712 563 17,642,747

A. radioresistens 50v1 PISK00000000 125 3,174,402 65,829 186,990 41.59 4 (16S), 3 (23S) 2,930 428 9,077,106
A. proteolyticus 2P01AA PISJ00000000 36 4,328,804 316,343 447,298 41.10 1 (5S), 1 (16S),

1 (23S)
4,040 575 16,609,733
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